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Abstract: Aiming at the problem of high-precision positioning of mass-pedestrians with low-cost 
sensors, a robust single-antenna Global Navigation Satellite System (GNSS)/Pedestrian Dead Reck-
oning (PDR) integration scheme is proposed with Gate Recurrent Unit (GRU)-based zero-velocity 
detector. Based on the foot-mounted pedestrian navigation system, the error state extended Kalman 
filter (EKF) framework is used to fuse GNSS position, zero-velocity state, barometer elevation, and 
other information. The main algorithms include improved carrier phase smoothing pseudo-range 
GNSS single-point positioning, GRU-based zero-velocity detection, and adaptive fusion algorithm 
of GNSS and PDR. Finally, the scheme was tested. The root mean square error (RMSE) of the hori-
zontal error in the open and complex environments is lower than 1 m and 1.5 m respectively. In the 
indoor elevation experiment where the elevation difference of upstairs and downstairs exceeds 25 
m, the elevation error is lower than 1 m. This result can provide technical reference for the accurate 
and continuous acquisition of public pedestrian location information. 

Keywords: pedestrian navigation; GRU-based zero-velocity detection; integration navigation 
 

1. Introduction 
The joint application of low-cost inertial sensors, miniature global navigation satellite 

system (GNSS) receivers, and barometers has been one of the research hotspots in the field 
of navigation in the past decade [1–3]. Accurate and continuous pedestrian location infor-
mation is widely used in professional applications such as armed police duty, field walk-
ing, pipeline maintenance, etc. The satellite navigation system can provide users with 
good location services in an open outdoor environment [4,5]. However, the system cannot 
work well in some scenarios where GNSS signals are unavailable [6,7]. Other information 
sources such as wireless local area networks (WLAN) [8], ultra-wideband (UWB) [9], ra-
dio frequency identification (RFID) [10], etc., can directly provide location information. 
However, there is a problem of signal occlusion in indoor scenarios. Generally, WiFi po-
sitioning and UWB positioning require extensive installation of signal receiving devices 
during the actual operation. Whether fingerprint positioning or trilateral measurement, 
WiFi positioning cannot be separated from offline surveying and mapping, limiting its 
application mode. Cameras [11] and radar [12] can improve the robustness of the system, 
however, these sensors only work effectively when there are enough features in the envi-
ronment, which limits their application. 

Some solutions such as multi-source information fusion have been proposed around 
the demand for continuous and reliable pedestrian navigation. Zhu et al. proposed a 
novel pedestrian navigation system (PNS) integrating RTK/Pseudolite/LAHDE/IMU, 
which uses manmade landmarks deployed at the entrance of the corridor to determine 
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whether pedestrians are in an indoor corridor. If pedestrians do not follow a route with 
landmarks, the error will accumulate quickly [13]. Xin et al. presented a joint positioning 
scheme combining Bluetooth and inertial navigation systems, which provides meter-level 
positioning services without additional facilities [14]. Cavallo et al. introduced a solution 
which uses global position system (GPS) and Bluetooth to assist pedestrian trajectory cal-
culation. This solution can continuously provide reliable positioning results for pedestri-
ans in indoor or outdoor environments [15]. In [16], Polak et al. extended the power level 
measurement by using multiple anchors and multiple radio channels and focuses on the 
employing of machine learning methods to improve localization accuracy in an indoor 
environment under different conditions. In [17], Sun et al. integrated ultra-wideband tech-
nology and PDR to solve the problem of accumulated errors in inertial navigation sys-
tems. Compared with traditional methods, the positioning accuracy has been effectively 
improved. 

As pedestrian movement patterns are complex, providing high-precision positioning 
in a complex environment is difficult by using a single navigation technology. With the 
continuous development of micro electro mechanical system (MEMS) technology, many 
sensor modules can be highly integrated into a small, low-power module, which provides 
natural advantages for public pedestrian navigation [18]. Magnetometer-assisted pedes-
trian navigation has long been widely studied [19,20]. To make magnetometer infor-
mation play an active role in the system, the soft and hard magnetic effects must be cali-
brated, and the geomagnetic interference must be modeled and compensated [21,22]. Alt-
hough the pedestrian navigation system based on inertial measurement units (IMU) can 
continuously provide positioning information, the positioning accuracy will quickly ac-
cumulate over time [23]. Mining pedestrian motion constraint information is of great sig-
nificance for improving the performance of low-cost sensors. Pedestrians have natural 
zero-velocity information constraints during walking. Therefore, a zero-velocity update 
(ZUPT) algorithm can be widely used to suppress error accumulation [24]. In the zero-
velocity phase of a gait cycle, the ZUPT algorithm combined with the extended Kalman 
filter (EKF) can effectively improve the positioning accuracy [25,26]. 

