
����������
�������

Citation: Kim, E.-S.; Yun, S.-H.; Park,

C.-Y.; Heo, H.-K.; Lee, D.-K.

Estimation of Mean Radiant

Temperature in Urban Canyons

Using Google Street View: A Case

Study on Seoul. Remote Sens. 2022, 14,

260. https://doi.org/10.3390/

rs14020260

Academic Editors: Stefania Bonafoni

and Costas Varotsos

Received: 9 September 2021

Accepted: 1 January 2022

Published: 6 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Estimation of Mean Radiant Temperature in Urban Canyons
Using Google Street View: A Case Study on Seoul
Eun-Sub Kim 1, Seok-Hwan Yun 1 , Chae-Yeon Park 2 , Han-Kyul Heo 3 and Dong-Kun Lee 1,4,*

1 Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul 08826, Korea;
mr.solver92@snu.ac.kr (E.-S.K.); ysw330616@snu.ac.kr (S.-H.Y.)

2 Center for Social and Environmental Systems Research, National Institute for Environmental Studies,
Tsukuba 305-0053, Japan; chaeyeon528@snu.ac.kr

3 Architecture & Urban Research Institute, Sejong 30103, Korea; hkheo@auri.re.kr
4 Smart City Global Convergence Program, Seoul National University, Seoul 08826, Korea
* Correspondence: dklee7@snu.ac.kr; Tel.: +82-10-3227-5435

Abstract: Extreme heat exposure has severe negative impacts on humans, and the issue is exacer-
bated by climate change. Estimating spatial heat stress such as mean radiant temperature (MRT) is
currently difficult to apply at city scale. This study constructed a method for estimating the MRT
of street canyons using Google Street View (GSV) images and investigated its large-scale spatial
patterns at street level. We used image segmentation using deep learning to calculate the view factor
(VF) and project panorama into fisheye images. We calculated sun paths to estimate MRT using
panorama images from Google Street View. This paper shows that regression analysis can be used
to validate between estimated short-wave, long-wave radiation and the measurement data at seven
field measurements in the clear-sky (0.97 and 0.77, respectively). Additionally, we compared the
calculated MRT and land surface temperature (LST) from Landsat 8 on a city scale. As a result of
investigating spatial patterns of MRT in Seoul, South Korea, we found that a high MRT of street
canyons (>59.4 ◦C) is mainly distributed in open space areas and compact low-rise density buildings
where the sky view factor is 0.6–1.0 and the building view factor (BVF) is 0.35–0.5, or west-east
oriented street canyons with an SVF of 0.3–0.55. However, high-density buildings (BVF: 0.4–0.6) or
high-density tree areas (Tree View Factor, TVF: 0.6–0.99) showed low MRT (<47.6). The mapped MRT
results had a similar spatial distribution to the LST; however, the MRT was lower than the LST in low
tree density or low-rise high-density building areas. The method proposed in this study is suitable
for a complex urban environment consisting of buildings, trees, and streets. This will help decision
makers understand spatial patterns of heat stress at the street level.

Keywords: Street canyon; Google Street View; deep learning; mean radiant temperature; thermal
comfort

1. Introduction

Exposure to heat may cause severe illnesses and deaths during intense heat events,
especially in large urban areas, because of altered urban climate conditions [1–3]. As future
climate change scenarios of heat-related diseases and mortality have become a major public
health issue, a higher spatiotemporal assessment map of heat stress in cities is needed [4–8].
Accordingly, several studies have used satellite images to retrieve the land surface tempera-
ture (LST) in large cities, which evaluated the urban thermal environment and determined
the relationship between microclimate conditions and human health-related heat stress
or urban geometry [9–12]. Concordance between the LST-derived satellite and ambient
temperatures measured showed a similar tendency in certain atmospheric conditions [13].
Therefore, LST-derived from satellite imagery provides results for establishing local mea-
surements of heat exposure. However, satellites are insufficient for estimating heat stress in
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local areas because their coarse spatial resolution, and obstacles such as clouds, cost, and
finer temporal resolution, remain significant limitations [14].

The mean radiant temperature (MRT), which is the amount of heat received by the
urban environment in the city at a specific location, is an effective heat-related health
impact indicator in urban environments [3]. MRT is an important daytime human bio-
meteorological variable on no cloud days [14,15] and it is highly correlated with heat-related
diseases and heat stress [16].

Many models have been developed to evaluate the MRT in urban canyons. For exam-
ple, Perini et al. [17] increased nighttime outdoor thermal comfort accuracy by incorporating
ENVI-met and transient systems simulation (TRNSYS). Perini et al. [17] evaluated the MRT
of Shanghai city during the summer using a geographic information system (GIS)-based
simulation approach, the SOLWEIG model, to reflect urban three-dimensional construc-
tions. Two studies [18,19] calculated the radiant flux and shadow spaces using weather
data and other input data at the point of location to estimate the MRT. In particular, the
MRT value for all-sky can be derived using the formula proposed by Matzarakis et al. [19]
in the Rayman model. However, previously developed models require complicated urban-
structure input data for calculating the sky view factor (SVF) and radiative data, such
as shortwave radiation fluxes, to evaluate at the street level [20,21]. The MRT formula is
complex and difficult to evaluate on a city scale [22]. Therefore, we suggest a method that
can estimate the MRT using a simplified equation and input data at the city scale.

