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Abstract: Seismic field data are usually contaminated by random or complex noise, which seriously
affect the quality of seismic data contaminating seismic imaging and seismic interpretation. Im-
proving the signal-to-noise ratio (SNR) of seismic data has always been a key step in seismic data
processing. Deep learning approaches have been successfully applied to suppress seismic random
noise. The training examples are essential in deep learning methods, especially for the geophysical
problems, where the complete training data are not easy to be acquired due to high cost of acquisition.
In this work, we propose a natural images pre-trained deep learning method to suppress seismic
random noise through insight of the transfer learning. Our network contains pre-trained and post-
trained networks: the former is trained by natural images to obtain the preliminary denoising results,
while the latter is trained by a small amount of seismic images to fine-tune the denoising effects by
semi-supervised learning to enhance the continuity of geological structures. The results of four types
of synthetic seismic data and six field data demonstrate that our network has great performance in
seismic random noise suppression in terms of both quantitative metrics and intuitive effects.

Keywords: denoising; seismic data; deep learning; random noise; natural images

1. Introduction

Seismic signals recorded by sensors onshore or offshore are usually contaminated
by random noise, which leads to poor seismic data quality with low signal-to-noise ratio
(SNR). Improving SNR of the seismic data is one of the targets of seismic data processing in
which random noise suppression plays a key role in either pre-stack or post-stack seismic
data processing.

There have been various denoising methods in recent decades such as prediction-based
noise suppression method: t-x predictive filtering [1,2] and non-stationary predictive filter-
ing [3,4], the sparse transform domain method including wavelet transform [5], curvelet
transform [6], seislet transform [7], contourlets transform [8], dictionary learning-based
sparse transform [9], singular spectrum analysis [10,11], etc. These traditional methods
separate noise from signals mainly based on the features of signal and noise itself or their
distribution characteristics in different transform domains. These methods usually require
knowledge of prior information for the signal or the noise. Moreover, the features of seismic
signals are complex in real situations and the distribution of characteristics of the signal
and noise are overlapped in transform domain, so it is almost impossible to accurately
separate the noise from noisy signals.

Recently, deep learning methods are popular and successfully deal with various tasks
in different fields such as computer science, information engineering and earth science, and
remote sensing. Deep learning methods have shown great potential for different tasks in
the field of remote sensing such as image retrieval, road extraction, remote-sensing scene
classification, semantic segmentation, and intelligent transport systems [12–16] as well as
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geophysics such as seismic inversion, interpretation, and seismic signal recognition [17–31].
In addition, deep learning approaches have also been successfully applied to suppress
random noise in seismic data processing [18,32–41].

There are several classic deep learning methods for denoising. He et al. [42] presented
a residual learning framework named ResNet (Deep Residual Network), which achieves
an increase in the network depth without causing training difficulties. Compared with
plain networks, ResNet adds a shortcut connection between every two layers to form
residual learning. Residual learning solves the degradation problem of deep networks,
allowing us to train deeper networks. Zhang et al. [43] proposed DnCNN (denoising
convolutional neural network) for image denoising tasks based on the ideas of ResNet. The
difference is that DnCNN does not add a shortcut connection every two layers like ResNet,
but it directly changes the output of the network to a residual image. DnCNN learns the
image residuals between the noisy image and the clean image. It can be converged quickly
and has excellent performance under the condition of a deeper network. Ronneberger
et al. [44] developed the U-net architecture, which consists of a contraction path and an
expanding path. The common encoder–decoder structure is adopted, and skip connection
is added to the original structure. It can effectively remain the edge detail information in
the original image and prevent the loss of excessive edge information through up-sampling
and down-sampling. Srivastava et al. [45] solved the overfitting problem which is difficult
to deal with in deep learning by setting the dropout layers, that is, randomly discarding
some units in the training process. Saad and Chen [46] proposed a new approach named
DDAE (deep-denoising autoencoder) to attenuate seismic random noise. DDAE encodes
the input seismic data into multiple levels of abstraction, then decodes them to reconstruct
a noise-free seismic signal.

Contrary to many physical or model-based algorithms, the fully trained machine-
learning algorithms have great advantages that they often do not need to specify any prior
information (i.e., the signal or noise characteristics) or impose limited prior knowledge
while they set multiple tuning parameters to obtain suitable results [40]. Consequently,
the machine-learning algorithms are more user-friendly and offer possibly even fully
automated applications. However, several factors determine the successfulness of the deep
learning methods: (1) many more training examples must be provided than free parameters
in the machine-learning algorithm avoiding the risk that the network memorizes the
training data rather than learning the underlying trends [47,48]; (2) the provided training
examples must be complete and the examples must span the full solution space [40].

In practice, deep neural networks usually have many hidden layers with thousands
to millions of free parameters, thereby the requirement of more training examples than
free parameters during training is often problematic and even unrealizable for geophysical
applications. There are often two approaches to augment seismic training data. One is to
use synthetic seismic data that is variable and easy to acquire the corresponding clean data.
However, the synthetic data are not complete and representative generally, it is challenging
for practical applications because the synthetic data do not contain all the features of the
field data. The other strategy to augment training data is to use the preprocessing field data,
but the trained network is unlikely to surpass the quality of the preprocessing training
examples. Moreover, the clean data (ground truth) is unknown in complex geophysical
applications.

The training examples are essential in deep learning methods, however, for the geo-
physical problems, the complete training data are not easy to be acquired especially for
solving the actual problems. On the one hand, acquisition of seismic data is expensive
and the field data is limited and complex, so the clean data is challenging to obtain. On
the other hand, the synthetic seismic data can provide noise-free data but they cannot
completely solve the problem of the field seismic data. It is well known that the natural
images are available anywhere with abundant detail features. To solve the problem, several
researchers have proven that the deep denoising network can be trained by the natural
images and then it is likely to be capable of denoising the seismic data [49,50]. A similar
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strategy is to reconstruct images of black holes using a network trained with only natural
images [51]. Zhang and van der Baan [40] proposed a generalization study for the neural
networks to make the training examples complete and representative by using double
noise injection and natural images. Double noise injection can increase the number of
available training samples, which is more flexible for field data processing by training the
algorithm to recognize and remove certain types of noise. Saad and Chen [38] proposed an
unsupervised deep learning algorithm (PATCHUNET) to suppress random noise of seismic
data with strategy of patching technique and skip connections. The proposed algorithm
encodes the patched seismic data to extract the features of the input data and uses the
decoder to map these extracted features to the clean signal without random noise.

In this work, we propose a new network architecture to suppress seismic random noise.
Compared with previous work, the advancements of our new architecture are summarized
as follows:

1. We treat the seismic data as an image throughout our network. Firstly, we train the
network using exclusively natural images, then we transfer it to synthetic seismic
image through the transfer learning. Secondly, we utilize the migrated seismic images
to train a network different from the one used in the first step.

2. The dilated convolution is added in DnCNN to increase the size of the receptive field
as well as to improve the training efficiency. This network is taken as a pre-trained
network trained by only natural images.