For this reason, various gait detection schemes have been proposed [27–33]. Skog et 
al. used the output of IMU to offer a zero-velocity detection method based on a general 
likelihood ratio test (GLRT) [27]. Experiments show that this method achieves good re-
sults at a slow walking speed. Wang et al. proposed an adaptive stance-phase detection 
method based on inertial sensor, which deals with the measurement fluctuations in swing 
and stance phases differently and performs well in the presence of measurement fluctua-
tions [28]. Liu et al. adjusted the threshold of zero-velocity detection dynamically accord-
ing to the output of the accelerometer [29]. In [30], Wang et al. designed an algorithm to 
adjust the length of the window without changing the threshold. These methods do not 
clearly explain the connection with the existing zero-velocity detection methods based on 
maximum likelihood detection. In recent years, many researchers have proposed some 
detection methods based on artificial intelligence (hidden Markov model (HMM) [31], 
support vector machine (SVM) [32], long short term memory (LSTM) [33]) without thresh-
old of zero-velocity detection in the pedestrian navigation system. Compared with tradi-
tional zero-velocity detection methods, these methods do not need to set specific thresh-
olds. Although these methods require a lot of data to train the model and have a high 
computational cost, they are more robust than the traditional methods. 

Although the traditional zero-velocity detection method can detect the zero-velocity 
state of pedestrians, it is hard to set the threshold of zero-velocity detection appropriately. 
The GNSS/SINS integrated navigation system can provide reliable positioning results in 
outdoor open environment, but it is not available in an indoor environment as the GNSS 
signal is interrupted. In this article, a robust single-frequency GNSS/PDR pedestrian nav-
igation system is proposed. The error state Kalman filter is used to fuse GNSS positioning 
information, zero-velocity state, barometer elevation, and other information. The zero-ve-
locity detector based on GRU can accurately detect the motion state of pedestrians. The 
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adaptive robustness algorithm and lever arm model are used to make the system more 
robust. Experiments show that the proposed algorithm can obtain reliable positioning re-
sults in complex environments. 

The rest of this article is arranged as follows. The second section presents the 
GNSS/PDR integration scheme architecture. In the third section, the main algorithms of 
the scheme are introduced, including improved carrier phase smoothing pseudo-range 
GNSS single-point positioning algorithm, GRU-based zero-velocity gait detection, and 
adaptive fusion algorithm of GNSS and PDR. The fourth section introduces the experi-
ment results and analysis. The conclusion of this paper is given in the fifth section. 

2. GNSS/PDR Integration Scheme Architecture 
A robust integration scheme for single-frequency single-antenna GNSS/PDR in com-

plex environments is proposed. It is designed to provide reliable, continuous, and accu-
rate positioning results for low-cost mass pedestrian positioning in complex environ-
ments. Algorithmically, this integration scheme uses the error state EKF as the algorithm 
framework, considering the gait characteristics of pedestrian walking, and fusing GNSS 
position, barometer height, and other information. From the point of view of program 
realization, the high efficiency of calculation, the scalability of code, and modular pro-
gramming are evaluated. The code structure is clear, which is convenient for developers 
to maintain, update, and collaborate. The scheme is mainly composed of the following 
five parts: 
• Single-frequency data quality analysis, preprocessing, etc. 
• Improve carrier phase smoothing GNSS single point positioning. 
• GRU-based zero-velocity detector. 
• Adaptive GNSS/PDR fusion positioning. 
• Error analysis and visualization of positioning results. 

The data fusion strategy flowchart is shown in Figure 1. Because of the unpredicta-
bility of pedestrian motion patterns and low sensor accuracy, the foot-mounted pedestrian 
navigation system is used as the basis, and the error state Kalman filter is used as the data 
fusion framework to deeply explore the performance of MEMS sensors. Motion constraint 
information is used to improve the positioning capability of the system. Figure 1 shows 
the single-frequency GNSS/PDR positioning algorithm. It mainly includes four parts: (1) 
GNSS positioning algorithm, (2) PDR algorithm, (3) GNSS/PDR positioning algorithm, (4) 
GRU-based gait detection algorithm. 

 
Figure 1. The data fusion strategy flowchart. 

The overall architecture of the scheme is shown in Figure 2. The three sub-modules 
included are named INS module, GNSS module, and PNS module. INS module imple-
ments algorithms related to INS, GNSS module implements algorithms related to GNSS, 
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and PNS module implements integrated navigation, self-adaptation, and result in display. 
Each sub-module contains its basic function and main algorithm. 

 
Figure 2. The overall architecture of the scheme. 

3. Fusion Method of GNSS and ZUPT-Aided PDR 
The algorithm flow chart is shown in Figure 1. This section shows the GNSS data 

preprocessing strategy, single-frequency single-antenna positioning algorithm, GRU-
based zero-velocity detection, and GNSS/PDR integrated navigation algorithm. 

