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Abstract: The timely and accurate acquisition of winter wheat acreage is crucial for food security.
This study investigated the feasibility of extracting the spatial distribution map of winter wheat in
Henan Province by using synthetic aperture radar (SAR, Sentinel-1A) and optical (Sentinel-2) images.
Firstly, the SAR images were aggregated based on the growth period of winter wheat, and the optical
images were aggregated based on the moderate resolution imaging spectroradiometer normalized
difference vegetation index (MODIS-NDVI) curve. Then, five spectral features, two polarization
features, and four texture features were selected as feature variables. Finally, the Google Earth Engine
(GEE) cloud platform was employed to extract winter wheat acreage through the random forest
(RF) algorithm. The results show that: (1) aggregated images based on the growth period of winter
wheat and sensor characteristics can improve the mapping accuracy and efficiency; (2) the extraction
accuracy of using only SAR images was improved with the accumulation of growth period. The
extraction accuracy of using the SAR images in the full growth period reached 80.1%; and (3) the
identification effect of integrated images was relatively good, which makes up for the shortcomings
of SAR and optical images and improves the extraction accuracy of winter wheat.

Keywords: winter wheat; Sentinel; Google Earth Engine; image aggregation; integrated image;
random forest

1. Introduction

Agricultural production is the basis of a country’s socio-economic development and
is the key to land resource management and food security [1]. Winter wheat is the most
widely planted crop in the world, and its planting area and production are important for a
country to make economic development plans, regulate crop planting structure and ensure
social stability [2,3]. The timely and accurate acquisition of winter wheat acreage is crucial
to the formulation of agricultural policies. At present, a variety of land cover products
with different resolutions have been developed, such as the WorldCover2020 product with
10 m resolution produced by the European Space Agency (ESA), the MCD12Q1 product [4]
with 500 m resolution produced by Boston University, and the GlobeLand30 product [5]
with 30 m resolution produced by the National Geomatics Center of China (NGCC). These
remote sensing products provide strong data support for studying the spatial distribution
of farmland, but few can provide information of specific crops.

The traditional acquisition and updating of crop acreage and distribution information
generally require managers to conduct field visits or consult local agricultural statistical
reports [6]. However, this process is tedious and consumes a lot of human and material
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resources, and it can produce some unpredictable errors. With the development of remote
sensing technology, it is possible to obtain the crop acreage and distribution of crops quickly
and accurately. MODIS images are widely used in crop identification due to their high
revisit cycle and easy acquisition. However, due to the low spatial resolution, a large
number of mixed pixels is produced, which affects the extraction of the planting area and
the development of high-precision crop spatial distribution products [7]. The use of remote
sensing images with medium-high spatial resolution as a data source is the key to solving
this problem [8,9]. This kind of image has been widely used in the extraction of crop
planting structures and the determination of the optimal time window for crop recognition.
Limited by the computing power, the existing literature usually takes small-scale areas as
the study object to reduce the time spent in image processing [10–12].

Google Earth Engine (GEE) is a non-profit cloud computing platform for geographic
spatial analysis [13]. It has been widely used in large-scale remote sensing studies, including
forest monitoring [14], crop yield estimation [15], and crop mapping [16]. The multi-
platform image dataset in GEE and its derivatives provide a stable data source for crop
extraction using multi-source remote sensing images. The powerful data parallel computing
capability of the GEE platform provides a technical guarantee for the processing of remote
sensing big data.

Optical remote sensing image is a key data source used in crop extraction studies. The
use of this type of image to complete crop identification and area monitoring has been quite
mature [17]. A plethora of crop mapping work has been conducted in Henan Province
based on multi-source optical remote sensing images [18,19]. However, the extraction of
crop information is limited due to the influence of cloud and rain weather on optical remote
sensing images [20]. Compared with optical technology, radar technology has the advan-
tage of acquiring images all day and in all weather conditions. The penetration of radar
satellites can acquire the surface information of vegetation. Also, it reflects the structural
changes of plant stems and leaves under various weather conditions. The previous studies
show the practicality and feasibility of using SAR images for crop extraction [21,22].

Optical and SAR images have their own advantages. The effective integration of them
can improve the extraction accuracy of crop acreage. Some scholars have successfully used
integrate images to extract crop planting information [23,24]. The classification accuracy
was limited by the number of bands of SAR images and the speckle noise in the images, and
crops were extracted using only SAR images [25,26]. After integrating the texture features
of Sentinel-1 data and Landsat-8 data, it was found that the integrated data could increase
the extraction accuracy of winter wheat [27]. Therefore, Sentinel-1A and Sentinel-2 images
with a spatial resolution of 10 m were selected as the data source for the experiment, and
the texture features in the polarization feature band were calculated.