3. In order to fine-tune the denoising result of the pre-trained network, we design a
post-trained network trained on synthetic seismic data in a way of semi-supervised
learning. The network is the modified U-net with several dropout layers. We set the
output of the network as a residual image to solve the difficulties of network training,
in other words, the final denoised seismic images can be obtained by subtracting the
output from the input.

This paper is organized as follows. In Section 2, we introduce the natural images
pre-trained network for seismic random noise removal. In Section 3, we show and analyze
the denoising results of four synthetic examples and six field examples comparing the
denoising results with those obtained with DnCNN and U-net. Section 4 discusses the need
for transfer learning and the importance of reasonable selection of parameters. Finally, we
present a conclusion of this paper in Section 5.

2. Methods

We propose a new network architecture based on DnCNN and U-net for seismic
random noise reduction. These two network architectures are combined through transfer
learning. In the pre-trained network, we still follow the basic network architecture under
the frame of DnCNN, but decrease the number of original network layers and utilize
dilated convolution in the first few layers. Moreover, we add dropout layers and residual
units in the U-net architecture as our post-trained network, which is different from the
network in the first step, trained through the migrated seismic images.

2.1. Network Architecture

The whole denoising procedure is shown in Figure 1. The entire denoising network
contains the pre-trained model and the post-trained model, both of which are connected
by transfer learning. Firstly, we train the network using exclusively natural images (the
specific dataset in Section 2.3) including scenery, people, animals, vehicles, etc. Then we
transfer it to synthetic seismic image through transfer learning [52]. Secondly, we build a
new network trained by minor amounts of seismic images to further restore the geological
structures of seismic images. Throughout the denoising process, the noisy image is denoted
as y, which is defined as

y = s + n (1)
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where s and n represent the clean image and the noise respectively. In addition, the noisy
image y is the input of the network, and the output is the prediction of the clean image.
We need to build a network so that the output is as close as possible to the corresponding
clean image.
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2.1.1. Pre-Trained Network: DnCNN with Dilated Convolution

The DnCNN is based on the structure of ResNet [42]. ResNet adds a shortcut connec-
tion between every two layers to form residual learning. The difference from ResNet is
that DnCNN changes the output image of network to a residual image, instead of adding
shortcut connection. This operation greatly improves the training efficiency, especially for
images with low noise level.

In the pre-trained model, our network architecture is shown in Figure 2. The network
depth is 13 layers with 32 convolution kernels. The size of the convolution kernel is 3. We
use the rectified linear unit (ReLU) activation function after each hidden layer. The ReLU
function can be expressed as

f (x) =
{

0, x ≤ 0
x, x > 0

(2)

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 33 
 

 

geological structures of seismic images. Throughout the denoising process, the noisy 
image is denoted as y, which is defined as 

nsy +=  (1) 

where s and n represent the clean image and the noise respectively. In addition, the noisy 
image y is the input of the network, and the output is the prediction of the clean image. 
We need to build a network so that the output is as close as possible to the corresponding 
clean image. 

 
Figure 1. Whole denoising procedure. 

2.1.1. Pre-Trained Network: DnCNN with Dilated Convolution 
The DnCNN is based on the structure of ResNet [42]. ResNet adds a shortcut 

connection between every two layers to form residual learning. The difference from 
ResNet is that DnCNN changes the output image of network to a residual image, instead 
of adding shortcut connection. This operation greatly improves the training efficiency, 
especially for images with low noise level. 

In the pre-trained model, our network architecture is shown in Figure 2. The 
network depth is 13 layers with 32 convolution kernels. The size of the convolution 
kernel is 3. We use the rectified linear unit (ReLU) activation function after each hidden 
layer. The ReLU function can be expressed as 

( )




>
≤

=
0,
0,0

xx
x

xf  (2) 

 
Figure 2. Network architecture in the pre-trained model. 

The output of middle layers requires additional batch normalization and is then 
activated. These operations are not implemented on the last layer. 

Since the computational efficiency decreases with the depth of network increasing, 
we introduce the dilated convolution to increase the size of the receptive field without 
increasing the depth of the network. When the number of feature maps is the same, the 

Figure 2. Network architecture in the pre-trained model.

The output of middle layers requires additional batch normalization and is then
activated. These operations are not implemented on the last layer.

Since the computational efficiency decreases with the depth of network increasing,
we introduce the dilated convolution to increase the size of the receptive field without
increasing the depth of the network. When the number of feature maps is the same, the
dilated convolution can be utilized to get a larger receptive field. However, the continuous
structural information may be lost at the same time, thus it is not conducive to the pro-
cessing of details. Consequently, we only use dilated convolution in the second and third
layers, and the dilated rate is set to 2. In this way, the network is allowed to better capture
global features at the beginning of training.
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2.1.2. Transfer Learning

Transfer learning is used to transfer the pre-trained model parameters to the new
model training. Since most data or tasks are related, we can speed up the learning efficiency
and optimize the model through this approach. For instance, natural images are ubiquitous
in realistic life. The acquisition of seismic data requires a long time and financial resources,
so we generally use synthetic seismic data to train the network. Compared to natural
images, the seismic data have their own unique characteristics. Training using exclusively
natural images will result in the loss of detailed seismic structure information. Therefore,
we transfer the pre-trained model on natural images to a different network. This distinct
network will be trained on seismic data. In this way, there is no need to restart the training
of seismic data, which speeds up the training process. Specifically, we preserve the trained
model parameters in the pre-trained model to implement preliminary denoising on the
noisy seismic images. Then, these pre-processed seismic images are transferred to the
post-trained model for retraining.

2.1.3. Post-Trained Network: U-Net Architecture with Residual Units and Dropout Layers

For seismic data training, we use U-net architecture with residual units and dropout
layers (Figure 3). The input of the network is the pre-processed seismic image obtained
through the pre-trained model. There are 13 convolutional layers in this network archi-
tecture. Except for the last layer, the output of each layer needs to be processed by batch
normalization and is then activated with ReLU function. In addition, there are four down-
sampling layers in the contraction path and corresponding four up-sampling layers in the
symmetric expanding path, which are implemented by max-pooling and bilinear interpola-
tion respectively. The size of the pool window, the up-sampling factor and the stride of each
step are all set to 2. In the initial convolutional layer, the number of convolution kernels is
32. After each down-sampling layer except the last one, the number of convolutional filters
doubles to 64, 128, and 256, respectively, then halves after every up-sampling operation
except for the last layer. The dropout layers are added before each down-sampling layer
to avoid overfitting. The dropout layer randomly reserves 90 percent of the parameters.
Since the noise level of the image becomes lower after initial denoising in the first stage,
we change the output to the residual image instead of the denoised image, which greatly
increases the learning efficiency of the network.
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2.2. Loss Function in Our Network

The whole denoising process can be described by the expression

ŝ = F2(γ; F1(θ; y)) (3)

where ŝ is the predicted image of the input image y from the proposed network architecture.
F1(θ; y) denotes the denoised image outputted from the DnCNN with dilated convolution.
F2(γ; F1(θ; y)) refers to the denoised image outputted from the entire proposed network.
Besides, θ and γ are the parameters of the DnCNN with dilated convolution and the U-net
architecture with residual units respectively, including weights and biases.