3.1. GNSS Data Preprocessing Strategy and Single-Frequency GNSS Positioning Algorithm 
Evaluating the data quality of observations from low-cost GNSS modules can pro-

vide a basis for the preprocessing of observations. The satellite visibility, carrier-to-noise 
ratio (C/𝑁𝑁0), and pseudo-range noise are quantitatively evaluated and analyzed based on 
measured data. The number of visible satellites will directly affect the number of redun-
dant observations in the data preprocessing. The C/𝑁𝑁0  is an essential indicator of the 
quality of the received observations. The GNSS/PDR integration scheme uses a variety of 
strategies to preprocess GNSS data, including detecting cycle slips and removing it, and 
for the problem that observations are prone to gross errors when the observations are at a 
low signal-to-noise ratio. Eliminate satellites below the threshold to avoid introducing ab-
normal observation information. 

Hatch filtering is a standard processing method of traditional single-frequency car-
rier smoothing pseudo-range [34]. The traditional single-frequency hatch filter algorithm 
is prone to the problems of divergence of smoothing results and decreased accuracy due 
to the influence of ionospheric delay changes. In [35], Chebir et al. proposed a method 
based on applying specific transformations to the GNSS signals received in unfavorable 
environment, which can effectively receive and process GNSS signals in unfavorable en-
vironment. In [36], Park used a moving window algorithm to improve the original single-
frequency smoothing pseudo-range algorithm. There are two forms of single-frequency 
smoothing, and the corresponding smoothing between epochs can be defined as: 

𝜌̂𝜌(𝑡𝑡𝑘𝑘) =
1
𝑘𝑘
𝜌𝜌(𝑡𝑡𝑘𝑘) + �1 −

1
𝑘𝑘
� [𝜌̂𝜌(𝑡𝑡𝑘𝑘−1) + 𝛿𝛿𝛿𝛿(𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘−1)], 𝑘𝑘 ≥ 1 (1) 
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𝜌̂𝜌(𝑡𝑡𝑘𝑘) = �

1
𝑘𝑘
𝜌𝜌(𝑡𝑡𝑘𝑘) + �1 −

1
𝑘𝑘
� [𝜌̂𝜌(𝑡𝑡𝑘𝑘−1) + 𝛿𝛿𝛿𝛿(𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘−1)], 1 ≤ 𝑘𝑘 ≤ 𝑀𝑀

1
𝑀𝑀
𝜌𝜌(𝑡𝑡𝑘𝑘) + �1 −

1
𝑀𝑀
� [𝜌̂𝜌(𝑡𝑡𝑘𝑘−1) + 𝛿𝛿𝛿𝛿(𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘−1)], 𝑘𝑘 > 𝑀𝑀

 (2) 

where 𝜌𝜌(𝑡𝑡) and 𝜙𝜙(𝑡𝑡) are the distances of the observed pseudo-range and carrier phase, 
respectively, and 𝑀𝑀  is the length of the filter, which is determined according to the 
smoothing time T and the observation sampling τ. 𝛿𝛿𝛿𝛿(𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘−1) is the difference opera-
tor. 

3.2. GRU-Based Zero-Velocity Detection 
Recurrent neural network (RNN) is now widely used in time series-based forecasting 

tasks (pedestrian trajectory prediction [37], vehicle trajectory prediction [38], etc.). GRU is 
a special RNN with the ability to learn long-term dependency. 

The structure of the GRU is shown in Figure 3, which is composed of an update gate 
(𝜞𝜞𝒖𝒖) and a reset gate (𝜞𝜞𝒓𝒓). The larger the value of the update gate, the more the state infor-
mation of the previous moment is brought in. The reset gate controls how much infor-
mation is conveyed to the current candidate set (𝒄𝒄�<𝒕𝒕>). The smaller the reset gate is, the 
less information is passed to the previous state. The detailed update formula is as follows: 

𝜞𝜞𝒓𝒓 = 𝝈𝝈(𝑾𝑾𝒓𝒓[𝒄𝒄<𝒕𝒕−𝟏𝟏>,𝒙𝒙<𝒕𝒕>] + 𝒃𝒃𝑟𝑟) (3) 

𝜞𝜞𝒖𝒖 = 𝝈𝝈(𝑾𝑾𝑢𝑢[𝒄𝒄<𝒕𝒕−𝟏𝟏>,𝒙𝒙<𝒕𝒕>] + 𝒃𝒃𝑢𝑢) (4) 

𝒄𝒄�<𝒕𝒕> = 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 (𝑾𝑾𝒄𝒄[𝜞𝜞𝒓𝒓 ⊙ 𝒄𝒄<𝒕𝒕−𝟏𝟏>,𝒙𝒙<𝒕𝒕>] + 𝒃𝒃𝑐𝑐) (5) 

𝒄𝒄<𝒕𝒕> = 𝜞𝜞𝒖𝒖 ⊙ 𝒄𝒄�<𝒕𝒕> + (𝚰𝚰 − 𝜞𝜞𝒖𝒖) ⊙𝒄𝒄<𝒕𝒕−𝟏𝟏> (6) 

where ⊙ represents the relative position of the objects before and after multiplication. 𝝈𝝈 
represents the sigmoid activation of the following objects. 𝒄𝒄<𝒕𝒕−𝟏𝟏> represents the activa-
tion value of the previous time step. 𝑾𝑾𝒄𝒄, 𝑾𝑾𝒖𝒖,𝑾𝑾𝒓𝒓  correspond to the weight matrix of 
each gate respectively. 𝒃𝒃𝒓𝒓, 𝒃𝒃𝒛𝒛, 𝒃𝒃𝒉𝒉 are the bias vectors of reset gate, update gate, and hid-
den unit respectively. 