Since the resolution of Sentinel-2 images is affected by clouds and shadows, the use of
cloud removal, curve smoothing, and linear interpolation methods can reduce the noise
effect of clouds to some extent, but it cannot fundamentally eliminate local noise [7,17].
Thus, it is a great challenge to construct optical images for the whole fertility period.
According to the characteristics of optical images and SAR images, this paper proposes
image integration methods that solve the problem of missing optical images and make full
use of SAR images. The proposed method provides a new idea for the extraction of winter
wheat.

This study mainly explores the potential of using Sentinel-1A and Sentinel-2 images
to extract winter wheat acreage and draw an accurate spatial distribution map of winter
wheat. The main objectives of this study are: (1) to propose image aggregated schemes
for different sensors based on the full use of sentinel images; (2) to determine whether
Sentinel-1A images can be used to effectively distinguish winter wheat from other types of
ground objects in the whole growth period; and (3) to determine whether the integration of
Sentinel-1A images and before-wintering and after-wintering Sentinel-2 images can extract
winter wheat more accurately.
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2. Study Area and Datasets
2.1. Study Area

Henan Province is located in the middle and lower reaches of the Yellow River in the
southern part of the North China Plain (between 31◦23′–36◦22′ N and 110◦21′–116◦39′ E)
with a total area of 167,000 km2 (Figure 1). The overall terrain of Henan Province is high
in the west and low in the east. There are tall and undulating mountains in the west and
vast plains in the east of Henan. The province is dominated by plains, with the Yellow
Huaihai Alluvial Plain in the middle and east, and the Nanyang Basin in the southwest.
Henan Province has a subtropical-warm temperate, humid-semi-humid monsoon climate.
The annual average temperature from north to south is 10.5–16.7 ◦C; the frost-free period
is 201–285 days; the annual average sunshine is 1285–2292 dh, and the annual average
precipitation ranges from 407.7–1295.8 mm [28]. The geographical location and climate of
Henan Province provide suitable growing conditions for winter wheat. According to the
agricultural information released by the Department of Agriculture and Rural Affairs of
Henan Province, and combined with the field survey data, the final phenological period of
winter wheat in Henan Province from 2018 to 2019 was finally determined [29].
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Figure 1. The study area in Henan Province, China. The spatial locations of the training and validation
samples are shown in the figure.

2.2. Datasets and Preprocessing
2.2.1. Sentinel Data

Sentinel-1 and Sentinel-2 satellites are both earth observation satellites in the Coperni-
cus program of the ESA [30]. Sentinel-1 consists of 2 polar-orbiting satellites, both carrying
C-band (5.4 GHz) sensors with a single satellite revisit period of 12 days. In this study, the
Sentinel-1A ground range detected (GRD) product in the IW mode was taken as the data
source. It has two polarization imaging modes: cross-polarization VH and co-polarization
VV (Table 1). The Sentinel-1A GRD images in GEE were processed by the Sentinel-1 toolbox,
including thermal noise removal, radiometric correction, terrain correction using the digital
elevation model (DEM), and conversion of the backscattering coefficient to decibels (dB).
After the successful launch of the Sentinel-2B, the temporal resolution of Sentinel-2 images
was increased to five days, and both satellites carry a multispectral instrument (MSI) with
an orbital width of 290 km [31]. The MSI images acquired by this satellite possess 13 bands
covering visible, near-infrared, and short-wave infrared with spatial resolutions of 10 m,
20 m, and 60 m, respectively (Table 1). This study used MSI L1C images as the data source,
which is the atmospheric apparent reflectance product after orthophoto correction and
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geometric fine correction. The images with a cloud score below 15% were retained, and
the cloudy pixels were removed by using the QA60 band [17,18]. This cloud removal
method directly performs bit-by-bit operation on the QA60 quality band to filter pixel
values. Meanwhile, it masks pixels such as cloud, cirrus cloud, rain, and snow, and finally
achieves the effect of cloud removal. In total, 372 Sentinel-1A GRD images from 1 October
2018 to 15 June 2019, 522 Sentinel-2 MSI L1C images from 1 October 2018 to 30 November
2018 and 1 February 2019 to 20 April 2019 were used in this study (Figure 2).

Table 1. Characteristics of the satellite data used in this study.