Panorama images acquired through Google Street View (GSV) provide public and
freely accessible data. GSV was developed to analyze street geometric characteristics
(buildings, trees, and the sky) through image classification algorithms using deep learning
and converting panorama images into fish-eye images [23]. In other words, panorama
images can be a useful tool for estimating shortwave radiation at the street level on a
large city scale [23–25]. In particular, the image projected from the panoramic image to the
cylindrical can estimate incoming shortwave radiation at a particular point, with accurate
view factors (from the sky, buildings, and trees) using deep learning [26,27]. Although the
method of calculating shortwave radiation was described in a previous study, there has
been no attempt to calculate MRT using radiation fluxes from the view factor (VF).

As a result, we proposed a new method to estimate city-scale MRT using street
geometrics characterized with panorama images. The aim of this study was to: (1) present
a street-level MRT estimation method with image segmentation using deep learning;
(2) validate the calculated MRT with two types of observation-based data, i.e., MRT and
LST measured from Landsat 8; and (3) identify which street geometric factors affect the
spatial variation in MRT. The proposed method can calculate high-resolution MRT over a
wide spatial range by using freely obtained panorama images, which will help heat-related
health studies and thermal-friendly urban design and planning.

2. Study Area and Data Collection
2.1. Study Area

Seoul, South Korea is one of the largest and most densely populated cities in the world
(Figure 1). The city has a population of approximately 9.8 million living in ~606 km2 of
developed land. Situated west of the central part of Korea with a basin surrounded by
mountains, Seoul is cold in the winter because of the dry continental high pressure, and
hot and humid in the summer because of the high temperature and humidity in the North
Pacific Ocean.

Seoul has experienced rapid urbanization with high-density buildings and associated
urban heat island (UHI) effects. UHI significantly affects disease-related heat stress living
conditions. In addition, Seoul is a metropolitan area with the highest population density
among OECD member countries the elderly population accounts for 9.3% of the total
population [28]. Therefore, the number of people vulnerable to heat is high and predicted to
increase as a result of a continued increase in the elderly population ratio and urbanization.
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Seoul was selected as a representative highly urbanized area in this study to estimate the
spatiotemporal MRT was evaluated using panorama images.

Figure 1. Location of the study area (City of Seoul). The total area is about 605.21 km2 and the
population of the city is 9.8 million.

2.2. Data Collection Area

We collected three datasets (panorama images acquired through Google Street View
(GSV), meteorological data, landsat8 satellite images) to estimate MRT and compare LST
and MRT. We collected a total of 344,044 street panorama images sampled using the GSV
application programming interface (API) at 30-m intervals in the high-density urban area
of Seoul Data in summer. To derive the solar path in the fisheye image of a street canyon,
we adjusted panorama images to the north by shifting the vehicle direction [24]. We
also collected air temperature, humidity, shortwave radiation, and longwave radiation
using net radiometers CNR4 [29] and S-thb0m002 equipment to validate our method (see
Appendix A). Meteorological data (air temperature and humidity) were collected from a
government website of an online resource (https://data.kma.go.kr accessed on 9 September
2021) and used for point data within 4 km of the AWS location to estimate the MRT (Table 1).

Table 1. Study area for verification and application in each 2018–2020. Latitude (Lat.) and Longitude
(Log.) were used for collecting panorama images.

Object Location Lat. Log.
Data

Collection
Date

Input Data
No. of

Panorama
Images

Google
Street
View

Validation
sites

Low building 37.457391 126.948493 18.04.16~18
Radiation

(shortwave,
longwave),

air temperature,
relative humidity

7

Park 37.495193 127.003546 18.04.19~21
Commercial area 37.521532 126.927314 18.04.28~30

Apartment 37.503094 126.943548 18.05.04~07
River 37.528474 126.934370 18.05.10~13

Narrow alley 37.482026 126.929579 18.05.31~06.03
Residential area 37.469727 126.942584 18.06.01~04

Mapping Seoul 37.34~37.5666 126.584~126.978 2014~2020
(4~10)

Air temperature
Relative

humidity
58,794

Satellite
image

Attribute

Date Satellite image Projection Datum Cloud cover
(in %) Sensor Time

2018. 06. 19 Landsat 8 UTM zone52 WGS84 1.79 OLI_TIRS 09:52

https://data.kma.go.kr
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Finally, we collected Landsat 8 OLI/TIRS C2 L2 images to analyze the differences
between LST and MRT. Two Landsat 8 OLI/TIRS images covering Seoul with <10% cloud
cover were selected. For Landsat 8 data, bands 4, 5, and 10 were used to derive the
LST. The Landsat8 data set is currently available free of charge from the USGS website
(https://earthexplorer.usgs.gov accessed on 9 September 2021). Satellite image acquired
on 19 Jun 2018 (OLI & TIRS).