GRU-based zero-velocity detectors need to collect IMU data from different objects to 
train the model. Currently, there is no standard method to generate labels. Some existing 
techniques (manual, pressure sensor, high-precision sports state capture system) are pro-
posed to produce reliable zero-velocity information. In this paper, the results of RTK/INS 
combination are used as reference trajectories, adjust the threshold of the GLRT detector 
to produce the smallest RMSE, and use the zero-velocity state by the GLRT detector with 
an optimal threshold as a label. 
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Figure 3. GRU block architecture. 

The structure of the zero-velocity detector is shown in Figure 4, which is mainly com-
posed of three GRU layers, two drop layers, and one fully connected layer (FC). Each layer 
of GRU has 100 neurons. To avoid overfitting, the drop layer is set to 0.2. The FC layer 
uses a sigmoid function as the activation function to map the model output to within (0, 
1). It is assumed that current state is zero-velocity when the model output is greater than 
0.8, otherwise, current state is non-zero-velocity. During the training process, 50 consecu-
tive IMU data (specific force, angular velocity) constitute one sample, and a data set con-
sisting of 300,000 samples is used to train this model. Each sample has an individual label 
which represents the zero-velocity state corresponding to the last time step. The Adam 
optimizer [39] is used to optimize the model with 100 iterations. The loss function of the 
model is defined as follows: 

Loss = −
1
𝑁𝑁
∑𝑖𝑖
𝑁𝑁 𝑦𝑦𝑖𝑖log (𝑝𝑝𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑝𝑝𝑖𝑖) (7) 

where 𝑁𝑁 represents the total number of training samples and 𝑝𝑝𝑖𝑖  represents the label out-
put of the i-th sample. 
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Figure 4. The structure of zero-velocity detection based on GRU. 

3.3. Robust EKF Design for GNSS/PDR Integration 
The error state EKF is used as the data fusion framework. The 15-dimensional error 

state vector is summarized as follows: 

𝛿𝛿𝒙𝒙 = [𝛿𝛿𝒑𝒑 𝛿𝛿𝒗𝒗 𝛿𝛿𝝋𝝋 𝛿𝛿𝒃𝒃𝑔𝑔  𝛿𝛿𝒃𝒃𝒂𝒂] (8) 

where 𝛿𝛿𝒑𝒑, 𝛿𝛿𝒗𝒗, 𝛿𝛿𝝋𝝋, 𝛿𝛿𝒃𝒃𝒈𝒈, 𝛿𝛿𝒃𝒃𝒂𝒂 are all three-dimensional vectors and denote position, ve-
locity, attitude, gyroscope bias, and accelerometer bias. The discrete-time error model of 
INS can be defined in matrix form as: 

𝛿𝛿𝒙𝒙𝑘𝑘,𝑘𝑘−1 = 𝑭𝑭𝑘𝑘,𝑘𝑘−1𝛿𝛿𝒙𝒙𝑘𝑘 + 𝑮𝑮𝑘𝑘,𝑘𝑘−1𝑾𝑾𝑘𝑘−1 (9) 

where 𝑭𝑭𝑘𝑘,𝑘𝑘−1 is the state transition matrix, 𝑮𝑮𝑘𝑘,𝑘𝑘−1  is process noise-driven matrix, and 
𝑾𝑾𝑘𝑘−1 is process noise, which is assumed to be Gaussian white noise with zero mean; the 
state transition and noise gain matrices can be written as: 

𝑭𝑭 =

⎣
⎢
⎢
⎢
⎡

𝑰𝑰3 𝟎𝟎3 𝟎𝟎3 𝟎𝟎3 −𝑪𝑪𝑏𝑏𝑛𝑛Δ𝑡𝑡
Δ𝑡𝑡(𝑪𝑪𝑏𝑏𝑛𝑛𝒇𝒇𝑏𝑏) × 𝑰𝑰3 𝟎𝟎3 𝑪𝑪𝑏𝑏𝑛𝑛Δ𝑡𝑡 𝟎𝟎3

𝟎𝟎3 Δ𝑡𝑡𝑰𝑰3 𝑰𝑰3 𝟎𝟎3 𝟎𝟎3
𝟎𝟎3 𝟎𝟎3 𝟎𝟎3 𝑩𝑩𝑔𝑔 𝟎𝟎3
𝟎𝟎3 𝟎𝟎3 𝟎𝟎3 𝟎𝟎3 𝑩𝑩𝑎𝑎 ⎦

⎥
⎥
⎥
⎤

 (10) 

𝒃𝒃𝑔𝑔 = 𝑰𝑰3 + Δ𝑡𝑡 ⋅ diag �−
1
𝜏𝜏𝑔𝑔
� (11) 