Sensor Band Wavelength Resolution

Sentinel data

Sentinel-1A GRD
VV 10 m
VH 10 m

Sentinel-2 MSI

Blue 490 nm 10 m
Green 560 nm 10 m
Red 665 nm 10 m

Near-infrared 842 nm 10 m
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2.2.2. Sample Data

The construction and validation of the classification model require reliable ground
sample data. This study used a semi-automated hierarchical sample data acquisition
method to obtain ground sample points. First, the official statistical data of Henan Province
was used to analyze the planting structure of winter crops in various cities, which provides
a priori knowledge for the correction of sample points. Then, the national land use data
provided by the Chinese Academy of Sciences in 2018 (CNLUCC2018) [32] was reclassified,
and the reclassified images were used to generate sample points. Finally, the sample points
were corrected by visual interpretation based on the Google Earth (GE) platform. According
to the study area profile and the study purpose, the sample data were classified into five
land-cover types, namely, winter wheat, vegetation, water, buildings, and others. To avoid
overfitting, the sample data were randomly divided into training and validation datasets at
a ratio of 7:3. The number of pixels per class is shown in Table 2.

2.2.3. MODIS Data

The MODIS and NDVI vegetation index products acquired by Terra and Aqua satellites
were used in this study [33]. The spatial resolution of the two products is 250 m, and the
temporal resolution is 16 days. Since the acquisition of the images did not overlap in
time, the two products were combined into NDVI time-series data with a time series of
8 days. This time-series data was used to determine the integration time window for the
Sentinel-2 images. A more accurate image aggregation time window can be obtained by
removing the influence of cloud and atmosphere on the NDVI time series curve. In this
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study, Savitzky-Golay filtering (S-G filtering) was adopted to smooth the NDVI time-series
data to eliminate irregular fluctuations and acquire NDVI curves that are more consistent
with the growth of winter wheat [7].

Table 2. The Sample data selected in this study.

Land-Cover Types Description Samples

Winter wheat Winter wheat during the observation period 910
Vegetation Other crops, evergreen forest, deciduous forest, etc. 900

Water Rivers, reservoirs, and lakes, etc. 210
Building Residential land, roads, etc. 480

Other Wasteland, unused land, etc. 290

3. Methodology

The workflow of the study is shown in Figure 3. First, the Sentinel-1A images were
aggregated according to the growth period of winter wheat (Section 3.1.1), and the Sentinel-
2 images were aggregated according to the image aggregation time window selected by
MODIS-NDVI curve (Section 3.1.2). In this way, a total of six Sentinel-1A images and two
Sentinel-2 images were generated. Then, two polarization features, five spectral features,
and four texture features were selected as features variables (Section 3.2). Subsequently,
12 experimental schemes were constructed (Section 3.3), and winter wheat and other land-
cover types were classified with the RF algorithm (Section 3.4). Finally, the accuracy of each
experimental scheme was evaluated (Section 3.5), and an accurate spatial distribution map
of winter wheat in Henan Province was drawn based on the integrated image (scheme 12).
Also, the feature variable importance was evaluated based on the classification results of
the SAR images in the full growth period (scheme 6) and the aggregated image (scheme 12,
Section 3.6).
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3.1. Image Aggregation Scheme

Due to the influence of the satellite revisit cycle and weather conditions, the study area
may be covered by multiple images or not covered in a period of time. As for the former
case, the median value of the covering images was calculated during the observation time
period; as for the latter case, the image filtering time window was increased to complete
image aggregation [34]. Images aggregation can take full use of remote sensing images and
enhance image information. According to the study objectives and the characteristics of
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Sentinel-1A and Sentinel-2 images, two different image aggregation methods are proposed
in the paper.

3.1.1. MODIS-NDVI Curves and Aggregation of Sentinel-2 Images

Under the influence of cloud, rain, light, and other factors, the quality of Sentinel-2 im-
ages cannot be guaranteed. Thus, it is impossible to accurately acquire all remote sensing
images in the observation time period. The images can be repaired by contemporaneous im-
age masks or linear interpolation, but the final results cannot accurately reflect the changes
of the images within the time period [35]. To ensure the authenticity and reliability of the
data, the image aggregation time window is determined according to the MODIS-NDVI
time series to complete image aggregation.

