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Abstract: The intensity of agricultural activities and the characteristics of water consumption affect
the hydrological processes of inland river basins in Central Asia. The crop water requirements and
water productivity are different between the Amu Darya and Syr Darya river basins due to the
different water resource development and utilization policies of Uzbekistan and Kazakhstan, which
have resulted in more severe agricultural water consumption of the Amu Darya delta than the Syr
Darya delta, and the differences in the surface runoff are injected into the Aral Sea. To reveal the
difference in water resource dissipation, water productivity, and its influencing factors between the
two basins, this study selected the irrigation areas of Amu Darya delta (IAAD) and Syr Darya delta
(IASD) as typical examples; the actual evapotranspiration (ETa) was retrieved by using the modified
surface energy balance algorithm for land model (SEBAL) based on high spatial resolution Landsat
images from 2000 to 2020. Land use and cover change (LUCC) and streamflow data were obtained to
analyze the reasons for the spatio-temporal heterogeneity of regional ETa. The water productivity of
typical crops in two irrigation areas was compared and combined with statistical data. The results
indicate that: (1) the ETa simulated by the SEBAL model matched the crop evapotranspiration (ETc)
calculated by the Penman–Monteith method and ground-measured data well, with all the correlation
coefficients higher than 0.7. (2) In IAAD, the average ETa was 1150 mm, and the ETa had shown a
decreasing trend; for the IASD, the average ETa was 800 mm. The ETa showed an increasing trend
with low stability due to a large amount of developable cultivated land. The change of cultivated
land dominated the spatio-temporal characteristics of ETa in the two irrigation areas (3). Combined
with high spatial resolution ETa inversion results, the water productivity of cotton and rice in IAAD
was significantly lower than in IASD, and wheat was not significantly different, but all were far lower
than the international average. This study can provide useful information for agricultural water
management in the Aral Sea region.

Keywords: surface energy balance algorithm for land (SEBAL); actual evapotranspiration; agricul-
tural water consumption; the Aral Sea; the FAO Penman–Monteith equation

1. Introduction

Since 1960, the excessive utilization of the water resources of the Amu Darya and Syr
Darya river basins has significantly reduced the amount of water inflow to the Aral Sea,

Remote Sens. 2022, 14, 249. https://doi.org/10.3390/rs14020249 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14020249
https://doi.org/10.3390/rs14020249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9907-2439
https://orcid.org/0000-0002-6879-4818
https://orcid.org/0000-0003-2364-2965
https://orcid.org/0000-0003-1813-0551
https://doi.org/10.3390/rs14020249
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14020249?type=check_update&version=2


Remote Sens. 2022, 14, 249 2 of 21

resulting in a sharp shrinkage of the Aral Sea, a continuous decline in the lake level, and
a deterioration of the ecological environment [1,2]. Studies have shown that agricultural
intensification in the Amu Darya and Syr Darya river basins is the main cause of the
crisis of the Aral Sea [3–5]. The increased demand for irrigation water has resulted in a
significant reduction in inflow into the Aral Sea [2,6]. In 1987, the Aral Sea was divided
into the northern Aral Sea and the southern Aral Sea. The construction of the Kokaral Dam
blocked the water exchange between the southern and the northern Aral Sea, resulting in
significant differences in water volume between the two parts of the lake [7,8]. In recent
years, the level of the southern Aral Sea fed by the Amu Darya River has fallen sharply due
to a significant reduction in the inflow, while the level of the northern Aral Sea, obtaining
water from the Syr Darya river, has been increased with an increased inflow from 1987 to
2014 [2,5,9–11]. The areas of the northern and southern Aral Seas present different destinies,
which not only reflect the difference in the inflows of Syr Darya and Amu Darya Rivers but
also imply a difference in the intensity of agricultural activities in the delta regions of the
two rivers. Particularly in the Amu Darya delta, the riparian forest along the Amu Darya
River has been reclaimed for farmland, and a dam and reservoir were built in the Muynak
area at the entrance of the South Aral Sea in 1982 to keep the water in the delta and meet
the agricultural water demand. Since the 1990s, there has been no surface runoff directly
into the South Aral Sea; the groundwater from the irrigation area in the delta region has
become the main recharge source of the South Aral Sea [12–15]. However, the restoration
and maintenance of the North Aral Sea have been an important goal of water resource
management in the lower reaches of the Syr Darya river after the collapse of the Soviet
Union. Therefore, it helps alleviate the crisis of the Aral Sea to explore the difference in
agricultural water consumption and water productivity between the Amu and Syr deltas.