𝒃𝒃𝑎𝑎 = 𝑰𝑰3 + Δ𝑡𝑡 ⋅ diag �−
1
𝜏𝜏𝑎𝑎
� (12) 

𝑮𝑮 =

⎣
⎢
⎢
⎢
⎡
𝟎𝟎3 𝟎𝟎3 𝟎𝟎3 𝟎𝟎3
𝑪𝑪𝑏𝑏𝑛𝑛Δ𝑡𝑡 𝟎𝟎3 𝟎𝟎3 𝟎𝟎3
𝟎𝟎3 𝑪𝑪𝑏𝑏𝑛𝑛Δ𝑡𝑡 𝟎𝟎3 𝟎𝟎3
𝟎𝟎3 𝟎𝟎3 𝑰𝑰3Δ𝑡𝑡 𝟎𝟎3
𝟎𝟎3 𝟎𝟎3 𝟎𝟎3 𝑰𝑰3Δ𝑡𝑡⎦

⎥
⎥
⎥
⎤

 (13) 
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where (∙) × represents the skew-symmetric matrix of a vector. 𝐼𝐼𝑝𝑝 and 0𝑝𝑝 denote 𝑝𝑝 × 𝑝𝑝 
identity matrix and zero matrices respectively. The bias errors of gyros and accelerometers 
can be expressed as first-order Gauss–Markov processes with the correlation time 𝜏𝜏𝑔𝑔, 𝜏𝜏𝑎𝑎. 

When the observations (including the GNSS positioning results, the relative height 
difference of the barometer, and the zero-velocity information) are available, the measure-
ment equation is constructed: 

𝛿𝛿𝒛𝒛𝑘𝑘 = 𝑯𝑯𝑘𝑘𝛿𝛿𝒙̂𝒙𝑘𝑘,𝑘𝑘−1 (14) 

GNSS positioning is the main factor that determines the absolute positioning accu-
racy of the system and suppresses the error of the inertial sensor. At the same time, the 
lever arm error cannot be ignored, and the position observation equation is: 

𝛿𝛿𝒛𝒛𝑟𝑟 = 𝒓̂𝒓𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 − 𝒓̂𝒓gnss
𝑛𝑛  (15) 

Use the barometer elevation change as the observation equation to update the eleva-
tion: 

𝛿𝛿𝒛𝒛𝒉𝒉 = �𝑯𝑯𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑘𝑘 − 𝑯𝑯𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑘𝑘0 � − (𝑯𝑯𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘 − 𝑯𝑯𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘0 ) (16) 

where 𝑯𝑯𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑘𝑘  and 𝑯𝑯𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑘𝑘0  is the barometer elevation of the current epoch and the previous 
epoch, respectively. 𝑯𝑯𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘  and 𝑯𝑯𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘0  is the elevation of the INS recursive of the current 

epoch and the previous epoch, respectively. 
ZUPT is an effective means to control the accumulation of velocity errors. When the 

GRU recurrent neural network is used to detect that it is in a static state, the zero-velocity 
observation model is constructed: 

𝛿𝛿𝒛𝒛𝑣𝑣 = 𝒗̂𝒗𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 − [0 0 0]𝑇𝑇  (17) 

3.4. Lever Correction 
When carrying out the walking experiment, the IMU is fixed on the surface of the 

shoe, and the GNSS receiver antenna is set on the top of the head. The lever arm is con-
stantly changing and cannot be ignored. It is not recommended to put the lever arm in the 
state vector as a parameter to be estimated, which not only increases the complexity of the 
calculation but also there is no way to evaluate whether the estimated value of the lever 
arm is correct. In the zero-velocity interval, the distance between the GNSS antenna and 
the IMU measurement center in the horizontal direction is much lower than the position 
error of GNSS single-point positioning result. The lever length in the vertical direction is 
equal to the height of the human subject. In the non-zero-velocity interval, it is modeled 
as a pendulum, as shown in Figure 5. A lever arm is expressed as: 

lever arm = [𝑙𝑙2 × sin 𝜃𝜃 0 𝑙𝑙1 + 𝑙𝑙2 × cos 𝜃𝜃] (18) 
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Figure 5. Lever arm model. 

In the above Figure 5, 𝑙𝑙1represents the height from the top of the head to the waist, 
𝑙𝑙2 is the length of the legs, which can be accurately known, and 𝜃𝜃 is an unknown param-
eter, which can be obtained by solving the essential trigonometric function. 

The error caused by the inaccurate lever arm modeling can be equivalent to the GNSS 
single-point positioning error, which can be effectively compensated by an adaptive filter. 

3.5. Adaptive Kalman Filter 
The GNSS outliers appear in the harsh environment due to the poor GNSS observa-

tion quality. However, the standard Kalman filter cannot solve this problem, which in-
creases the positioning error of the GNSS/INS integrated system. Innovation-based adap-
tive estimation (IAE) filter is a popular filter to reduce the influence of outliers, which is 
adopted in this paper. 