The timing of winter wheat phenology changes with the increase of latitude, and the
change is obvious for the increase of two degrees. To determine the accurate Sentinel-2 im-
age aggregation time window, Henan Province was divided into three regions (31◦23′–33◦ N,
33◦–34◦42′ N, 34◦42′–36◦22′ N) according to latitude [36]. Then, 33 sample points were
taken from each region to draw the average curve of NDVI for the winter wheat in each
region (Figure 4, left). The aggregated images were selected in the period when the NDVI
values of three regions increases. The aggregation time windows of Sentinel-2 images
and the number of images are shown in Table 3. The images from 23 October 2018 to
30 November 2018 and the images from 10 February 2019 to 3 April 2019 were selected to
aggregate Sentinel-2 median images, and the images were defined as before-wintering and
after-wintering images, respectively.
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Figure 4. MODIS average NDVI time series curves for winter wheat (left) and other land cover types
(right) in the study area from 8 October 2018 to 18 June 2019.

Table 3. The aggregation time window of Sentinel-1A and Sentinel-2 images. The number of images
available for each aggregation time window in Henan Province.

Data Crop Development Period Image Acquisition Dates Number of Images

Sentinel-1A

Sowing 1 October–31 October 32
Seedling and tillering 1 November–31 November 40

tillering and over-wintering 1 December–31 January 80
over-wintering and reviving 1 February–31 March 77

jointing and heading 1 April–30 April 40
flowering and maturing 1 May–15 June 58

Sentinel-2
before-wintering 1 October–30 November 335
after-wintering 1 February–20 April 248

Before the overwintering period, with the growth of winter wheat, the influence of
soil background on the NDVI curve gradually weakened, and NDVI increased and reached
the first peak. After the overwintering period, the chlorophyll content in the winter wheat
decreased and basically stopped growing. Thus, NDVI decreased and reached the valley
peak. After reviving and before heading of the winter wheat, the NDVI curve of winter
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wheat increased until reaching the second peak. After that, the winter wheat entered
flowering and maturing, and the NDVI value gradually decreased to the minimum.

In this study, 400 sample points of various ground features (100 for each land-cover
type, except winter wheat) were selected to acquire the pixel values of various sample
points and calculate the average value of NDVI. The NDVI curves of water, buildings,
and other land-cover types fluctuate little with time, which makes it easy to distinguish
winter wheat curves. Affected by phenology and weather conditions, winter wheat, and
vegetation have their unique NDVI curve characteristics. The NDVI curves of deciduous
forest, evergreen forest, and other crops are presented respectively, although they are all
divided into vegetation. Affected by phenology and weather, various types of vegetation
show their unique NDVI curve characteristics.

3.1.2. Growth Period of Winter Wheat and Aggregation of Sentinel-1A Images

Synthetic aperture radar is not affected by cloud and rain, and it can acquire images
all day and all night [37]. This study used all winter wheat observation images to give
full play to the advantages of SAR images. Taking the growth period of Winter Wheat in
Henan Province as the aggregation time window, the median value was calculated pixel by
pixel. The SAR images were aggregated for six different growth periods, namely (1) sowing,
(2) seedling and tillering, (3) tillering and over-wintering, (4) over-wintering and reviving,
(5) jointing and heading, and (6) flowering and maturing. The aggregation time windows
of Sentinel-1A images and the number of images are shown in Table 3.

The mean VV and VH curves of various land-cover types are illustrated in Figure 5 to
demonstrate the changes of features over time. The polarization feature curve of winter
wheat is quite different from that of other land-cover types. The backscattering coefficient
values of the two polarization features showed an “increase-decrease-increase” trend, and
the change of VV is particularly obvious.
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Figure 5. Time series of Sentinel-1A curves for each land cover class. A. B, C, D, E, and F represent
the SAR images of sowing, seedling and tillering, tillering and over-wintering, over-wintering and
reviving, jointing and heading, and flowering and maturing winter wheat, respectively.

3.2. Calculation of Feature Variables

After comprehensively considering the ecological environment of the study area, the
structure of various ground features, the phenological features of winter wheat, as well as
the significance of various feature variables, this study selected five spectral features, two
polarization features, and four texture features as feature variables. Specifically, the R, G,
B, and NIR bands in Sentinel-2 images are four common spectral bands for agricultural
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monitoring with a spatial resolution of 10 m. NDVI is sensitive to chlorophyll absorption. It
is the best indicator for detecting vegetation growth status and is widely used for vegetation
identification [33]. Polarization features VV and VH can reflect the change of water content
in plant canopy with the plant growth cycle [38].