We use different loss functions for the two training models. In the pre-trained model,
the loss function is constructed in a supervised way, and in the post-trained model, a
semi-supervised method is adopted.

Without loss of generality, the loss function in the pre-trained model is the averaged
mean squared error between the clean seismic data and the denoised seismic data by the
DnCNN with dilated convolution

min
θ

loss1 =
1

2N

N

∑
i=1
‖si − F1(θ; yi)‖2

F (4)

The loss function of the post-trained model is determined as

min
γ

loss2 = α · 1
2N

N

∑
j=1
‖s∗j − F2

(
γ; F1

(
θ; y∗j

))
‖2

F + 2β · 1
N

N

∑
j=1

SSIM
(

s∗j , y∗j − ŝ∗j
)

(5)

where {yi, si} and
{

y∗j , s∗j
}
(i, j = 1, . . . , N) denote N pairs of noise-clean training data from

natural images and synthetic seismic data, respectively. Here, N refers to batch size. α and
β are the weights measure the balance between the supervised and unsupervised learning.
The loss function of averaged mean squared error is adopted in supervised learning, which
is the same as the previous loss function. In unsupervised learning, the SSIM (structure
similarity index measure) is utilized, which characterizes the structural similarity between
the denoised seismic data and the removed noise. Adam optimizer is used to optimize the
proposed network parameters [53].

The logarithm of loss curves in our methods are shown in Figure 4. Figure 4a,b indicate
that the downward trend of the logarithm of the loss in the two networks is similar. The
logarithm of loss drops sharply in the initial training stage, then decreases gradually. It is
worth mentioning that the final convergence value of loss in the post-trained model is less
than that in the pre-trained model, which further proves the necessity of the post-trained
model. Furthermore, the loss is not divergent during the training process, illustrating that
there is no over-fitting phenomenon in our networks. Regarding the choice of α and β in (5),
we need to consider the trend of the loss curve under different α as well as the evaluation
indexes of denoising results. Figure 4c illustrates the variation of the logarithm of loss
curve with respect to α at different iteration steps in the post-trained model. Figure 4c
shows that the logarithm of loss reaches the minimum at each certain iteration step when
α = 0.9. In the following experiments, the evaluation indexes shows that the denoising
result is the best with α = 0.9, β = 0.05 in the synthetic examples and α = 0.4, β = 0.3 in the
field examples (clarified in details in Section 4.2).
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2.3. Training Data Set Preparation

In order to apply our network architecture to seismic denoising, we prepare the
training data set, including natural images and seismic images. The quantity of the training
data sets allocations in the two models is shown in Table 1.

Table 1. Quantity of the training data sets allocations in the two models.

The Training Data Sets Pre-Trained Model Post-Trained Model

Natural images 1500 -
VSP data - 1 500

Reflection seismic data - 500
Marmousi2 model - 300

Total 1500 1300
1 This symbol indicates that the training data is not used.

In deep learning, it is crucial to ensure the completeness of training data. Whether
natural images or seismic images, we are supposed to ensure the diversity of data. We
choose 1500 natural images for the first stage of training, 500 of which come from BSDS500
Dataset (website: https://eecs.berkeley.edu/ (accessed on 21 May 2021)) and the rest come
from COCO Dataset (website: https://cocodataset.org/ (accessed on 28 June 2021)). There
are various types of natural images in the two datasets, such as scenery, people, animals,
vehicles, etc. In the second training stage, 1300 synthetic seismic images are used, 500 of
which are VSP (Vertical Seismic Profile) data, the other 500 are the reflection seismic data,
and the remaining are synthesized by the Marmousi2 model that is an open and one of
the most representative geological models in the field of geophysics [54]. The geological
structures of VSP data and the reflection seismic data are relatively simple, while the seismic

https://eecs.berkeley.edu/
https://cocodataset.org/
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data synthesized by Marmousi2 model is more complex. In this way, it can increase the
richness of the seismic data and make the network more generalized.

2.3.1. VSP Data

The VSP method is a seismic survey technology in wells, in which seismic waves are
excited at some points near the surface and they are received at the receivers in the well.
According to the direction of propagation to the geophone, the seismic waves in the VSP
data can be divided into down-going waves and up-going waves. The down-going waves
have stronger energy, while the up-going waves are weaker. In our experiment, we use
reflectivity method to generate VSP data in homogeneous layered models [55]. The VSP
data are composed of random trace numbers from 151 to 501 and each with 2048 samples.
The dominant frequency randomly varies from 10 to 60 Hz. The spacing of the geophones
is 5 m. The sampling interval in time domain is 0.001 s.

2.3.2. Synthetic Reflection Seismic Data

We synthesize seismic reflection data through SeismicLab that is a MATLAB seismic
data processing package (http://seismic-lab.physics.ualberta.ca/ (accessed on 2 June
2021)). The reflection seismic data are composed of different hyperbolic seismic events.
To synthesize the reflection seismic data, we choose the dominant frequency of Ricker
wavelet in the range of 10–40 Hz. The apparent velocity changes from 1500 to 2400 m/s.
Consequently, we generate the clean synthetic reflection seismic data containing 101 traces
and 901 samples. The sampling interval is 0.002 s.

2.3.3. Seismic Data Synthesized by Marmousi2 Model

We also obtain synthetic seismic data based on the Marmousi2 model (Figure 5). The
Marmousi2 model has abundant geological structure which allows the network to learn
more geological features. Part of them are calculated through convolution model, and the
remaining part are acquired through the SEG open data (the website: https://wiki.seg.org/
wiki/Open_data (accessed on 11 October 2021); data sets used: Kirchhoff_PoSDM.segy,
Kirchhoff_PreSDM.segy, NMOstack_SRM.segy, SYNTHETIC.segy, WE_PreSDM.segy).
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Next, we describe the principle of the convolution model briefly. Seismic records can
be regarded as the convolution of a band-limited seismic wavelet and reflectivity series,
which can be expressed as [56]

x(t) = w(t) ∗ r(t) (6)

http://seismic-lab.physics.ualberta.ca/
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
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where x(t), w(t), and r(t) represent seismic trace record, seismic wavelet, and reflectivity
series, respectively.

Based on the Marmousi2 model, we generate seismic data using convolution method
with Ricker wavelet. We choose the dominant frequency within the range of 10–40 Hz and
the phase of the wavelet varies from 0–90 degrees. The sampling interval is 0.001 s. In this
way, we generate seismic data containing 1701 traces and 1400 samples.

The seismic data generated by the Marmousi2 model are complex, so it is difficult
to capture all the features if we input the entire synthetic data into the network directly.
Therefore, we utilize the sliding window strategy to segment the synthetic seismic data and
then input them into the network (shown in Figure 5). In the sliding window method [57],
a window in size of 240 × 240 is slid over the seismic data from the top to the bottom and
also from the left to the right with shift size of 180 samples. Each synthetic seismic data
can produce 15 images through the sliding window strategy, then all the segment seismic
images are input to the network for training.