3. Method

This manuscript presents an estimation method of MRT with an image segmentation
technique using deep learning in high-density urban areas and analyzes the comparison
between LST and MRT on a city scale. To accurately estimate the MRT, the VF and surface
temperature must be accurately calculated. However, calculating the VF and surface
temperature from each urban element in a street canyon is difficult.

First, we implemented the scene parsing method in a deep-learning framework [30].
Then, we calculated the longwave radiation using the rate at which shortwave radiation is
absorbed by the urban surface based on the measured data [31,32]. To verify the accuracy
of the method presented in this study, we compared the MRT of seven field measurements.
Finally, we comparatively analyzed the MRT and LST in Seoul and identified the geometric
characteristics of high MRT and LST.

3.1. Schematic Framework

The schematic framework for this study is presented in Figure 2 and consists of three
main phases. In phase I (Figure 2, blue), based on the image classification method using
deep learning, urban structures such as skies, trees, and buildings were extracted. The
classified image was used when calculating the VF in Section 3.2. The image segmentation
using deep learning with the panorama image classified the complex urban environment
for each object, and quickly derived the View Factor (VF) and Sky View Factor (SVF) using
deep learning (see Appendix B). In particular, a panorama image in an urban canyon is a
useful tool to create urban structure data. The panorama to fisheye image projection method
and sun path algorithm proposed in Gong et al. [23] and Reda and Nrel [33]. detected the
presence or absence of shadows during the day. In Phase II (green rectangle), the shortwave
and longwave radiations were calculated for MRT calculation at the street level under a
clear sky. Short wave radiation was calculated for each SVF and VF estimated with image
segmentation using deep learning. In particular, longwave radiation was estimated by
using the ratio method of converting shortwave radiation to longwave radiation based on
the results of 50 years of data [31,34,35]. Then, combined with street morphologies and the
solar path to derive the clear-sky street-level solar radiance, in Phase III (yellow rectangle),
the MRT was estimated by summing the shortwave and longwave radiation calculated
using direct, diffuse, and reflected radiation fluxes.

3.2. View Factor Calculation and Shadow Detection

Images were initially classified using the scene parsing method in deep learning based
on previous research [36,37]. In this study, the VF for each urban element (buildings, trees,
sidewalks, roads) was calculated using a method from a previous study [27] and the albedo,
absorption coefficient, and heating coefficient were assigned (Table 2). View factor (VF) is
used in the equations for calculating the reflected radiation in Sections 3.3.1 and 3.3.2).

We then projected the panorama images from cylindrical to azimuthal projection to
generate fisheye images using the photographic method by matching the pixels on fisheye
and panorama images [24] as shown in Figure 3. The solar zenith and azimuth angles
were calculated using input data (date, time, latitude, and longitude) from the collected
panorama images to calculate the sun path during the day. Then, the shadow was calculated
by overlaying the sun path coordinates onto the fisheye image.

https://earthexplorer.usgs.gov


Remote Sens. 2022, 14, 260 5 of 19

Figure 2. Schematic flow for calculating MRT using deep learning.

Figure 3. Solar path in fisheye image using input data (date, time, latitude, longitude). Red point
shows the projected sun positions for 2020.08.18 on hemispherical images. For a person at the location
of (126.9658, 37.5714) and time (t), when the red point (sun position) is located on the sky pixel in
the hemispherical images, the person is exposed to direct sunlight. If the sun position is on non-sky
pixels, the person at that time is shaded from sunlight.



Remote Sens. 2022, 14, 260 6 of 19

Table 2. Materials table presenting absorption coefficient, albedo, heating coefficient.

Material Absorption
Coefficient Albedo Heating Coefficient Reference

Building 0.6 0.4 0.08
Park et al. [15]; Offerle et al. [32]Pavement 0.86 0.14 0.08

Sidewalk 0.7 0.3 0.08
Tree 0.85 0.15 0.25 Barad et al. [35]

Grass 0.75 0.25 0.25 Holtslag and Ulden [31]
Soil 0.7 0.3 0.38 Barad et al. [35]

3.3. Calculation of Total Shortwave Radiation in Street Canyon
3.3.1. Calculation of Street-Level Shortwave Radiation

The FAO showed high correspondence with the measured clear-sky radiation (Ig)
data based on an estimated 0.75 extraterrestrial radiation (Ra). To calculate clear-sky
shortwave radiation, the angstrom formula [38,39], which relates shortwave radiation to
extraterrestrial radiation, was used:

Ig = 0.75Ra

(
1− 0.75FCLD

)3.4
(1)

Ig = Ra

(
0.75 + 2× 10−5 × z

)
(2)

Equation (1) reflects the shadow and can be derived from the shortwave radiation
from the actual daily duration of sunlight in hours per day. According to the Korea
Meteorological Administration, the height of the densely populated areas in Seoul is 15 to
60 m above sea level, and then substituting this into z gives 0.7503 to 0.7512 (Equation (2)).
In addition, when the height of high-rise buildings (200 m) is substituted, the value is
0.754. Therefore, the value of 0.75 in Equation (2) can be estimated by considering shadow
radiation in urban areas with high-density buildings.