Texture embodies the surface or structural properties of the image and can be used as a
feature variable to improve the accuracy of vegetation classification [39–41]. This study used
a gray level co-occurrence matrix to generate texture features in VV and VH bands. The
experiments on sliding window size (3 × 3, 5 × 5, 7 × 7) indicated that the sliding window
of 3×3 was appropriate. A large number of texture features can cause data redundancy.
On the premise of retaining the maximum amount of information and not exceeding the
calculation limit of the GEE platform, this study selected angular second moment (ASM),
contrast (CONTRAST), correlation (CORR), and entropy (ENT) as characteristic variables to
improve the classification accuracy [42]. Specifically, ASM reflects the degree of coarseness
and the uniformity of grayscale distribution of the texture; CONTRAST reflects the depth
of texture grooves and the clarity of the image; CORR reflects the consistency of the texture
in the local area; and ENT reflects the complexity of the texture.

3.3. Experimental Design

According to the study purposes, 12 experimental schemes (Figure 6) were designed.
To explore the feasibility of mapping the spatial distribution of winter wheat, the SAR
images were aggregated based on the growth period of winter wheat (i.e., from sowing
to flowering and maturing). The extraction accuracy of the experimental schemes was
acquired separately (schemes 1–12). To investigate the potential of using aggregated images
for winter wheat acreage extraction, three experimental schemes based on aggregated
integration images were designed (schemes 8, 10, and 12). The polarization and texture
features of SAR images and the spectral features of optical images were extracted, and
these three types of bands were taken as feature variables to extract the planting area of
winter wheat. Meanwhile, a control group experiment was also designed to extract winter
wheat acreage using only optical images (schemes 7, 9, and 11).
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Figure 6. Experimental schemes A, B, C, D, E, and F represent the SAR images of sowing, seedling
and tillering, tillering and over-wintering, over-wintering and reviving, jointing and heading, and
flowering and maturing winter wheat, respectively; G and H represent the optical images of before-
wintering and after-wintering winter wheat, respectively.

3.4. Random Forest Algorithm

The random forest (RF) algorithm was used as the classification method in this study,
which is an integrated learning classifier composed of several decision trees and a voting
mechanism [43,44]. Compared with other machine learning algorithms, the RF algorithm
has the advantages of good robustness, fast classification speed, high classification accuracy,
and not being easy to overfit. It has been widely used in the field of agriculture. Usually,
the sample data are divided into a training dataset for model construction and a test dataset
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for model verification. When constructing an RF model, two basic parameters must be
defined: the number of decision trees and the number of feature variables.

3.5. Accuracy Assessment

In this study, the confusion matrix calculated based on the real ground reference
data was used to quantitatively evaluate the accuracy of the classification results. Then,
the classification results were evaluated by several indicators that are calculated by the
confusion matrix, including overall accuracy (OA), kappa coefficient (Kappa), mapping
accuracy (MA), user’s accuracy (UA), and F1 measure (F1) [17,45]. OA and Kappa are
overall metrics to evaluate the classification results; MA, UA, and F1 are indicators to
measure the accuracy of feature classification, and they can reflect the quality of feature
classification from different aspects.

3.6. Assessment of Feature Variable Importance

The feature variable importance score reflects the relative importance of each feature
variable in the prediction process [17,26]. When constructing the RF algorithm, the boot-
strap sampling technique was used to obtain the training subsets from the original training
dataset and the unselected data from the out-of-bag data (OBB). OBB can validate the
weights of the input feature variables and express the weight score of each feature variable
in terms of the average precision reduction value. This study used the explain function of
the GEE platform to obtain the weight of each feature variable and calculate the importance
score of the feature bands.

4. Results
4.1. Accuracy of Experimental Schemes

The extraction accuracy of different schemes is shown in Figure 7. The results show
that: (1) When only Sentinel-1A images were used, the extraction accuracy was improved
with the aggregation of the images in the growth period. The extraction accuracy on SAR
images in the whole growth period can basically meet the mapping requirements of winter
wheat (OA and Kappa were 80.1% and 0.733, respectively). (2) When only Sentinel-2 images
were used, the extraction accuracy on the images of after-wintering winter wheat was much
higher than that on the images of before-wintering winter wheat, and the OA on after-
wintering winter wheat images was 86.7%. After the integration of before-wintering and
after-wintering images, the extraction accuracy was improved by different degrees. This
is consistent with the result that the winter wheat acreage was extracted by integrating
the SAR images of multiple growth periods. (3) By using the integrated Sentinel images
for classification, the extraction accuracy was improved compared with that obtained by
using the images of a single sensor type. After the integration of all images, the OA and
Kappa were 92.7% and 0.902, respectively. The OA was 12.6% higher than that obtained by
using the SAR images in the whole growth period, indicating that a more accurate spatial
distribution map of winter wheat was obtained.