2.3.4. Noise Injection

We add zero-mean discretized Gaussian white noise into all training data sets with
240 × 240 pixel randomly, and the standard deviation of noise ranges from 1 to 50 [43].
This value range is set to achieve the injection of strong noise and weak noise. We believe
that the network can learn more characteristics of the noise if noise is added with different
levels, thus the effective seismic signal can be restored more completely.

3. Results

We apply the proposed network to the synthetic seismic data to evaluate the denoising
performance of our method and compare the results with those of the DnCNN and the
U-net. Four synthetic examples are used to evaluate the proposed algorithm, including 255
seismic images obtained by VSP data, the reflection seismic data with hyperbolic events
and Marmousi2 model. The synthesis method is the same as the training data sets. It is
worth mentioning that the pre-stack Marmousi2 data (Kirchhoff_PreSTM_time.segy) in
the test data sets is completely absent in the training set. Subsequently, random noise at
different levels is added to the seismic images randomly. The quantity of the test data sets
allocations is shown in Table 2.

Table 2. Quantity of the test data sets allocations.

The Test Data Sets Quantity Percentage (%)

VSP data 50 20
Reflection seismic data 100 39

Marmousi2 model 1 105 41
Total 255 100

1 The seismic data synthesized by the Marmousi2 model, 90 pieces are calculated by the convolution model, the
rest come from SEG open data (website: https://wiki.seg.org/wiki/Open_data (accessed on 11 October 2021);
specific data set: Kirchhoff_PreSTM_time.segy).

3.1. Quantitative Analysis of Denoising Performance

In the following section, we use MSE (mean square error), PSNR (peak signal-to-noise
ratio), and SSIM (structural similarity) as evaluation indexes of denoising performance.
The MSE used here is calculated as

MSE =
1
N

N

∑
i=1

(s∗i − ŝ∗i )
2 (7)

where s∗i denotes the noise-free seismic data and s∗i denotes the corresponding denoised
seismic data.

https://wiki.seg.org/wiki/Open_data
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The PSNR is defined as

PSNR = 10 log10

(
2552

MSE

)
(8)

and SSIM is described as

SSIM(s∗i , ŝ∗i ) = l(s∗i , ŝ∗i ) · c(s∗i , ŝ∗i ) · s(s∗i , ŝ∗i ) (9)

where l
(
s∗i , ŝ∗i

)
represents the brightness comparison, c

(
s∗i , ŝ∗i

)
is the contrast comparison,

and s
(
s∗i , ŝ∗i

)
stands for the structure comparison [58].

3.2. Four Synthetic Examples

Experiments are carried out on four synthetic examples and six field examples to
evaluate the denoising performance of the proposed method compared with two classic
deep learning methods for seismic random noise attenuation. In addition to illustrating
the superiority of our network through quantitative indicators mentioned above, we also
testify this fact through visualization in the following.

3.2.1. First Synthetic Example (VSP Data)

We present the denoising results of VSP data as shown in Table 3 and Figure 6. The
clean VSP data are shown in Figure 6a. Then the noisy data are generated by adding
random noise with different levels, as illustrated in Figure 6b. This example contains strong
down-going waves and weaker up-going waves. The original PSNR of the noisy data
is 21.76.

Table 3. Quantitative comparison of the first synthetic example.

Methods MSE PSNR SSIM

Initial value 0.012055 21.76 0.28
Pre-trained model 0.000552 33.81 0.90
Proposed method 0.000163 38.62 0.99

DnCNN 0.000307 36.09 0.96
U-net 0.000224 37.16 0.98

The denoising sections of the pre-trained model with exclusively natural images are
shown in Figure 6c. It is indicated that most of the noise have been removed through
this pre-trained network, which corresponds to the greatly improved PSNR in Table 3.
The PSNR of VSP data processed by the pre-trained network increases from 21.76 to
33.81. However, some weaker seismic events are lost and even disappeared, marked by
the arrows in Figure 6c. Contrary to the preprocessed result, the noise-reduction results
through our entire network are shown in Figure 6e. We find that the seismic events become
more continuous and some detailed features are restored very clearly, especially in the
parts marked by arrows in Figure 6e. The background of the whole image is also cleaner
and brighter. At the same time, the evaluation indicators have been further improved.
The denoised results of the DnCNN and U-net are illustrated in Figure 6g,i, respectively.
Figure 6g,i indicate that the discontinuity on the up-going waves can be observed in the
results of DnCNN and U-net, moreover, the PSNR and SSIM are lower than our proposed
method while the MSE is larger than our method.



Remote Sens. 2022, 14, 263 11 of 33Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 33 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 6. Cont.



Remote Sens. 2022, 14, 263 12 of 33
Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 33 
 

 

  
(i) (j) 

Figure 6. Denoising results of VSP data. The red arrows on the left (c,e,g,i) and right sides (d,f,h,j) 
of the figure plate respectively mark the weak reflection waves and the parts of the signal leakage. 
(a) Clean data; (b) Noisy data; (c) Denoised image through the pre-trained model; (d) The 
difference profiles between noisy data (b) and pre-denoised data (c); (e) Denoised data through the 
proposed method; (f) The difference profiles between noisy data (b) and denoised data (d); (g) 
Denoised data through the DnCNN; (h) The difference profiles between noisy data (b) and 
denoised data (g); (i) Denoised data through the U-net; (j) The difference profiles between noisy 
data (b) and denoised data (i). 

Table 3. Quantitative comparison of the first synthetic example. 

Methods MSE PSNR SSIM 
Initial value 0.012055 21.76 0.28 

Pre-trained model 0.000552 33.81 0.90 
Proposed method 0.000163 38.62 0.99 

DnCNN 0.000307 36.09 0.96 
U-net 0.000224 37.16 0.98 

The denoising sections of the pre-trained model with exclusively natural images are 
shown in Figure 6c. It is indicated that most of the noise have been removed through this 
pre-trained network, which corresponds to the greatly improved PSNR in Table 3. The 
PSNR of VSP data processed by the pre-trained network increases from 21.76 to 33.81. 
However, some weaker seismic events are lost and even disappeared, marked by the 
arrows in Figure 6c. Contrary to the preprocessed result, the noise-reduction results 
through our entire network are shown in Figure 6e. We find that the seismic events 
become more continuous and some detailed features are restored very clearly, especially 
in the parts marked by arrows in Figure 6e. The background of the whole image is also 
cleaner and brighter. At the same time, the evaluation indicators have been further 
improved. The denoised results of the DnCNN and U-net are illustrated in Figure 6g,i, 
respectively. Figure 6g,i indicate that the discontinuity on the up-going waves can be 
observed in the results of DnCNN and U-net, moreover, the PSNR and SSIM are lower 
than our proposed method while the MSE is larger than our method. 

We illustrate the removed noise section between the original noisy data and the 
denoised data for all methods to further evaluate the denoising performance, as shown 
in Figure 6d,f,h,j. The down-going wave energy is exceedingly strong, so no matter which 
method is used to denoise, there will be different degrees of effective seismic signal 
damage. Both up-going and down-going coherent seismic waves are damaged in the 
pre-trained model, as shown in Figure 6d. Figure 6f clearly shows that the noisy section 
removed by our entire network contains extremely few up-going waves. However, both 
of DnCNN and U-net have up-going waves leakage to some extent, as shown in Figure 
6h,j. 