By calculating the average value of the covariance of the innovation vector of the 
previous N epochs, the estimate of the covariance of the innovation vector at current 
epoch and the estimation of the observation vector covariance matrix can be obtained: 

𝛴̂𝛴𝑽𝑽‾𝑘𝑘 =
1
𝑁𝑁
∑𝑗𝑗=0
𝑁𝑁  𝑽𝑽‾ 𝑘𝑘−𝑗𝑗𝑽𝑽�𝑘𝑘−𝑗𝑗𝑇𝑇  (19) 

𝛴̂𝛴𝑘𝑘 = 𝛴̂𝛴𝑽𝑽‾𝑘𝑘 − 𝑭𝑭𝑘𝑘𝛴𝛴𝑿𝑿‾𝑘𝑘𝑭𝑭𝑘𝑘
𝑇𝑇 (20) 

where 𝛴̂𝛴𝑽𝑽‾𝑘𝑘 denotes the covariance matrix of the state one-step prediction vector, and 𝑽𝑽𝑘𝑘 
denotes the innovation vector. This calculates the ratio of the trace of 𝛴̂𝛴𝑘𝑘 to the trace of 
preset observation vector covariance matrix 𝛴𝛴𝑘𝑘. When the position result of GNSS is an 
outlier, this ratio will be greater than 1. The greater one between this ratio and one is taken 
as the adaptive factor: 

The adaptive factor is used to expand the covariance matrix of the observation vector 
at the current epoch, which reduces the influence of GNSS outliers and increases the po-
sition accuracy of the GNSS/INS integrated system. 

The paper studies the single-frequency single-system single-antenna pseudo-range 
single-point positioning assisted foot-mounted micro-inertial pedestrian navigation 
method. When carrying out the walking experiment, the MTi-G-710 is fixed on the shoe 
surface, the GNSS antenna is fixed on the top of the head, and the collected data is used 
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to test the accuracy of carrier phase smoothing pseudo-range SPP positioning and the ef-
fect of SPP/SINS combination. 

4. Results 
MTi-G-710 produced by the Dutch company Xsens is selected as the experimental 

device, which integrates a three-axis gyroscope, a three-axis accelerometer, and a barom-
eter. The performance parameters of the gyroscope and accelerometer are shown in Table 
1. The experimental GNSS module is the mosaic-X5 produced by Septentrio, Belgium, 
which is used to track all visible supporting satellites at the same time. The sampling rate 
of the IMU was set to 100. The data of the experiment is available for download here: 
https://github.com/laotouyu123/data_set.git, accessed on 6 November 2021. 

Table 1. Specifications of inertial sensors. 

Parameters Gyroscope Accelerometer 
Full Scale 625 ° s⁄  18 g 

Bias stability 10 ° h⁄  40 ug 
Noise density 0.01 ° s √Hz⁄⁄  80 μg √Hz⁄  
g-sensitivity 0.003 ° s g⁄⁄  - 

Non-orthogonal error 0.05° 0.05° 
Non-linearity 0.01% 0.01% 

All parameters in the table are typical values at 25 ℃. 

4.1. GRU-Based Zero-Velocity Detection Algorithm Performance Verification 
In order to verify the performance and generalization ability of the GRU-based zero-

velocity detection method, ten experimenters carried out walking experiments on the 
same path at three walking speeds: slow, normal, and fast. The zero-velocity detection 
result of one of the experimenters is shown in Figure 6. 

 
Figure 6. Zero−velocity detection result. 

As shown in Figure 6, the GLRT method can effectively detect the zero-velocity most 
of the time. However, some incorrect zero-velocity results are detected by GLRT when the 
feet of the experimenter are moving, which will decrease the positioning precision of the 
PDR algorithm. The GRU method can detect the zero-velocity correctly all the time as the 
red curve shows in Figure 6, which guarantees the availability of zero-velocity infor-
mation. 
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In order to verify the performance of the GRU-based zero-velocity detection method, 
a close-loop experiment is carried out, in which an experimenter walked 10 times along a 
rectangular trajectory. The trajectories obtained by two zero-velocity detect methods are 
shown in Figure 7. It can be seen from Figure 7 that the GLRT method obtained larger 
position error in the end point because of the incorrect zero-velocity information. 

The closed-loop errors of all trajectories obtained by the GLRT method and the GRU 
method are listed in Table 2. The minimum average closed-loop position error of the tra-
ditional GLRT zero-velocity detection method is 1.42 m, while the average closed-loop 
position error of the proposed method is 0.89 m, which means the proposed method per-
forms better than the traditional algorithm. 

 
Figure 7. Trajectories obtained by different zero−velocity detection methods. 

Table 2. Closed loop position error (m) obtained by different zero-velocity detection methods. 