4.2. Mapping Results of Winter Wheat in Henan Province

After the integration of Sentinel-1A images in the whole growth period and Sentinel-
2 images before-wintering and after-wintering (scheme 12), the spatial distribution map
of winter wheat in Henan Province with a spatial resolution of 10 m was obtained by
using the RF algorithm. Figure 8a indicates that winter wheat is mainly distributed in the
central-eastern plain and Nanyang basin of Henan Province, showing the characteristics
of concentrated continuous distribution and partially fragmented cultivation. This result
is basically consistent with the findings of previous studies [28,29]. Figure 8 enlarges
some details, and the detailed images (Figure 8c) are compared with the reference images
(Figure 8b). It can be seen that most of the winter wheat acreage has been correctly classified.
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Figure 8. The spatial distribution map of winter wheat in Henan Province in 2018–2019 cropping
season (a). The Sentinel-2 false-color images (NIR/ Red/Green) (b) and the zoomed-in distribution
map of the winter wheat in three example locations (c) from Henan Province.

As shown in Table 4, the MA was 95.0%, and the F1 was 0.941. Meanwhile, the area of
winter wheat was calculated according to the extraction results. The area of winter wheat in
Henan Province is 56,075 km2, which is 726 km2 less than the area estimated by the official
statistics of China in 2019 (57,066 km2). The extraction of winter wheat has high accuracy
and is relatively stable. Winter wheat can be well distinguished from water, buildings, and
others. However, vegetation may be misclassified into winter wheat, and this is caused by
the similarity of vegetation to winter wheat in terms of characteristic variables. The results
are informative for the development of agricultural policies.
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Table 4. Confusion matrix of the winter wheat distribution map in Henan Province.

Land-Cover Types
Classification Results

Winter Wheat Vegetation Buildings Water Others Sum MA F1

Winter wheat 246 10 2 0 1 259 95.0% 0.941
Vegetation 18 224 1 1 3 248 90.7% 0.905
Buildings 0 5 132 1 3 141 93.6% 0.939

Water 0 2 0 65 0 67 97.0% 0.970
Others 0 7 5 0 79 91 86.8% 0.893
Sum 264 248 140 67 86 OA =

92.7%
Kappa
= 0.902UA 93.2% 90.3% 94.3% 97.0% 91.9%

4.3. Comparison of Spatial Details and Quantitative Evaluation

According to the study purpose, the extraction results of experimental schemes 6, 11,
and 12 are displayed (Figure 9). This study selected three regions and drew the classification
details. The Sentinel image with a spatial resolution of 10 m had a poor extraction effect on
narrow linear features. These three extraction schemes tended to mistakenly classify roads
as winter wheat. In contrast, the SAR image (scheme 6) had a better extraction effect on
roads, but it may misclassify vegetation to winter wheat, resulting in the overestimation
of winter wheat acreage. The results show that the extraction effect of the integration of
Sentinel images (scheme 12) is better than that of using the SAR images in the whole growth
period (scheme 6) and optical images (scheme 11). Though the use of SAR images in the
whole growth period can effectively extract a wide range of winter wheat planting areas,
there is still “pepper and salt noise”, and this problem can be reduced by image integration.
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Figure 9. Comparison of spatial details of four example locations, location I (114.070◦ N, 35.576◦ E),
II (114.910◦ N, 33.790◦ E), III (114.862◦ N, 32.585◦ E). (a) Sentinel-2 RGB composite images. The winter
wheat maps derived using the (b) classification scheme F, (c) classification scheme K, (d) classification
scheme L.
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4.4. Feature Variables Importance

As can be seen from Figure 10 (left), when only Sentinel-1A images were used to
extract winter wheat acreage, the importance scores of SAR images of overwintering and
reviving, jointing and heading, and flowering and maturing were high, all about 0.18,
which played a dominant role in the classification results. Compared with polarization
features, the importance score of texture features is relatively low. After the integration
of Sentinel-2 images, the influence of the texture features on the classification results was
low (Figure 9, right). This is related to the calculation of texture features from polarization
features. When using integrated images to extract winter wheat acreage, the importance
scores of spectral features and polarization features were higher than those of texture
features. The feature variable with the highest score was the spectral feature, which
indicates the importance of optical images in extracting winter wheat acreage.
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5. Discussion
5.1. Image Aggregation Method

For large-scale remote sensing mapping of winter wheat, selecting a reasonable image
aggregation method can improve the mapping accuracy and efficiency. A large number of
high-quality images in the study area provide a data basis for the implementation of the
aggregation scheme (Figure 2). Based on the imaging principle of the sensor, this study
designed image aggregation methods, respectively.