To estimate the shortwave radiation decrease due to cloud coverage as soon as it enters
the atmosphere, (1) the cloud cover was calculated using air temperature and humidity
data, and (2) direct radiation (Sdir) and diffuse radiation (Sdi f f ) were separated using the
cloud radiation model (CRM) developed by [40,41] to obtain a better assumption under
more complex conditions.

Sdi f f = Ig

(
0.3 + 0.7× FCLD2

)
(3)

Sdir = Ig − Sdi f f (4)

In this study, shortwave radiation was calculated using the models of Allen et al. [39]
as shown in the above formulas in Equations (1)—(4). The direct incident (Ddir), scatter-
ing (Ddi f f ), and reflected shortwave radiation (Dre f lect) were calculated using the follow-
ing equations:

Ddir = Sdir × f (5)

Ddi f f = Sdi f f ×Ψsky (6)

Dre f lect =
k

∑
n=1

(Ddir + Ddi f f )× a×VFmaterials × f (7)

where f is a binary value (0,1) according to the presence or absence of a shadow at the
measurement point. When f = 0, the ray path is masked by an obstacle. k is the number
of materials of the classified image; in this study, it was set to 6 and is the albedo for
each material.
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3.3.2. Calculation of Street-Level Longwave Radiation

The steps for calculating longwave radiation were as follows: (1) incoming longwave
radiation from the atmosphere (L↓); (2) emitted longwave radiation from urban elements
(L→); and (3) outgoing longwave radiation (L↑) were calculated using the net all-wave
radiation parameterization (NARP) model proposed by Offerle et al. [32]. The NARP
model calculates the longwave radiation by considering the amount of water vapor in
the atmosphere and the cloud cover (Equation (6)). The longwave radiation process of
this study is more specific than the previously developed method [39], and the following
formula was used:

L↓ = (εclear + (1− εclear)FCLD)σT4 (8)

As mentioned above, the incoming longwave radiation from the atmosphere was
calculated using the NARP model [32] and the SFV estimated from the fisheye image.

Lsky = L↓ ×Ψsky (9)

The incoming longwave radiation from urban elements in urban canyons was cal-
culated for all VFs except SVF, using the longwave radiation conversion ratio (heating
coefficient, Table 2). In previous studies, in order to accurately estimate the emitted
longwave radiation, the heat coefficient for each material was derived by conducting a
regression analysis between 4σT3(Ts − T) and net radiation through measurement data.
However, the heat coefficient (Fsw) has a large range depending on the materials. In this
study, 0.25 values were used for grass and trees, and 0.38 values were used for bare ground
cover, referring to the results derived from previous studies [35]. And for other materials,
0.08 was used to estimate longwave radiation [31,32,35] (Table 2).

L→ =
(

VFmaterials ×
(

L↓ + Fsw×
(

Sdir↓ + Sdi f f ↓
)))
×VFmaterials (10)

where VFmaterials is the view factor for each urban materials. In this study, VFmaterials is
both BVF and TVF. Outgoing longwave radiation is the amount of radiation emitted from
storage heat surfaces by the amount of shortwave radiation and was calculated using
the heating coefficient and (1-albedo). In this study, the atmospheric temperature was
used to estimate longwave radiation. Simple outgoing long-wave radiation formula were
derived using Equations (11) and (12). Equation (13) is calculated through the atmospheric
temperature replacing the surface temperature and the estimated short-wave radiation.

ε0σT4
0 ≈ ε0σT4

a + 4ε0σT3
a (T0 − Ta) (11)

4ε0σT3
a (T0 − Ta) = FswK↓(1− a0) (12)

L↑ = σT4 + Fsw
(

Sdir + Sdi f f

)
× (1− a) (13)

3.3.3. Calculate Mean Radiation Temperature

The MRT was calculated according to the radiation from the urban elements surround-
ing a pedestrian [42]. These elements reflect direct and diffuse shortwave radiation and
emit and reflect longwave radiation, which are summed using Equation (12) from [19].

MRT =

(
1
σ

n

∑
i=1

(
Ei + ak

Di
εp

))0.25

− 273.15 (14)

where ak is the absorption coefficient and εp is the emissivity of the pedestrian, which have
standard values of 0.7 and 0.97, respectively [41].
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4. Results and Discussion
4.1. Verification of Shortwave Radiation Estimated at Street-Level
4.1.1. Validation of Shortwave Radiation

Figure 4 shows a consistent variation trend in the validation between the measured
data and the estimated shortwave and longwave radiation. The estimated shortwave
radiation was slightly higher than the measured data. The calculated and measured
shortwave radiation values were between −19 and +23 W/m2 during the daytime.

Figure 4. Comparison between estimated shortwave, longwave radiation, MRT and data measured
in Korea over hourly. Orange, yellow line is incoming shortwave radiation, blue line is incoming
longwave radiation, black, gray line is MRT.