Crop evapotranspiration is a key aspect of efficient irrigation water management [16].
Traditional site ET observations include the Bowen ratio-energy balance method, photosyn-
thesis instruments, weighing lysimeters, the eddy correlation method, and others [17–20],
but these methods are limited by equipment, high cost, and point or field scale, and do not
apply to the acquisition of ET in the irrigation areas in Central Asia with sparse observation
networks. The calculation of crop water demand based on the Penman–Monteith formula
can be used to map the actual evapotranspiration (ETa) of crops on a large scale, but this
requires accurate crop structure information [21]. The water balance method can also
calculate regional ET if other hydrological elements are available [22].

With the development of remote-sensing technology, techniques for mapping ET
with few observed data have been developed. However, in the Aral Sea basin, the exist-
ing remote-sensing ET products have some limitations, such as the fact that the MOD16
products significantly underestimate ET in sparse vegetation areas [23], the Global Land
Evaporation and Amsterdam Model (GLEAM), and Global Land Data Assimilation System
(GLDAS) data are not adequate for the present study due to their coarse spatial resolu-
tion [24–26]. More recently, high-resolution ET products from the Ecosystem Spaceborne
Thermal Radiometer Experiment on Space Station (ECOSTRESS) bring new opportunities
to agricultural water resources research [27,28], but further validation studies are needed
in the Aral Sea basin in Central Asia. To account for these caveats and to estimate ET more
accurately, a number of algorithms based on thermal satellite imagery and surface energy
balance approaches have been developed, such as TSEB [29], SEBAL [30], SEBS [31], and
METRIC [32]. These algorithms have been applied in different studies and their uncertainty
and accuracy have been identified over different land covers and climate types [33–36].
Most of the studies have reported on the high accuracy of these models particularly when
they are used with high-resolution data [37].

Water productivity is defined as the amount of carbon assimilated as biomass or grain
produced per unit of water used by the crop [38]. It is a key indicator of crop performance in
terms of bioenergy [39]. Improving agricultural water productivity is the key to agricultural
water saving in Central Asia. However, traditional water productivity research based on
field investigation is disturbed by the influence of sample points and human factors and
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is not suitable for large-scale research. At present, remote sensing provides a convenient
resource for water productivity calculation in the Aral Sea Basin. Zhang et al. [10] used
MODIS data to explore the water productivity differences among Central Asia countries,
but lacked high-resolution information. Liu et al. [40] combined moderate-resolution
remote sensing data with statistical data to study water productivity in Central Asia, which
has little ground truth data collected for the Aral Sea basin, Platonov et al. [41] calculated
the water productivity in the Syr Darya basin through Landsat ETM+ remote sensing data,
restricted to a single crop (cotton), Conrad et al. [42] employed MODIS data to calculate the
water productivity of a small part of IAAD, but the spatial resolution and the precision of
planting structure were not high. Overall, the water productivity around the Aral Sea has
not been studied in enough detail and has been limited by low-resolution satellites.

The objectives of this study are as follows: (1) with the South Aral Sea shrinking faster
than the North Aral Sea, we aim to explore the difference between the water consumption
of crops in the rump irrigation areas of the South and North Aral Seas (Nukus and Syr
irrigation area) and find the reasons for this difference; (2) to reveal the difference in water
productivity between the Amu Darya irrigation area (IAAD) and the Syr irrigation area
(IASD) and put forward constructive suggestions. Under this hypothesis, the SEBAL model
and a high-resolution satellite (Landsat 5,7,8) were used in this study to simulate ETa
from 2000 to 2020 in the irrigation areas of the tail-end rivers (Amu Darya and Syr Darya)
which drain into the southern and northern Aral Sea, combining this with the planting
structure, irrigation water consumption, yield, and other statistical data to calculate the
water productivity for 2019 in the two irrigation areas. This study can provide data and
ideas for understanding the evolution of the North and South Aral Seas, agricultural
production, and water resource conservation.