Due to the influence of cloudy and rainy weather, there may be no optical image
coverage in a certain growth period of winter wheat. The complete image is generally
aggregated by increasing the image aggregation time window. However, a larger image
aggregation time window will span more growth periods. The aggregated images are not
representative and cannot accurately reflect the phonological features of winter wheat. The
NDVI curve of winter wheat has the characteristic of “two peaks and one valley”, which is
different from that of other land-cover types [46]. Before overwintering, winter wheat is
sparse and easily influenced by soil background; after overwintering, winter wheat grows
rapidly, and the variation trend of NDVI is similar to that of vegetation, which is easy
to be affected by vegetation. Besides, the NDVI curves of winter wheat before and after
overwintering both show an increasing trend [16]. The overwintering of winter wheat
maintains for two months, but the satellite images in this period are affected by rain and
snow. It is difficult to aggregate a complete phase of optical images. Moreover, the NDVI
characteristics of winter wheat do not change significantly during the overwintering period.

Compared to optical images, SAR images have a robust data source in all weather
conditions. The Sentinel-1A satellite can provide one SAR image for 12 days. In the early
period of winter wheat sowing, the plants are low and sparse. Meanwhile, the influence of
soil background is dominant, and the backscattering coefficient increases. When winter
wheat begins to develop, the stem density increases gradually [47,48]. At this time, the
influence of rainfall causes the curve to fluctuate upward, but the backscattering coefficient
decreases as a whole. After jointing, winter wheat gradually begins to senescence, and
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the water content in the plant decreases. Meanwhile, the influence of soil background
and the backscattering coefficient both increase. The variation trend of the backscattering
coefficient can be fully captured by image aggregation with the growth period of winter
wheat as the time window. This method makes full use of the phenological characteristics
of winter wheat, and it solves the problem of extracting winter wheat planting area from
SAR median images.

5.2. Potential of Using SAR Images of the Full Growth Period to Extract Winter Wheat Acreage

Our study shows that it is feasible to use SAR images of the whole growth period
to draw the spatial distribution map of winter wheat at the provincial level. The radar
imaging technology can acquire information on crop canopy structure and plant water
content [49,50]. The extraction accuracy increases with the accumulation of growth periods,
and this is related to the fact that the image integration of multi-growth periods can reduce
speckle noise. The integration of SAR images of five growth periods contributes to an
extraction accuracy close to 80%, which helps to understand the spatial distribution of
winter wheat and provides reliable information for the ministry of agriculture to evaluate
food security. In Figure 8, there is a lot of “salt and pepper noise” in the classification
results based on SAR images in the full growth period, and the interior of the plot is
relatively rough. Also, the classification boundary between winter wheat and other land-
cover types is fuzzy. Though there are wrong classifications and missing classifications,
most pixels are correctly classified. For the planting areas with large distribution and
concentrated contiguity of winter wheat, the SAR image of the full growth period can
achieve better classification results. For the winter wheat planting areas with complex and
scattered ground features, there are great defects, and the extraction accuracy needs to be
improved [24,51,52].

When using the SAR image of the full growth period for classification, polarization
feature and contrast texture feature are the two most important features in the importance
score of feature variables. The inclusion of texture features can improve the extraction
accuracy, but the importance scores of texture features are relatively low. Since texture
features are calculated based on polarization features, they have a high correlation with
polarization features. Therefore, the contribution of texture features to extraction results
is relatively low. Compared with other texture features, contrast features contain more
information in space [26,44]. The SAR images of overwintering and reviving, and flowering
and maturing contribute greatly to the extraction results of winter wheat. During the
period of overwintering and reviving, winter wheat grows vigorously, and the plant
height increases continuously, which results in a low backscattering coefficient. At the
flowering period, the water content of the winter wheat plant decreases continuously, and
the backscattering coefficient is increased. In the later growth period, the polarization
features of winter wheat change obviously. This helps to distinguish winter wheat from
other land-cover types, and it is conducive to the extraction of winter wheat.