This may be due to the patterns of anthropogenic energy usage which decrease stor-
age efficiency at high wind speeds and overestimated SVF. However, Figure 4 show that
the shadow detection using the sun path algorithm is captured well from the changing
shortwave radiation. In the comparison between the estimated longwave radiation and
the measured data, the difference is larger than that of the shortwave radiation (Figure 5).
In particular, Appendix. C (b, d, f, h, j) shows that the differences between the outgoing
longwave radiation is −20 W/m2 and +50 W/m2, respectively, between 12 and 2 pm. The
incoming longwave radiation was underestimated during sunset. The cause of overesti-
mation and underestimation of longwave radiation is the inaccurate surface temperature.
Sites with many impermeable surfaces such as buildings, sidewalks, and pavements, were
overestimated, and sites with a high percentage of green space were underestimated. To
accurately estimate longwave radiation, the Fsw ratio must be measured at the point
of estimation.

The method proposed in this study for estimating shortwave and longwave radiation
was generally very well correlated

(
R2 = 0.98, R2 = 0.77

)
(Figure 5). It means that short-

wave radiation can detect the presence of shadows well. Although formulas of longwave
radiation estimated by using the ratio method of converting shortwave radiation to long-
wave radiation requires simplification, estimated longwave radiation is tightly correlated.
Therefore, we can conclude that the spatial pattern of the shortwave radiation at street
level can be predicted by the estimated MRT with the image segmentation technique using
deep learning.
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1 
 

 

Figure 5. Validation of Shortwave radiation R2 = 0.98 and Longwave radiation R2 = 0.77.

4.1.2. Validation of Longwave Radiation

Figure 6 shows a comparison between the measured data and the estimated longwave
radiation during a clear-sky day. When the SVF was high, the portion of the sky covered
by clouds and composed of a single surface element (low-rise building, park, river, etc.) is
overestimated. However, sites with low SVF and complex urban structures are underesti-
mated at night. For example, in the commercial areas, narrow alleys, and residential areas,
there are differences of approximately −48, −31, and −31 W/m2 between the measured
and estimated data.

Figure 6. Analysis of incoming longwave radiation by comparison with meteorology data, albedo,
and urban morphology from 7 sites. Cloud cover was calculated using air temperature (Ta) and
relative humidity (RH).

Figure 6 shows a negative correlation between the albedo and outgoing longwave
radiation. In addition, the rapidly changing albedo was greatly influenced by the presence
or absence of shadows. Therefore, we can more accurately estimate the longwave radiation
when considering the albedo value which changes with the altitude of the sun.

We estimated the longwave radiation by applying the heating coefficient value using
the simplified surface energy balance equation. Because the sensible heat value is estab-
lished based on the empirical formula of surface moisture and soil properties according
to the temperature value, the accuracy is higher in dry weather [31,43]. By comparing the
measured data, the longwave radiation of most areas decreased as cloud faction increased.
However, there is a negative correlation between cloud faction and longwave radiation at
parks and rivers area.
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4.2. Comparison of Estimated MRT with Other Models

The comparison was focused on the simulation model (RayMan, SOLWEIG, and ENVI-
met), which have been widely used in previous [44–46]. Based on the RMSE and index of
agreement values (7.98 ◦C, 5.02 ◦C, 6.92 ◦C, 4.25 ◦C, and 0.92, 0.92, 0.89, 0.97, respectively),
the MRT estimation method using deep learning was more accurate than other models [46].
RMSE in shortwave radiation is larger than that of other models on account of the amount
of shortwave radiation transmitted through the trees and the error in estimating SVF.
However, these factors have an insignificant effect on shortwave radiation (difference:
0.2 W/m2). Although, the method proposed in this study overestimated shadow effect by
~46 W/m2 (see Appendix C) and underestimated the short-wave radiation in sunlit area,
this method estimated tends to be similar to other models.

In contrast, longwave radiation estimated by MRT_GSV showed the lowest RMSE
values among the three models. These results show that the calculation formula which uses
the absorption rate of shortwave radiation can accurately estimate longwave radiation in
clear weather, except at night [32]. These errors indicate surface temperature estimation
and shortwave reflected radiation calculations can be improved in the models because
there is a rapid change depending on shortwave radiation variation.

The results of the comparison between the three models commonly used to calculate
MRT at the city scale and the MRT_GSV method presented in this study show high overall
accuracy with all models. In particular, this method can estimate the MRT through a
360◦ panorama image in an area which requires less input data than other models (only
temperature and humidity). Therefore, this makes it easy to acquire data because it does
not use 3D software programs and can construct data by taking 360◦ pictures.

A panorama image in a street canyon has the advantage of acquiring data from the
2.5D perspective and viewing many objects on one screen, including the point of view.
Because 2D models, such as single layers and multilayers, are limited to the height of the
same building in the horizontal space and cannot consider a 3D effect, the error is greater
than 2.5D when calculating the VF in real space. Therefore, MRT evaluation on the 2.5D
side can evaluate the MRT by three-dimensionally considering the complex urban spatial
factors in the horizontal space. Although the accuracy may be lower than that of the 3D
model, the results similar to those obtained using the software program evaluating MRT
based on the 3D model can be confirmed, and the MRT estimated with image segmentation
technique using deep learning can be quickly evaluated at the city scale.