Table 3 indicates that the denoised data through the DnCNN and U-net has a PSNR 
of 36.09, 37.16 respectively, while the PSNR of the proposed method is 38.62. 

Figure 6. Denoising results of VSP data. The red arrows on the left (c,e,g,i) and right sides (d,f,h,j)
of the figure plate respectively mark the weak reflection waves and the parts of the signal leakage.
(a) Clean data; (b) Noisy data; (c) Denoised image through the pre-trained model; (d) The difference
profiles between noisy data (b) and pre-denoised data (c); (e) Denoised data through the proposed
method; (f) The difference profiles between noisy data (b) and denoised data (d); (g) Denoised
data through the DnCNN; (h) The difference profiles between noisy data (b) and denoised data (g);
(i) Denoised data through the U-net; (j) The difference profiles between noisy data (b) and denoised
data (i).

We illustrate the removed noise section between the original noisy data and the
denoised data for all methods to further evaluate the denoising performance, as shown in
Figure 6d,f,h,j. The down-going wave energy is exceedingly strong, so no matter which
method is used to denoise, there will be different degrees of effective seismic signal damage.
Both up-going and down-going coherent seismic waves are damaged in the pre-trained
model, as shown in Figure 6d. Figure 6f clearly shows that the noisy section removed by
our entire network contains extremely few up-going waves. However, both of DnCNN and
U-net have up-going waves leakage to some extent, as shown in Figure 6h,j.

Table 3 indicates that the denoised data through the DnCNN and U-net has a PSNR of
36.09, 37.16 respectively, while the PSNR of the proposed method is 38.62. Furthermore,
our method also has the lowest MSE and the highest SSIM among three methods.

3.2.2. Second Synthetic Example (Synthetic Reflection Seismic Data)

The synthetic reflection seismic data is used to appraise the proposed method. The
seismic data contains six hyperbolic seismic events as shown in Figure 7a, while the noisy
data are presented in Figure 7b. As shown in Figure 7c, the denoised data obtained by
pre-trained model contains clutter in the background but little random noise, some signal
loss is visible in the removed noise section (Figure 7d). By comparison, the random noise is
removed completely and messy background is improved through further processing of
the post-trained model, as shown in Figure 7e. Furthermore, the removed noise section
(Figure 7f) has no signal leakage basically. Judging from the denoised results with the
DnCNN (Figure 7g) and U-net (Figure 7i), their denoising performance is not bad. However,
there is still signal leakage, as can be seen from the removed noise section (Figure 7h,j). From
the evaluation index values in Table 4, our proposed method achieves the best denoising
performance compared with the other two methods, especially in our method the SSIM
is as high as 0.99 while PSNR is up to 39.52. The results demonstrate that the proposed
method effectively removes random noise while reserving the hyperbolic seismic events.
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Table 4. Quantitative comparison of the second synthetic example.

Methods MSE PSNR SSIM

Initial value 0.013350 22.44 0.32
Pre-trained model 0.000549 34.07 0.90
Proposed method 0.000129 39.52 0.99

DnCNN 0.000311 34.13 0.95
U-net 0.000191 37.84 0.98

3.2.3. Third Synthetic Example (Marmousi2 Model Data)

We utilize synthetic seismic data by the Marmousi2 model (calculated through convo-
lution model) to assess the proposed method. Similar to the training set, we process them
through the sliding window method before using them for testing. Figure 8a,b show the
clean data and noisy data, respectively. The pre-trained model only removes most of the
random noise (Figure 8c), but many detailed features of Marmousi2 model are not retained.
The same result can be obtained from the difference profiles (Figure 8d). The denoised and
the removed noise section by the proposed method are shown in Figure 8e,f, respectively.
In contrast with the denoised section of the pre-trained model, the post-trained model
after transfer learning recovers many detailed geological features and weak seismic signals.
The seismic signals reconstructed by the DnCNN (Figure 8g) and U-net (Figure 8i) are
blurry with a lot of interferences. The signal leakage obviously exists in the difference
map (Figure 8h,j), especially for the DnCNN. The apparent signal leakage in all difference
profiles are marked with rectangular boxes.
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Figure 7. Denoising results of the hyperbolic events data. The red arrows on the right sides (d,h,j) of
the figure plate mark the parts of the signal leakage. (a) Clean data; (b) Noisy data; (c) Denoised image
through the pre-trained model; (d) Denoised data through the proposed method; (e) The difference
profiles between noisy data (b) and pre-denoised data (c); (f) The difference profiles between noisy
data (b) and denoised data (d); (g) Denoised data through the DnCNN; (h) The difference profiles
between noisy data (b) and denoised data (g); (i) Denoised data through the U-net; (j) The difference
profiles between noisy data (b) and denoised data (i).

As listed in Table 5, the DnCNN and U-net have poor denoising performance on
Marmousi2 data, while our method still performs well. The PSNR and SSIM of our network
are 37.77 and 0.95, respectively, and the MSE is as low as 0.000207.
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Table 5. Quantitative comparison of the third synthetic example.

Methods MSE PSNR SSIM

Initial value 0.012771 22.34 0.36
Pre-trained model 0.000582 33.71 0.88
Proposed method 0.000207 37.77 0.95

DnCNN 0.000390 35.37 0.91
U-net 0.000357 35.11 0.93
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Figure 8. Denoising results of the seismic data synthesized by the Marmousi2 model (calculated
by the convolution model). The red rectangle marks the parts with distinct differences in the
difference profiles among each method. (a) Clean data; (b) Noisy data; (c) Denoised image through
the pre-trained model; (d) The difference profiles between noisy data (b) and pre-denoised data (c);
(e) Denoised data through the proposed method; (f) The difference profiles between noisy data (b)
and denoised data (d); (g) Denoised data through the DnCNN; (h) The difference profiles between
noisy data (b) and denoised data (g); (i) Denoised data through the U-net; (j) The difference profiles
between noisy data (b) and denoised data (i).

3.2.4. Fourth Synthetic Example (the Pre-Stack Marmousi2 Data)

Finally, we test the proposed method on pre-stack Marmousi2 data as shown in
Figure 9a. The data contains various complex geological features but does not participate
the network training. We add random noise to the pre-stack data, as shown in Figure 9b.
The denoised sections with pre-trained model and the proposed method are respectively
shown in Figure 9c,e. Figure 9c,e indicate that both models can effectively suppress random
noise. We zoom in the parts of the denoising result to clearly show the performance of
the pre-trained and post-trained network, as illustrated on the left side of Figure 9c,e. We
find that many weak seismic signals marked with the red rectangle in the enlarged parts
are removed as random noise in the pre-trained model, while they are well restored in
the post-trained model. However, the seismic signals after denoising by the pre-trained
model damage in blocks, which can also be seen from the difference map (Figure 9d). On
the contrary, in the difference map after denoising by our entire model (Figure 9f), such
phenomenon is barely noticeable, only a few detailed features are lost, while most of the
signals are well reserved. In the DnCNN and U-net, the denoised images (Figure 9g,i) have
point-like blur, which indicates that both networks do not capture the detailed features
of the seismic signals. Although only little signal leakage can be seen intuitively from the
removed noise section (Figure 9h,j) for the DnCNN and U-net, it does not mean that they
have excellent denoising performance. The corresponding conclusion can be obtained in
Table 6. The U-net has the equally high SSIM as our method, but it is more convincing



Remote Sens. 2022, 14, 263 17 of 33

based on all the three evaluation indexes. Consequently, the proposed method outperforms
the other two methods in preserving the seismic signals and reducing the random noise.