2. Materials and Methods
2.1. Study Area

The irrigation area of the Amu Darya delta (IAAD) and irrigation area of the Syr Darya
delta (IASD) are the two oasis agriculture irrigation areas closest to the Aral Sea, and the
agricultural water dissipation of IAAD and IASD is of great influence to the surface runoff
into the Aral Sea. The IASD is in the southwest of Kazakhstan, belonging to Kyzylorda
province, near the north Aral Sea (lat. 45◦ to 47◦ N; long. 59◦ to 63◦ E). The longest river in
central Asia, the Syr Darya, flows through it and eventually empties into the northern Aral
Sea. The area of the IASD is about 7369 km2, with an altitude of 50–75 m above sea level.
It is composed of cultivated and bare land, which are uniformly distributed, accounting
for about 70% of the total area. The annual temperatures range from −1.4 ◦C to 30 ◦C.
The annual precipitation ranges from 125 mm to 160 mm, while evaporation is 960 mm
to 1546 mm. Cotton and wheat are the most important economic crops [14]; farming and
animal husbandry are important sources of local income. There is a meteorological station,
named KZL, situated in the oasis; the key daily site measured variables are evaporation,
relative humidity, minimum, maximum, mean air temperature, wind speed, and sunshine
hours in 2012, and there is an eddy covariance flux station named EC, located in the desert
grassland, with the key daily site measured variables are fluxes of net radiation, soil heat,
sensible heat, and latent heat in 2012. For more instrument models, installation, observation,
observed variables, data processing, and energy closure problems of the EC tower and the
KZL meteorological station, please refer to the findings of Ochege et al. [43], who have well
documented them, and the EC data have been compared with the pixel value of the SEBAL
product that corresponds with the tower’s location to the added text.

The IAAD is in the northwestern part of Uzbekistan and is part of the Karakalpakstan
region (lat. 41◦ to 47◦ N; long. 58◦ to 62◦ E). The largest river in Central Asia, the Amu
Darya, flows through it and eventually empties into the southern Aral Sea. Since the 1980s,
only a small amount of water has flowed into the Aral Sea, and most of it has been utilized
for irrigation [9]. The area of the IAAD is about 30,000 km2, with an altitude of 5–10 m
above sea level. The climate difference between IAAD and IASD is very slight, the average
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annual temperature is about 12 ◦C and the annual precipitation is 117 mm; the IAAD is
dominated by cultivated land, accounting for two-thirds of the total area. There is a small
amount of water and wetland vegetation in the north, and the main cash crops in the IAAD
are cotton, wheat, and rice; in addition to agriculture, animal husbandry is also a pillar
industry of the local economy [14]. There are three meteorological stations in the IAAD
(Nukus, Kungrad, and Chimboy), they record the daily minimum, maximum, mean air
temperature, relative humidity, air pressure, and wind speed from 2000 to 2020. In 2019,
444 sampling points were sampled for planting structure in the IAAD; these sampling sites
are surrounded by a single crop. The recorded data include crop type, coordinates, and
time, which can provide data support for SEBAL model verification (Figure 1).
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Figure 1. Schematic diagram of the irrigation area of the Amu Darya delta (IAAD) and the irriga-
tion area of the Syr Darya delta (IASD). National boundary data was acquired from the National
Administration of Surveying, Mapping and Geoinformation with No. GS (2016) 1665.