4.3. Comparison between LST and Estimated MRT

We mapped MRT and LST, which have been used to evaluate the risk of heat-related
diseases according to spatial characteristics in previous studies, to analyze spatial differ-
ences (Figure 7). For accurate analysis, we confirmed the: following (1) shortwave radiation
under the effect of street morphologies and urban geometries at 10:00 am with LST; and
(2) classified regions with high or low MRT based on a comparative analysis between LST
and MRT (Figure 7, see Appendix D).

We assumed a clear-sky to analyze the effect of shortwave radiation according to the
street canyons and only used panorama image data acquired during the summer period
because leaves fall in other seasons and cause errors in the Tree View Factor (TVF) value.

The LST in Seoul was high (>30.2 ◦C) in areas with no obstacles and a large impervious
surface, such as compact low-rise density buildings, compact mid-rise density buildings,
and external parking lots. Low LST was distributed in the permeable surface (dense tree,
low plants) and high-density building areas (approximately 17–26 ◦C) (see Appendix E).
Similarly, the MRT of street canyons (>59.4 ◦C) was mainly distributed in open space areas
(low plants, bare paved areas, etc.) and compact low-rise density buildings (SVF and BVF
were approximately 0.6–1.0 and 0.35–0.5, respectively) or street canyons with West-East
orientation (SVFs were ~0.3–0.55) (see Appendix E). SVF is the main cause of high MRT
values in low plants with low LST. Otherwise, the lower MRT of street canyons (<47.6 ◦C)
was mainly distributed in high buildings (compact mid-rise density and high-density
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buildings) or tree coverage areas (BVF and TVF were ~0.4–0.6 and 0.6–0.99, respectively)
(see Appendix E). In particular, the high land surface temperature compact mid-rise density
building area showed a low MRT value, and the low plant’s area showed a high MRT value
(see Appendix E). Therefore, because the results of thermal stress analysis through LCZ
classification differ between urban geometries and MRT, heat and temperature must be
considered in thermal vulnerability analysis or health impact analysis [47,48].

Figure 7. Comparison analysis between Land Surface Temperature and Mean Radiant Temperature
at Sindong 6-dong, Jung-gu, Seoul which had a compact high and mid-density building. Bar graph
mean MRT. We classified the MRT value into 4 classes based on the analysis result between MRT and
heat risk in the previous study [3]. And surface mean LST using Landsat 8 images.

From these results, we can confirm the following: (1) TVF has a negative relationship
with SVF, and the difference in the amount of the direct shortwave radiation is about
421 W/m2 depending on the presence or absence of a shadow; (2) streets with a west-east
orientation receive higher shortwave radiation than the other street orientations because
they become horizontal with the path of the sun and the shaded area decreases; (3) compact
mid-rise density building areas with low SVF and high BVF have high LST (approxi-
mately 29–35 ◦C) and low MRT (<47.6 ◦C). Conversely, low plant areas have low LST
(approximately 17–26 ◦C) and high MRT (>59.4 ◦C).

4.4. Limitations and Future Developments

Accurate estimation of shade and surface temperature is the most important factor for
calculating MRT. Although we calculated the solar irradiation by considering the shaded
area ratio using the method from allen et al. [39], we needed height data to accurately
estimate the proportion of the shaded area. Meanwhile, in the field of data science, a
technique for estimating the height of a building in an image is in progress. It could be
estimated with a more detailed surface temperature in the image by including an energy
balance model, which would be part of future research. In addition, SVF, an important
factor in estimating the shortwave radiation, used images taken from roads, not pedestrian
paths. As the value of SVF varies greatly depending on the point where it is photographed,
it is difficult to represent the thermal comfort of pedestrians with images photographed on
the roadway. However, since we can produce 360-degree panorama images at any point
through the street view app, it is easier to construct spatial data than other models (ENVI-
met, SOLWEIG, etc.) and can be easily accessed. Therefore, the MRT can be estimated
through a 360-degree image anywhere a user prefers.

In this study, the view factor was calculated by defining the ratio of urban elements
visible at the point where a person is located. In addition, the Fsw used to estimate the long-
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wave radiation was obtained from regression analysis with daily measurements, which
cannot reflect the change during the day. However, by comparing the error between the
estimated and measured values of long wave radiation affected by the view factor and Fsw
with other models, it was confirmed that the availability of this method was high. Even
though, based on the data from seven measurements in Seoul, we confirmed the potential
of the proposed method, this is only possible in a clear-sky day. Thus, it is difficult to apply
in regions with cloudy weather. However, when there is meteorological input data such
as turbidity and atmospheric pressure, it can be used in all regions by using the method
proposed in [19,49]. Finally, the meteorological data required to estimate MRT was used as
AWS data. This cannot be reflected at all point locations in Seoul. Hence, slight errors may
occur in the result of the estimated MRT mapping of Seoul city. However, with the recent
increase in the field of citizen science, this limitation can be developed using wide-range
and high-resolution citizen data in future research.