Table 6. Quantitative comparison of the fourth synthetic example.

The Test Data Sets MSE PSNR SSIM

Initial value 0.013906 20.98 0.49
Pre-trained model 0.001522 29.65 0.84
Proposed method 0.000899 31.77 0.88

DnCNN 0.001293 30.18 0.84
U-net 0.001126 30.57 0.88
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denoising performance than other two methods. In terms of evaluation indexes, the 
denoising performance of the U-net is inferior, and the DnCNN is the worst. Moreover, 
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which also demonstrates the necessity of this model. The result also confirms our 
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Figure 9. Denoising results of the pre-stack Marmousi2 data. The red rectangles mark the parts with
distinct differences in the difference profiles among each method. (a) Clean data; (b) Noisy data;
(c) Denoised image through the pre-trained model; (d) The difference profiles between noisy data
(b) and pre-denoised data (c); (e) Denoised data through the proposed method; (f) The difference
profiles between noisy data (b) and denoised data (d); (g) Denoised data through the DnCNN; (h) The
difference profiles between noisy data (b) and denoised data (g); (i) Denoised data through the U-net;
(j) The difference profiles between noisy data (b) and denoised data (i).

Table 7 lists the MSE, PSNR, and SSIM of the results by using the pre-trained model,
the proposed method, the DnCNN and the U-net averaged by all the test data sets. It
can be seen that, in contrast to other methods, the proposed method has the larger PSNR
value, SSIM value and lower value of MSE. This indicates that our method has better
denoising performance than other two methods. In terms of evaluation indexes, the
denoising performance of the U-net is inferior, and the DnCNN is the worst. Moreover,
each evaluation index has been improved appropriately through the pre-trained model,
which also demonstrates the necessity of this model. The result also confirms our previous
idea. It is feasible to use natural images for pre-training and then be applied in seismic
noise attenuation.

Table 7. Quantitative comparison of all test data sets.

Methods MSE PSNR SSIM

Initial value 0.012924 22.18 0.34
Pre-trained model 0.000619 33.63 0.89
Proposed method 0.000208 38.27 0.97

DnCNN 0.000396 35.53 0.93
U-net 0.000311 36.31 0.96
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3.3. Field Example Application

To further demonstrate the denoising performance of the proposed method, the
network is applied to the CDP multichannel seismic profiles (website: https://wiki.seg.
org/wiki/Open_data (accessed on 11 October 2021); specific data set: U121_01.SGY). We
compare the proposed method with the DnCNN and U-net. The noisy data is shown in
Figure 10a, and there is no clean data. We can see that a large amount of other types of
noise exist in the seismic data in addition to the random noise. The denoised data and
the different profiles obtained through the pre-trained model and proposed method are
illustrated in Figure 10b–e, respectively. It can be seen that there is still some random
noise in the denoised result of the pre-trained model. The same phenomenon is found in
the denoised results of the DnCNN and U-net, as shown in Figure 10f–i. Relatively, the
denoised data after post-trained model is less noisy.

The field seismic data is too noisy, so it is difficult to see the obvious difference through
the denoised data. Furthermore, we analyze the denoising performance in the difference
profiles. The pre-trained model regards some useful seismic signals as noise, which results
in various degrees of signal loss. The obvious seismic signal leakage appears in the DnCNN
and U-net as shown in Figure 10g,i. On the contrary, the signal leakage of proposed method
is lower than the DnCNN and U-net. The field seismic example demonstrates that the
proposed method is applicable in terms of effectively removing the random noise and
reserving seismic signals.
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To further demonstrate the applicability of our method, it is not enough to show a 
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seismic data, so we test the method on several field examples with different seismic data 
types additionally and compare the denoising results with the DnCNN and U-net. The 
denoising results of the field VSP data are shown in Figures 11–13 respectively. These 
VSP data not only contain random noise, but also are contaminated by other more 
complex noise. As shown in Figures 11b, 12b and 13b, there is still a large amount of 
random noise in the denoising result of the pre-trained model. However, the random 
noise is largely removed and the seismic signals are well preserved after further 
processing of the post-trained model. The DnCNN is almost comparable to our method 
in terms of eliminating random noise, but the noise removal in DnCNN is not complete 

Figure 10. Denoising results of the first field example. The red arrows mark the parts with distinct
differences in the difference profiles among each method. (a) Noisy data; (b) Denoised image through
the pre-trained model; (c) The difference profiles between noisy data (a) and pre-denoised data (b);
(d) Denoised data through the proposed method; (e) The difference profiles between noisy data (a)
and denoised data (d); (f) Denoised data through the DnCNN; (g) The difference profiles between
noisy data (a) and denoised data (f); (h) Denoised data through the U-net; (i) The difference profiles
between noisy data (a) and denoised data (h).

To further demonstrate the applicability of our method, it is not enough to show a
single field example of denoising. The proposed method is aimed at applying to field
seismic data, so we test the method on several field examples with different seismic data
types additionally and compare the denoising results with the DnCNN and U-net. The
denoising results of the field VSP data are shown in Figures 11–13 respectively. These VSP
data not only contain random noise, but also are contaminated by other more complex
noise. As shown in Figures 11b, 12b and 13b, there is still a large amount of random noise
in the denoising result of the pre-trained model. However, the random noise is largely
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removed and the seismic signals are well preserved after further processing of the post-
trained model. The DnCNN is almost comparable to our method in terms of eliminating
random noise, but the noise removal in DnCNN is not complete enough in the part of weak
signals. The denoising effect of U-net is not as good as DnCNN and our method because it
damages many signals, as illustrated in the difference profiles in Figures 11–13.
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Figure 11. Denoising results of the second field example. (a) Noisy data; (b) Denoised image 
through the pre-trained model; (c) The difference profiles between noisy data (a) and pre-denoised 
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Figure 11. Denoising results of the second field example. (a) Noisy data; (b) Denoised image through
the pre-trained model; (c) The difference profiles between noisy data (a) and pre-denoised data (b);
(d) Denoised data through the proposed method; (e) The difference profiles between noisy data (a)
and denoised data (d); (f) Denoised data through the DnCNN; (g) The difference profiles between
noisy data (a) and denoised data (f); (h) Denoised data through the U-net; (i) The difference profiles
between noisy data (a) and denoised data (h).
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Figure 12. Denoising results of the third field example. (a) Noisy data; (b) Denoised image through
the pre-trained model; (c) The difference profiles between noisy data (a) and pre-denoised data (b);
(d) Denoised data through the proposed method; (e) The difference profiles between noisy data (a)
and denoised data (d); (f) Denoised data through the DnCNN; (g) The difference profiles between
noisy data (a) and denoised data (f); (h) Denoised data through the U-net; (i) The difference profiles
between noisy data (a) and denoised data (h).
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Figure 13. Denoising results of the fourth field example. (a) Noisy data; (b) Denoised image 
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data (b); (d) Denoised data through the proposed method; (e) The difference profiles between noisy 
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In addition, the two post-stack field seismic data are also tested as shown in Figures 
14 and 15. The overall denoising results on these post-stack field data are the same as the 
results of VSP data mentioned above. Although a lot of random noise can be removed 
through U-net, poor continuity is manifested in seismic events. The noise attenuation by 
DnCNN is incomplete. Many cases of signal loss and incomplete denoising exist in the 
results of the pre-trained model. Obviously, the seismic signals are relatively recovered 
and have good lateral continuity after the post-trained model. Especially for the sixth 
field seismic data, our method can reserve more signals relatively compared with other 
networks. The results of the six field seismic data illustrate that our method achieves a 
good tradeoff between random noise attenuation and effective signal preservation. 
Furthermore, the denoising results of both synthetic and field data demonstrate that a 
post-trained model is important and necessary in the process of denoising. 