Index GLRT GRU 
𝛄𝛄(𝟏𝟏𝟏𝟏,𝟎𝟎𝟎𝟎𝟎𝟎)  𝛄𝛄(𝟏𝟏𝟏𝟏,𝟎𝟎𝟎𝟎𝟎𝟎) 𝛄𝛄(𝟐𝟐𝟐𝟐,𝟎𝟎𝟎𝟎𝟎𝟎) 𝛄𝛄(𝟐𝟐𝟐𝟐,𝟎𝟎𝟎𝟎𝟎𝟎) 𝛄𝛄(𝟑𝟑𝟑𝟑,𝟎𝟎𝟎𝟎𝟎𝟎) 

Max 3.98 3.76 0.59 3.73 3.82 1.77 
Min 0.98 0.04 0.43 0.43 0.25 0.11 

Mean  2.28 1.77 1.44 1.42 1.91 0.89 

4.2. The Proposed Algorithm Performance Verification under Open Environment 
To verify the proposed algorithm performance under open environment, a data set 

(249 s in total) was collected under an open environment at Youyi Square, Faculty of In-
formatics, Wuhan University, Wuhan. The experimenter walks along the edge of Youyi 
Square during the experiment. 

In the Kalman filter algorithm for pedestrian positioning, the relevant parameters are 
set as follows: initial speed error is 0.01 m s⁄ , the initial position error is 0.01 m, the initial 
value of acceleration offset is 0.03 m s2⁄ , the initial value of gyroscope offset is 0.3 ° 𝑠𝑠⁄ , 
accelerometer noise is 𝛿𝛿𝑎𝑎 = 0.5 m s2⁄ , gyro noise is 𝛿𝛿𝑔𝑔 = 1 ° s⁄ , accelerometer bias driving 
noise 𝛿𝛿𝑏𝑏𝑎𝑎 = 10−4 m s2⁄ , gyroscope bias driving noise 𝛿𝛿𝑏𝑏𝑔𝑔 = 10−5 rad s⁄ . 

Compare the positioning result of the following four schemes: Scheme 1, use the 
GLRT method to detect the zero-velocity interval; Scheme 2, use the GRU method to de-
tect the zero-velocity interval; Scheme 3, the proposed algorithm; Scheme 4, RTK. The tra-
jectories of these schemes are shown in Figure 8. 
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Figure 8. 2D positioning trajectories by different methods. 

Under the open environment, RTK’s positioning error is small, so the RTK position 
result of Scheme 4 can be used as a reference truth value. The statistical results of three 
schemes are shown in Table 3. It can be seen that the RMSE and maximum errors of 
Scheme 3 are more minor than those of the other two methods. The RMSE of these three 
schemes are 1.643 m, 1.042 m, and 0.543 m respectively. The maximum errors of the three 
schemes are 2.631 m, 2.54 m, and 1.03 m respectively. Compared with Schemes 1 and 2, 
RMSE of the proposed scheme are decreased by 67% and 48% respectively. In terms of 
maximum errors, compared with other two schemes, the maximum errors of the proposed 
scheme are decreased by 61% and 59% respectively. In order to more clearly reflect the 
performance of the proposed scheme, the Cumulative Distribution Function (CDF) of the 
horizontal error is shown in Figure 9. It can be seen from Figure 9 that 99% of the horizon-
tal error of the proposed scheme is smaller than 1 m, while that of the other two schemes 
is 33% and 63%. 

Table 3. Position error (m) obtained by different schemes. 

 Maximum Error RMSE 
Scheme 1 2.63 1.63 
Scheme 2 2.54 1.04 
Scheme 3 1.03 0.54 
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Figure 9. Cumulative distribution function by different methods. 

4.3. The Proposed Algorithm Performance Verification under Complex Environment 
To verify the proposed algorithm performance under complex environment, a data 

set was collected in the playground of the Faculty of Information Science of Wuhan Uni-
versity, Wuhan. The experimenter walked along the outermost periphery of the play-
ground. There are many interferences in the trajectory, including trees and houses. The 
experiment environment is shown in Figure 10. 

 
Figure 10. The experiment environment. 

The 𝐶𝐶/𝑁𝑁0 of the satellite signal is shown in Figure 11. Due to the unsatisfactory ob-
servation environment, the number of satellites is maintained at about 8. However, the 
loss of satellite signal occurred frequently; the carrier-to-noise ratio of a few satellites is 
lower than 30 dB-Hz most of the time, such as G29 and G15. The position and position 
covariance results calculated by the carrier smoothing pseudo-range SPP are used in the 
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measurement update of the EKF in the proposed scheme, and the adaptive algorithm is 
used for quality control. 

 
Figure 11. Carrier-to-noise ratio of satellite signal. 

Eighteen key positions of the trajectory are selected as reference points; their position 
coordinate is accurately determined. Five schemes are compared. Scheme 1: use GLRT 
method to detect the zero-velocity interval; Scheme 2: use GRU method to detect the zero-
velocity interval; Scheme 3: GNSS/PDR without adaptive algorithm; Scheme 4: the pro-
posed algorithm; Scheme 5: RTK solution provided by mosaic-X5. The trajectories of these 
five schemes are shown in Figure 12. 