2.2. Data Availability

Due to the long-timescale and high spatial resolution of this study, a total of 244 remote-
sensing images were selected for this study, including 30 thematic mapper images (TM),
96 enhanced thematic mapper images (ETM), and 118 operational land imager images
(OLI). The path/row were 159/031, 160/028, 160/030, 160/031, and 161/030. Since the
year of remote sensing data needs to be consistent with other statistical data, allowing
for image quality and time intervals, the years included the growing seasons (April to
October) of 2000, 2005, 2012, 2015, 2019, and 2020, and the simulation results of the SEBAL
model were validated in 2012 and 2019 due to limited ground measurement, and the
cloud cover was less than 10%; for specific times, refer to Figure 2. The preprocessing
for radiometric calibration, fast line-of-sight atmospheric analysis of spectral hypercubes
(FLAASH) atmospheric correction based on a seasonal latitude surface temperature model;
the brightness temperature correction and geographic correction using control points was
carried out on ENVI (The Environment for Visualizing Images). In particular, the gap of
ETM due to the scan line error had been filled with the striping tool in ENVI software.
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Figure 2. Information about the acquisition time of Landsat images. (Thematic mapper images (TM),
Enhanced thematic mapper images (ETM), Operational land imager (OLI)).

This study also includes meteorological station data, flux station data, digital elevation
data (DEM), irrigation water data, land use and cover change data (LUCC), planting
structure data, sampling point data, evaporation pan data, and yield data. In particular,
the confidential data of irrigation water, planting structure and yield obtained from the
Ministry of Agriculture and Water Resources (MAWR) of Uzbekistan and Ministry of
MAWR of Kazakhstan were all obtained from the local field visits in 2019 and 2020 in
cooperation with relevant local government departments, and have been published in a
series of articles [14,15,40,44] with certain official authority. Refer to Table 1 for specific
information.

Table 1. Details of the data used in the study.

Data Category Data Sources Spatial Resolution Temporal Resolution Observation Variables

Thematic mapper (TM) United States Geological
Survey 30 m 16 d (2000) -

Enhanced thematic
mapper (ETM)

United States Geological
Survey 30 m 16 d (2000, 2005, 2010,

2012) -

Operational land
imager (OLI)

United States Geological
Survey 30 m 16 d (2012, 2019, 2020) -

Meteorological data
National Oceanic and

Atmospheric
Administration

Site data Daily (2000, 2005, 2010,
2012, 2019, 2020)

T, wind speed
Tmax, Tmin, Air

pressure

EC eddy covariance
flux station

CAS Research Center for
Ecology and Environment

of Central Asia [43]
Site data Daily (2012) Flux (Rn, G, H, LE)

KZL meteorological
station

CAS Research Center for
Ecology and Environment

of Central Asia [43]
Site data Daily (2012) ET, T, wind speed, P
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Table 1. Cont.

Data Category Data Sources Spatial Resolution Temporal Resolution Observation Variables

Digital Elevation
Model (DEM) http://www.gscloud.cn 30 m — — -

Land use and cover
change (LUCC) European Space Agency 300 m Yearly (2000, 2005, 2012,

2015) -

Irrigation water data

The Ministry of
Agriculture and Water
Resources (MAWR) of

Uzbekistan/Ministry of
Agriculture of Kazakhstan

statistical data Monthly (2000, 2005,
2012, 2015) -

Field research sampling

Key Laboratory of GIS and
RS Application Xinjiang

Uygur Autonomous
Region, China

Vector data Yearly (2019) Crop type, position,
time

Evaporation pan
Karapakstan Branch of the
Institute of Water Problem,

Uzbekistan
statistical data Daily (2019) ET

Plantation
structure(map)

Key Laboratory of GIS and
RS Application Xinjiang

Uygur Autonomous
Region, China [45]

Vector data Yearly (2019) -

Plantation structure
(statistical data)

The Ministry of
Agriculture and Water
Resources (MAWR) of

Uzbekistan/Ministry of
Agriculture of Kazakhstan

statistical data Yearly (2000, 2005, 2012,
2015) -

Yield data

The Ministry of
Agriculture and Water
Resources (MAWR) of

Uzbekistan/Ministry of
Agriculture of Kazakhstan

statistical data Yearly (2000–2020) -

2.3. Remote Sensing Model and Data Analysis
2.3.1. SEBAL Model

The SEBAL model was initially proposed and constructed by Bastiaanssen et al. [30],
to calculate the ETa; the cardinal principle was energy balance, referring to the formula
below:

Rn = Gsoil + H + LET (1)

where Rn represents the net surface radiation flux (Wm−2), Gsoil is the soil heat flux (Wm−2),
and H and LET represent sensible heat flux (Wm−2) and latent heat flux (Wm−2), respec-
tively. The respective calculations are as follows:

Rn = (1− α)Rs↓ + εoRl↓ − Rl↑ (2)

Gsoil =

[
(Ts − 237.15)

α

]
× (0.0038α + 0.0074)×

(
1− 0.98NDVI4

)
× Rn (3)

H =
ρa × Cp × dT

rah
(4)

LET = Rn − Gsoil − H (5)

where α and εo represent the surface albedo and surface emissivity. For Landsat TM/ETM/
OLI images, the surface albedo (a) is calculated according to different methods [46–48]:

α =

(
αtoa − αpathradiance

)
/τsw

2 (6)

http://www.gscloud.cn
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αtoa(TM/ETM) = 0.356α1 + 0.130α3 + 0.373α4 + 0.085α5 + 0.072α7 − 0.0018 (7)

αtoa(OLI) = 0.356α2 + 0.130α4 + 0.373α5 + 0.085α6 + 0.072α7 − 0.0018 (8)

In the SEBAL model, specific emissivity mainly has two forms: thermal infrared
specific emissivity (εNB) and total wide band-specific emissivity (εo). The thermal infrared
specific emissivity is mainly used to calculate land surface temperature (LST). The LST
and emissivity are separated from brightness temperature, and the two methods are as
follows [47]:

εNB = 0.97 + 0.0033LAI (9)

εo = 0.95 + 0.01LAI (10)

Rs↓ is the short-wave solar radiation (Wm−2), Rl↓ is the downgoing atmospheric
longwave radiation (Wm−2), Rl↑ is the longwave radiation (Wm−2), ρa represents the air
density, Cp is the air specific heat, dT represents the temperature difference between two
heights (Z1 and Z2), and rah represents the aerodynamic resistance to heat transport. Finally,
the instantaneous LET is obtained using the energy balance formula. More details on the
calculation method and the “cold” and “hot” pixel selection can be found in Allen [47].

By introducing the concept of evaporation fraction (EFins), the instantaneous evapotran-
spiration can be extended to daily and longer periods of evapotranspiration [43,47,49,50].

EFins =
λET

Rn − G
(11)

ET24SEBAL =
86400× EFins × (Rn24 − Gn24)

λ
(12)

ETperiod = ETrFperiod ∑n
i=m

[
ET24SEBAL

]
(13)

ET24SEBAL represents the daily ETa, λ stands for the latent heat of vaporization, Rn24
and Gn24 represent the net radiation flux and the soil heat flux over one day, and ETrF
computed for the time of the image was assumed constant for the entire period represented
by the image, ETrFperiod is the representative ETrF for the period, and n is the number of
days in the period. The seasonal ET was computed by summing all of the ETperiod values
for the length of the season.

2.3.2. The FAO Penman–Monteith Equation

The FAO Penman–Monteith equation is considered a universal standard to estimate
ETo and is widely used around the world in the absence of measured data due to its high
accuracy [51–53], The accuracy of SEBAL model can be verified with the FAO Penman–
Monteith equation in this study. The specific formula is as follows:

ETo =
0.408∆(Rn24 − Gn24) + γ 900

T+273 × u2 × (es − ea)

∆ + γ(1 + 0.34u2)
(14)

where ∆ is the slope of the saturated vapor pressure curve, es is the saturated vapor pressure,
ea is the actual vapor pressure, r is the psychrometric constant, and u2 is the wind speed at
a height of 2 m. The actual evapotranspiration of crops is calculated using the Kc coefficient
and the Penman–Monteith equation:

ETc = Kc × ETo (15)

where Kc is the crop coefficient at a specific growth stage. The specific Kc value (Table 2) of
wheat, rice, and maize in this study is based on the research of Schieder [54].
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Table 2. The crop coefficients of cotton, rice, and wheat.