Figure 13. Denoising results of the fourth field example. (a) Noisy data; (b) Denoised image through
the pre-trained model; (c) The difference profiles between noisy data (a) and pre-denoised data (b);
(d) Denoised data through the proposed method; (e) The difference profiles between noisy data (a)
and denoised data (d); (f) Denoised data through the DnCNN; (g) The difference profiles between
noisy data (a) and denoised data (f); (h) Denoised data through the U-net; (i) The difference profiles
between noisy data (a) and denoised data (h).

In addition, the two post-stack field seismic data are also tested as shown in
Figures 14 and 15. The overall denoising results on these post-stack field data are the
same as the results of VSP data mentioned above. Although a lot of random noise can
be removed through U-net, poor continuity is manifested in seismic events. The noise
attenuation by DnCNN is incomplete. Many cases of signal loss and incomplete denoising
exist in the results of the pre-trained model. Obviously, the seismic signals are relatively
recovered and have good lateral continuity after the post-trained model. Especially for the
sixth field seismic data, our method can reserve more signals relatively compared with other
networks. The results of the six field seismic data illustrate that our method achieves a good
tradeoff between random noise attenuation and effective signal preservation. Furthermore,
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the denoising results of both synthetic and field data demonstrate that a post-trained model
is important and necessary in the process of denoising.
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Figure 14. Denoising results of the fifth field example. (a) Noisy data; (b) Denoised image through 
the pre-trained model; (c) The difference profiles between noisy data (a) and pre-denoised data (b); 
(d) Denoised data through the proposed method; (e) The difference profiles between noisy data (a) 
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Figure 14. Denoising results of the fifth field example. (a) Noisy data; (b) Denoised image through
the pre-trained model; (c) The difference profiles between noisy data (a) and pre-denoised data (b);
(d) Denoised data through the proposed method; (e) The difference profiles between noisy data (a)
and denoised data (d); (f) Denoised data through the DnCNN; (g) The difference profiles between
noisy data (a) and denoised data (f); (h) Denoised data through the U-net; (i) The difference profiles
between noisy data (a) and denoised data (h).
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We train the network through NVIDIA GeForce RTX 2080 Ti GPU. In DnCNN and U-net 
training, we use their original network architecture without any changes, and inject all 
training data into the network at once. In order to ensure the fairness of comparison, the 
number of network layers is consistent with our network. The training time are recorded 
in Table 8. Comparing with the DnCNN and U-net, it can be seen that the training time of 
our method is shorter, as shown in Table 8. The comparison result indicates that transfer 
learning greatly improves training speed of our network architecture. This is because we 
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Figure 15. Denoising results of the sixth field example. (a) Noisy data; (b) Denoised image through
the pre-trained model; (c) The difference profiles between noisy data (a) and pre-denoised data (b);
(d) Denoised data through the proposed method; (e) The difference profiles between noisy data (a)
and denoised data (d); (f) Denoised data through the DnCNN; (g) The difference profiles between
noisy data (a) and denoised data (f); (h) Denoised data through the U-net; (i) The difference profiles
between noisy data (a) and denoised data (h).

3.4. Training Time Comparison

In order to validate the advantages of our network architecture and the effectiveness
of transfer learning, we compare it with the DnCNN and U-net in terms of training time.
We train the network through NVIDIA GeForce RTX 2080 Ti GPU. In DnCNN and U-net
training, we use their original network architecture without any changes, and inject all
training data into the network at once. In order to ensure the fairness of comparison, the
number of network layers is consistent with our network. The training time are recorded
in Table 8. Comparing with the DnCNN and U-net, it can be seen that the training time of
our method is shorter, as shown in Table 8. The comparison result indicates that transfer
learning greatly improves training speed of our network architecture. This is because we
do not need to input natural images and seismic data into the network simultaneously
for training.

Table 8. Comparison of the three methods in terms of training time.

Methods Training Time(s)

Our methods 10,285.001
DnCNN 11,733.526

U-net 12,337.902

4. Discussion
4.1. Necessity of Transfer Learning

The denoising results of four synthetic seismic data and six field data mentioned above
imply that the pre-trained model trained only by the natural images can remove most of
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the random noise in the data. It explains that we can treat seismic images as a subclass of
natural images then perform pre-trained network on noisy seismic data, which provides an
essential approach for seismic data augmentation. However, due to the poor processing
of details, weak seismic signals disappear and become blurred in the pre-trained network.
Subsequently, the seismic data are applied to train the post-trained model to fine-tune
the denoising result in a semi-supervised learning. The PSNR, SSIM, and MSE are then
greatly improved, and many complex geological features are well restored. On the other
hand, the denoising process shows that seismic data also has its own unique features that
are different from the natural images. The pre-trained network can provide preliminary
denoising results, but it is unable to learn some detailed geological structures in the seismic
data if it is trained by only natural images.

In terms of computational efficiency, transfer learning can sequentially input natural
images and seismic images into different networks, instead of inputting them into one
network at once for training like the DnCNN and U-net. This greatly reduces training
time and the complexity of network training. Moreover, the network can be trained
purposefully, that is, the pre-trained model is used to denoise roughly, then the post-trained
model is to fine-tune the denoising result to further restore the detailed characteristics of
the seismic signals.

4.2. Loss Function Parameters Selection in Post-Trained Model

In the post-trained model, the loss function is defined in a semi-supervised way; that
is, a combination of MSE and SSIM. The MSE means the difference between the clean
data and the denoised data, while the SSIM measures the similarity between the denoised
data and the noise removed. However, the weights on MSE and SSIM must be measured
based on the different characteristics of seismic data in order to achieve the best denoising
performance. In other words, different weights should be applied for the data with simple
and complex geological structures.