 
Figure 12. 2D positioning trajectories by different schemes. 
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As shown in Figure 13, although the position environment is complex, the horizontal 
error of RTK is lower than 0.5 m at all of the reference points. Because of the high precision 
of RTK, the trajectory of RTK is taken as the reference trajectory. In Figure 13, we ran-
domly select 18 points in the test path to test the accuracy of the algorithm. The proposed 
algorithm obtained lower position error than Schemes 1–3 at most of the reference points, 
noting that when the INS obtained a large error, the adaptive algorithm may increase the 
position error of the GNSS/PDR algorithm, such as the position error at reference point 4. 
However, in most cases, GNSS has larger position error than INS due to environmental 
interference; the adaptive algorithm can effectively decrease the position error when 
GNSS obtained larger error, such as the position error at reference points 6, 7, and 8. The 
position error of Schemes 1–4 is shown in Table 4. It can be seen from Table 4 that the 
RMSE of the four schemes are 6.08 m, 3.21 m, 1.79 m, and 1.37 m respectively and the 
maximum errors of the four schemes are 11.48 m, 6.02 m, 4.98 m, and 2.79 m respectively. 
Compared with the other three schemes, RMSE of the proposed scheme are decreased by 
77%, 57%, and 23% respectively and the maximum errors of the proposed scheme are de-
creased by 75%, 53%, and 43% respectively. CDF of the horizontal error are shown Figure 
14. It can be seen from Figure 14 that 99% of the horizontal error of the proposed scheme 
is smaller than 2.71 m. For several algorithms used to compare with the proposed scheme, 
some algorithms do not integrate GNSS position information, so the result obtained will 
be better than the proposed algorithm, but due to the characteristics of inertial navigation, 
the accuracy of these algorithms will diverge over time. Generally speaking, the accuracy 
of the proposed algorithm is better than other algorithms. 

 
Figure 13. Horizontal error statistics of different schemes. 

Table 4. Horizontal position error (m) obtained by different schemes. 

 Maximum Error RMSE 
Scheme 1 11.48 6.08 
Scheme 2 6.02 3.21 
Scheme 3 4.98 1.79 
Scheme 4 2.79 1.37 
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Figure 14. CDF of horizontal error obtained by different schemes. 

4.4. Indoor Elevation Performance Verification of the Proposed Algorithm 
An indoor staircase environment is carried out to verify the elevation performance 

of the proposed algorithm. The proposed algorithm will not execute GNSS measurement 
update as there is no GNSS signal in the indoor environment. The experimental site is 
shown in Figure 15 in this experiment; the experimenter went upstairs from the fifth floor 
to the twelfth floor, then went downstairs to the fifth floor. The height difference of each 
floor has been determined in advance by multiple measuring and only counts the eleva-
tion error when the experimenter falls on each floor of the staircase. Three schemes are 
compared. Scheme 1: use ZUPT to judge elevation; Scheme 2: use the barometer to judge 
elevation; Scheme 3: ZUPT/ barometer fusion algorithm. The test result is shown in Figure 
16. 

It can be seen from Figure 16 that the barometer can basically reflect the elevation, 
but the robustness is not enough, and there are many burrs. ZUPT has no large burrs, but 
the error diverges with time. The result of the adaptive combination of the PDR and ba-
rometer can reflect the elevation well without large error. As shown in Table 5, RMSE of 
these three schemes are 1.62 m, 1.25 m, and 0.96 m, respectively. The maximum errors of 
these schemes are 3.3 m, 1.95 m, and 1.28 m, respectively. Compared with other two 
schemes, RMSE of the proposed scheme are decreased by 41% and 24%, respectively, and 
the maximum errors of the proposed scheme are decreased by 61% and 34%, respectively. 
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Figure 15. Experimental site e of indoor experiment. 

Table 5. Elevation error (m) obtained by different schemes. 

 MAX RMSE 
Scheme 1 3.3 1.62 
Scheme 2 1.95 1.25 
Scheme 3 1.28 0.96 
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Figure 16. Height comparison of different methods. 

5. Conclusions 
A single-frequency single-antenna GNSS/PDR robust integration scheme is pro-

posed, which provides continuous and accurate pedestrian navigation by fusing GNSS 
and MEMS sensors. Key technologies of the proposed scheme are discussed, including 
improved carrier phase smoothing pseudo-range GNSS single-point positioning, GRU-
based zero-velocity detection, and adaptive fusion algorithm of GNSS and PDR. Kine-
matic experiments in outdoor open environments and complex environments show that 
the proposed scheme can combine the advantages of GNSS and INS, achieving pedestrian 
navigation position error lower than 1.5 m. The proposed GRU-based zero-velocity detec-
tion model can only detect ordinary motion patterns. However, due to the limitation of 
the data set, this model cannot detect the zero-velocity state in complex motion mode. In 
the future, we will study the zero-velocity detection model under complex motion mode. 
In summary, this integrated scheme promotes the realization of high-precision position-
ing of public pedestrians in an urban environment, and it provides technical reference for 
accurate and continuous acquisition of public pedestrian location information. 
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