5. Conclusions

This study focused on: (1) how to improve the calculation of the MRT with shortwave
and longwave radiation at the street level using publicly available panorama images; (2) in-
vestigating the effects of street canyon geometries (street orientation) and morphologies
(sky view factor and view factors) on street-level shortwave radiation; and (3) analyzing
the relationship between LST and MRT. Our developed method was verified using field
measurements in various regions (residential areas, high-density buildings, parks, and
open spaces) and we demonstrated that the clear-sky solar radiance of street canyons
accurately captures the diurnal cycle in high-density environments (R2 = 0.97). Although
differences between the observed longwave radiation and estimated longwave radiation
were found when the albedo changed with the altitude of the sun, which was calculated
using a simplified energy balance model, we estimated a high accuracy (R2 = 0.77). In
addition, we found that the high MRT of street canyons (≥59.4 ◦C) is distributed in open
space areas and compact low-rise density buildings (SVF ≥ 0.6 or 0.3–0.55 in a west-east
street orientation, BVF: 0.35–0.5). But high-density buildings (BVF > 0.4) or high-density
tree areas (TVF > 0.6) showed low MRT (≤47.6 ◦C). Finally, as a result of the comparison
between MRT and LST, there was a difference between MRT and LST in low tree density or
low-rise high-density building areas.

Generally, sites with high LST and MRT were distributed in similar spaces; however,
low growing plants with low LST values as permeable layers showed high MRT values
with high SVF (>0.95), and in compact low-rise density buildings with high LST values,
indicate low MRT value do to surrounding obstacles (BVF and TVF were ~0.4–0.6, 0.6–0.99).
The spatial variability of street-level MRT is closely related to the high tree cover. A
lower MRT and high TVF occur in streets orientated north-south during the daytime. In
particular, shortwave radiation has a large impact on the shaded area at the street level.
The MRT estimation method presented in this study can be calculated from location, date,
temperature, and humidity data. In particular, spatial data can calculate SVF and VF us-ing
deep learning techniques based on panoramic images provided by Google Street View or
directly captured panoramic images [24]. These data can provide a low-cost and effective
streetscape mapping approach for urban areas. This method can also detect the presence of
shadows through location and date data, and calculate radiant energy using temperature
and humidity data. In addition, since temperature and humidity data can be used in
urban spaces within a 4km buffer based on public data, it is expected that the methodology
proposed will be highly applicable in urban street canyons where spatial data or climate
measurement data is insufficient. The resulting maps of street-level shortwave radiation
provide crucial datasets for studying the spatiotemporal variabilities of street-level MRT
and understanding the interactions between shortwave radiation and human health at
the street level. It also helps to provide more accurate MRT to city planners to plan green
infrastructure implementation and mitigate the heat wave impacts on health in urban areas.
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Appendix A

Instrument specifications for the measuring equipment. CNR4 was prepared for
assessing the mean radiant temperature, shortwave radiation, and longwave radiation.
Climate measurements employed a weather station equipped with air temperature, relative
humidity, and wind speed sensors at 1.2 m above ground. The accuracy of the equipment
is shown in Table A1. Data from all sensors were registered by a logger and recorded every
1 min.

Table A1. Parameters list measured and information of measurement sensor.

Measured Sensor Unit Accuracy

Air temperature
S-thb-m002

◦C ±0.21 ◦C

Relative Humidity % ±2.5%

Wind speed S-wcf-m003 m/s ±1.1 m/s

Shortwave radiation CNR4 W/m2 ±10%

Appendix B

In this study, a resnet-18 convolutional neural network was used in the MATLAB
program for image classification. Aver IoU means, on average, whether the object location
of all classes was accurately detected. Additionally, per class IoU means whether the object
location is accurately detected according to each class (sky, tree, road, sidewalk, building).
The deep learning method for image classification is as follows:

(1) Download the urban image dataset, (2) encapsulate the pixel label data and group
the 5 classes using the label ID to a class name mapping, (3) split images evenly into
60%, 20%, 20% for training, validation and testing, respectively, (4) create a DeepLab v3+
network based on ResNet-18 in MATLAB, (5) start training using train network and using
Deep Learning Toolbox in MATLAB, (6) test network on images.

https://www.usgs.gov
https://kr.mathworks.com/matlabcentral/fileexchange/50187-get_google_streetview-loc_v-varargin
https://kr.mathworks.com/matlabcentral/fileexchange/50187-get_google_streetview-loc_v-varargin
https://data.kma.go.kr/cmmn/main.do
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Figure A1. Workflow procedure for image segmentation to calculate VF using deep learning. ResNet
18 converged faster than other methods and was comparably accurate [30].

Appendix C

Validation of short-wave and long-wave radiation at field measurements in the clear-
sky. Figure A2 shows that the clear-sky solar radiance of street canyons for a day in
high-density and low-building environments. In order to increase the reliability of the
method proposed in this study, it was verified in various places.
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Figure A2. The clear-sky solar radiance of street canyons for a day in high-density and low-building
environments in various places. (A) Montmartre park (B) Dongwon Benest (C) University. Compari-
son between measurement and estimated radiation (a)–(f).
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Figure A3. The clear-sky solar radiance of street canyons for a day in high-density and low-building
environments in various places. (D) University-dong residential on 10 May 2018 and (E) University-
dong residential on 4 June 2018. Comparison between measurement and estimated radiation (g)–(j).