Firstly, we determine the optimal weight for four synthetic examples through many
experiments, as show in Table 9. The synthetic examples have simple geological structures
with only random noise added manually. We find that the results of evaluation indexes
will be worse if the two weights approach the same. When the two weights are different
greatly, the denoising performance will be better. It indicates that in the synthesis examples,
one is used as the main control factor and the other act as the fine-tuning factor in the loss
function, consequently the effect of denoising is reasonable and satisfactory. In fact, the
network only using MSE as the loss function can still achieve great denoising performance,
but seismic events become more continuous and clearer after fine-tuning by SSIM. We
finally choose the weight α = 0.9 and β = 0.05 with the best metrics in our experiments.

Table 9. Quantitative comparison of different weights for loss function.

α β MSE PSNR SSIM

0.9 0.05 0.000208 38.27 0.97
0.8 0.1 0.000273 37.46 0.95
0.6 0.2 0.000308 36.92 0.95
0.5 0.25 0.000339 35.52 0.95
0.4 0.3 0.000236 37.64 0.96
0.2 0.4 0.000240 37.77 0.96
0.1 0.45 0.000272 37.30 0.96

Secondly, the field example with complex geological structures contains strong interfer-
ences, not just the random noise. We also implement the experiments with different weights
that are the same as Table 9, and some representative denoising results are presented in
Figure 16a–h. Either from the denoised data or the difference profiles, it can be indicated
that a large amount of random noise is removed under the combination of four pairs of
parameters. Generally, the leakage of seismic signals gradually decreases as β increases.
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However, the large value of β will also cause a degree of seismic signal loss. Therefore,
we choose α = 0.4 and β = 0.3 as the best match in our field experiment. It can be clearly
observed from the difference profiles that the leakage of seismic signals is minimal when
the parameters are chosen as this combination. Accordingly, β cannot be too small for
the complex field example, thus the SSIM index plays an important role in reserving the
geological structures in the field data.
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Denoised data when α  = 0.2, β  = 0.4; (h) The difference profiles when α  = 0.2, β  = 0.4. 
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performance of our method for a certain noise level is not analyzed and evaluated. In 
this part, we perform a quantitative ‘stress test’ on synthetic examples to highlight this 
problem. We implement the denoising task for different noise levels in which the 
different standard deviations from 10 to 70 in noise injection are chosen as different 
noise levels. Then three evaluation indexes are adopted to analyze the denoising 
performance of our method under different noise levels. All experimental results are 
shown in Table 10. It is indicated that our method has better denoising performance on 
seismic images with weaker noise levels. In the training examples, the maximum 
standard deviation of the Gaussian noise distribution is 50, but the larger standard 
deviations are chosen for testing in the ‘stress test’. It is indicated that our method still 
works when the noise level is beyond the noise level during training, and it exerts 
relatively satisfying denoising performance. 

Table 10. Quantitative stress test for the synthetic examples. 
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40 16.14 30.18 35.25 0.024316 0.000999 0.000368 0.15 0.83 0.94 
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denoising through the pre-trained model. 3 The evaluation index value after denoising through the 
post-trained model (entire model). 
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A natural images pre-trained deep learning method is proposed to suppress seismic 

random noise through insight of the transfer learning. Our proposed network contains 

Figure 16. Comparison of denoising performance under different parameters in the field example.
The parts with obvious differences in the difference profiles are indicated by red arrows. (a) Denoised
image when α = 0.8, β = 0.1; (b) The difference profiles when α = 0.8, β = 0.1; (c) Denoised image
when α = 0.6, β = 0.2; (d) The difference profiles when α = 0.6, β = 0.2; (e) Denoised data when α = 0.4,
β = 0.3; (f) The difference profiles when α = 0.4, β = 0.3. (g) Denoised data when α = 0.2, β = 0.4;
(h) The difference profiles when α = 0.2, β = 0.4.

4.3. Quantitative ‘Stress Test’ for the Synthetic Examples

We randomly add Gaussian white noise with different levels to all synthetic seismic
data to evaluate the performance of our method in Section 3.2. However, the denoising
performance of our method for a certain noise level is not analyzed and evaluated. In
this part, we perform a quantitative ‘stress test’ on synthetic examples to highlight this
problem. We implement the denoising task for different noise levels in which the different
standard deviations from 10 to 70 in noise injection are chosen as different noise levels.
Then three evaluation indexes are adopted to analyze the denoising performance of our
method under different noise levels. All experimental results are shown in Table 10. It
is indicated that our method has better denoising performance on seismic images with
weaker noise levels. In the training examples, the maximum standard deviation of the
Gaussian noise distribution is 50, but the larger standard deviations are chosen for testing
in the ‘stress test’. It is indicated that our method still works when the noise level is beyond
the noise level during training, and it exerts relatively satisfying denoising performance.

Table 10. Quantitative stress test for the synthetic examples.

Standard
Deviation

PSNR MSE SSIM

Initial 1 Pre 2 Post 3 Initial Pre Post Initial Pre Post

10 28.13 37.54 40.79 0.001538 0.000180 0.000100 0.55 0.93 0.98
20 22.12 34.27 38.88 0.006133 0.000389 0.000159 0.30 0.91 0.97
30 18.61 32.00 36.95 0.013770 0.000658 0.000250 0.21 0.88 0.96
40 16.14 30.18 35.25 0.024316 0.000999 0.000368 0.15 0.83 0.94
50 14.29 28.60 33.69 0.037207 0.001429 0.000517 0.12 0.76 0.92
60 12.90 27.10 32.13 0.051295 0.002007 0.000718 0.10 0.66 0.89
70 11.84 25.61 30.47 0.065434 0.002811 0.001016 0.08 0.55 0.84

1 Initial value of the evaluation indexes before denoising. 2 The evaluation index value after denoising through the
pre-trained model. 3 The evaluation index value after denoising through the post-trained model (entire model).

5. Conclusions

A natural images pre-trained deep learning method is proposed to suppress seismic
random noise through insight of the transfer learning. Our proposed network contains two
networks: pre-trained and post-trained networks. The former is DnCNN with the dilated
convolution trained with natural images exclusively. The latter is similar to U-net trained
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with a relatively small number of seismic images in a way of semi-supervised learning, in
which the dropout layers are added and the output is changed to the residual image.

We use transfer learning to achieve seismic image denoising through pre-training
on natural images. The PSNR, MSE, and SSIM of the pre-trained network have been
greatly improved in the first stage, but some details of the seismic events are not processed
well enough. Compared with natural images, seismic images have their own unique
characteristics. Then we utilize transfer learning to transfer the trained network to the
post-trained network. In the second section, we continue to train the post network on
seismic data to adjust the denoising results by combining the MSE and SSIM in a way of
semi-supervised learning to restore the geological structures in seismic data. The final
denoised results on synthetic seismic data and field data show that the pre-trained network
can provide preliminary denoising results and many detailed structure features of seismic
data are better restored through the fine tuning of the post-trained network. Our network
has better performance in seismic random noise suppression than the other two classic
methods in terms of quantitative metrics and intuitive effects, as well as training efficiency.
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