5.3. Advantages of Image Integration for Extraction of Winter Wheat

This study demonstrated that image integration is more advantageous for mapping
the spatial distribution of winter wheat. The successful launch of the radar imaging
satellite brings the development of crop extraction technology into a new stage [53,54].
For different imaging methods, the data sources complement each other and play their
respective advantages in crop extraction. The multi-temporal remote sensing images could
improve crop classification accuracy. However, the phenological characteristics vary widely
in different growth periods. It is crucial to choose the growth period reasonably. Different
from the previous studies, this study integrated remote sensing images with the growth
period of winter wheat as the time window. The Sentinel-1A images of the full growth
period and Sentinel-2 images before and after overwintering were used to map the spatial
distribution of winter wheat, and the experimental results were reliable.
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Previous studies have shown that vegetation index features are sensitive to vegetation
and have strong advantages in vegetation identification [55,56]. This was reflected in
the feature variable importance analysis. The importance scores of optical image bands
are higher than those of SAR image bands. The optical image after overwintering has a
great impact on the extraction accuracy, and this is due to the fact that winter wheat after
overwintering is easy to distinguish from other ground object types. However, in the case
of less optical image phase data, the subdivision of vegetation types will produce a large
number of misclassifications and missing classifications. SAR images are sensitive to crop
structure and can reflect the effects of crop planting density, plant moisture content, and soil
background [57]. The image integration can make up for the shortcomings of SAR image
and optical image, and it is very effective to improve the remote sensing identification
accuracy of winter wheat. The use of integrated Sentinel images contributed to higher
extraction accuracy than the use of sensor images alone, and the OA and Kappa were 92.7%
and 0.902, respectively. Meanwhile, the extraction results of integrated images also have
less “pepper and salt noise”. Therefore, SAR images can be used as an auxiliary data source
to help optical images for winter wheat acreage extraction [58]. Our method provides a
way to determine the early identification time of winter wheat.

5.4. Limitations and Prospects

GEE remote sensing cloud platform makes remote sensing mapping at a large scale
possible, and the powerful data analysis capability enables the implementation of the
experiment in this study. Based on the GEE platform, this study extracted the 2018 winter
wheat acreage at the provincial scale using integrated Sentinel images and mapped the
spatial distribution of winter wheat. The GEE platform has many years of remote sensing
data sources, and the full use of these images allows the production of winter wheat
time series products [59]. The use of time-series products to monitor the spatial and
temporal variation of winter wheat can provide reliable information for governments to
make plans [16]. Our future study will focus on mapping the spatial distribution of winter
wheat over longer time series.

Our spatial distribution map of winter wheat with 10 m spatial resolution has high
extraction accuracy and reliable results. The integration of optical and SAR images can
reflect crop phenological characteristics from different aspects. The integration of images
from different sensors can take full use of the information of optical images and give full
play to the advantages of SAR images. This study combined the phenological characteristics
of winter wheat with the image characteristics and integrate the images separately. This
can provide an effective reference for winter wheat mapping in other regions. During the
winter wheat observation period, a small amount of rape and garlic will be planted in
Henan Province, which will still cause some disturbance to the results. This study did not
consider the interference caused by rapeseed and garlic. In our future work, the influence
of zoning on crop planting information extraction will be investigated.

6. Conclusions

In this study, the Sentinel-1A images of the full growth period and Sentinel-2 images
before-overwintering and after-overwintering were used as data sources to map the spatial
distribution of winter wheat in Henan Province in 2018 based on the RF algorithm. The
feasibility and potential of using SAR images in the full growth period and integrating
images to extract winter wheat acreage were explored. Our study determined the follow-
ing. (1) The aggregation of Sentinel-1A images based on the winter wheat phenological
period can provide sufficient data sources for experiments and facilitate the construction of
phenological indicators. The aggregation of Sentinel-2 images based on the MODIS-NDVI
curve can effectively take full use of the optical image and enhance the image information.
(2) The use of SAR images in the full growth period under the combination of polarization
features and texture features can achieve winter wheat acreage extraction. The extraction
effect varies for winter wheat growing areas with different plot types. The analysis of the
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importance scores of feature variables indicated that polarization features and contrast
texture features dominated the extraction results. (3) The use of integrated Sentinel im-
ages achieved higher extraction accuracy than the use of sensor images alone, and the
identification effect was better. In the case of insufficient optical images, integrated images
can be efficient for monitoring winter wheat. The method proposed in this paper has a
great potential to be extended to remote sensing mapping in larger study areas with more
complex crop cultivations.
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