Appendix D

MRT (◦C) for a total of 58,794 of street canyons in Seoul on 19 June 2018, at 10:00 a.m.
(b) LST (◦C) using Landsat 8 satellite imagery.

Figure A4. (a) Estimated MRT mapping using Google Street View in Seoul. (b) Land Surface
Temperature map using Landsat 8 data in Seoul.
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Appendix E

Detailed information describing Figure 7 is presented in Table A2: Point location
data for comparative analysis between LST and MRT. We focused on urban morphology
and street orientation to analyze in which regions the MRT-LST difference is significant.
Medium heat risk level was used to compare the degree of risk by urban area. The threshold
value for the effect of MRT on human health was classified based on the results of previous
studies (risk 1 < 47.6 ◦C, 47.6 ◦C < risk2 < 55.5 ◦C, 55.5 ◦C < risk 3 < 59.4 ◦C, risk4 > 59.4 ◦C),
and LST was classified as risk1 <20.8 ◦C, 20.8 ◦C <risk2 < 24.7 ◦C, 24.7 ◦C < risk 3 < 30.2 ◦C,
risk4 > 30.2 ◦C. Since LST is affected differently by urban area, the degree of impact on
human health due to heat was identified by classifying it by the quantiles used in previous
studies. As a result of the analysis, the CMDB with high LST showed a low MRT value, and
the LP region with low LST showed a high MRT value. Where CLDB is compact low-rise
density building, CMDB is compact mid-rise density building, DT is dense tree, LP is low
plants and HDB is high density building.

Table A2. Urban morphology, MRT, LST data for each point location.

Urban
Morphology Location Lat Lon LST SVF TVF BVF Street

Orientation MRT

High
LST

compact low-rise
density building

205-422,
Cheongnyangni-dong,

Dongdaemun-gu
37.5895 127.0414 31.627 0.75 0 0.25 N-S 66.1

Anam-ro 24-gil, Jegi-dong,
Dongdaemun-gu 37.5882 127.0362 33.015 0.64 0.01 0.35 E-W 62.1

Changsin 1-dong, Jongro-gu 37.5718 127.0139 32.141 0.41 0 0.59 N-S 61.3

977-18, Bangbae-dong,
Seocho-gu 37.4815 126.9923 32.542 0.6 0.02 0.38 E-W 61.8

Munrae-dong 4-ga,
Yeongdeungpo-gu 37.5147 126.8906 33.771 0.7 0 0.3 E-W 65.4

bare paved area

Suseo station parking lot 37.4854 127.1056 34.783
-

735, Suseo-dong,
Gangnam-gu 37.4878 127.0998 35.232

Ilwonbon-dong, Gangnam-gu 37.4874 127.0801 35.547

compact mid-rise
density building

279-47 Sangdo 4-dong,
Dongjak-gu 37.4957 126.9374 29.341 0.42 0 0.58 NE-SW 43.9

41-5, Hwayang-dong,
Gwangjin-gu 37.5451 127.0666 29.997 0.38 0 0.62 N-S 42.2

254-239, Daehak-dong,
Gwanak-gu 37.4649 126.9359 31.011 0.3 0 0.7 E-W 40.1

9-34, Suyu3-dong,
Gangbuk-gu 37.6383 127.0205 30.014 0.55 0 0.45 E-W 44.5

Low
LST

dense tree

Nakseongdae park 37.4719 126.9599 18.354 0.03 0.97 0 E-W 33.8

Janggunbong Sports Park 37.4787 126.9384 18.997 0.01 0.99 0 E-W 35.1

44-3 Ogeum-dong, Songpa-gu 37.5051 127.1277 19.584 0.3 0.6 0.1 NE-SW 32.4

low plants

Montmartre park 37.4954 127.0038 21.711 0.99 0 0.01 NE-SW 70.2

Yeouido hangang park 37.5293 126.9326 22.667 0.96 0 0.04 N-S 69.1

pyeonghwaui park 37.5618 126.8907 23.421 0.95 0 0.05 E-S 68.8

high density
building

460 Hongje-dong,
Seodaemun-gu 37.5854 126.9506 24.145 0.55 0.03 0.42 E-W 47.1

140 Garak-dong, Songpa-gu 37.4956 127.1278 25.245 0.4 0 0.6 N-S 43.8

467-7 Dogok-dong,
Gangnam-gu 37.4882 127.0519 26.114 0.42 0.21 0.37 N-S 44.2

27-45 Sangdo 2-dong,
Dongjak-gu 37.5043 126.9433 25.773 0.52 0.02 0.46 E-W 46.8
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Table A2. Cont.

Urban
Morphology Location Lat Lon LST SVF TVF BVF Street

Orientation MRT

Medium of heat risk level

No Urban
morphology Land Surface Temperature (mean/sd) Mean Radiant Temperature (mean/sd)

1 CLDB 3.871/0.336 4/0.12

2 CMDB 3.38/0.486 1.157/0.364

3 DT 1/0.05 1/0.04

4 HDB 2.501/0.5 1.352/0.478

5 LP 1.75/0.434 4/0.23
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