Crops April May June July August September October

Rice/Kc - 1.05 1.13 1.2 1.2 0.95 -
Wheat/Kc 1.15 0.97 0.4 - - - -
Cotton/Kc 0.35 0.4 0.87 1.2 1.2 0.99 0.71

2.3.3. Methods for Comparing Spatial Heterogeneity of ETa

Based on the least square linear regression model, the trend of evapotranspiration in
this study was analyzed over the years; the specific formula is as follows:.

S =
n ∑n

i=1(iETi)−∑n
i=1 i ∑n

i=1 ETi

n ∑n
i=1 i2 − (∑n

i=1 i)2 (16)

where i refers to the year and ETi refers to the ETa in the year i.
The coefficient of variation is the ratio of standard deviation to mean and can reflect

the degree of variation in data from year to year [55]. The specific calculation formula is as
follows:

CV =
SDij

ETij
(17)

ETij is the annual mean value of pixels in row i and column j, SDij is the standard
deviation of pixels in row i and column j. CV is classified into four grades, which were
highly stable ( CV ≤ 0.1), stable (0.1 < CV ≤ 0.2), unstable (0.2 < CV ≤ 0.3), and highly
unstable (CV > 0.3) (Wang et al., 2012). Combining the spatial change rate of ETa and
coefficient of variation to analysis, grids with a coefficient of variation less than 0.1 (highly
stable) and an ETa change rate of more than two standard deviations were defined as
‘steady drastic increase’, and grids with a coefficient of variation less than 0.1(highly stable)
and an ETa change rate of less than two standard deviations were defined as ‘steady drastic
reduction’ [56].

2.3.4. Validation of SEBAL Modeled ETa

The validation of ETa simulated by SEBAL model is divided into two parts: one is
to verify with the measured data of the eddy covariance flux observation station (EC)
and meteorological station (KZL) in the IASD and the evaporation pan in the IAAD, the
other is to compare with crop evapotranspiration calculated by the FAO Penman–Monteith
equation and kc. Due to the difficulty in obtaining measured data in arid inland river
basins, the year of measured evapotranspiration data from flux stations and meteorological
stations in the IASD is 2012, while the observed data of evaporation pan in the IAAD is 2019;
the daily evapotranspiration simulated by SEBAL (ETsebal) of the corresponding data is
selected for accuracy evaluation against observed evapotranspiration values (ETobserved).

2.3.5. Water Productivity

In this study, water productivity (kg/m3) was mainly divided into crop water produc-
tivity (WPc) and irrigation water productivity (WPI), which are estimated by the following
equations [38]:

WPc =
Yield
ETa

(18)

WPI =
Yield

Irrigation amount
(19)

3. Results
3.1. Validation of the SEBAL Model

At the KZL meteorological station, the ETsebal is well-matched with the ETobserved
with an R2 value of 0.86, an RMSE value of 0.85 and a percent bias of 12% (Figure 3a).
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This indicates that the evapotranspiration simulated by SEBAL has high precision in the
oasis-agriculture area of the Aral Basin. The eddy covariance flux station shows that the
SEBAL model has a slightly lower fitting degree in the desert grassland, where the R2,
RMSE, and percent bias are 0.71, 0.31, and 5%, respectively (Figure 3b). For the water body,
the R2, RMSE, and percent bias values between ETsebal and ETobserved are 0.81, 1.76, 15%,
respectively (Figure 3c).
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A total of 444 crop sample sites were collected in the IAAD in 2019, including 121 rice
sample points, 161 cotton sample points, and 162 wheat sample points. They were gathered
around three meteorological stations in the IASD, namely Nukus, Kungrad, and Chimboy,
but all lacked direct ETa observation data. The meteorological data of the corresponding
SEBAL simulated date in 2019 were selected, and the crop evapotranspiration (ETc) was
calculated using the Penman formula in combination with the KC coefficient, and the
correlation analysis was conducted between the daily ETa value sequence of each crop
sample point simulated by SEBAL and the FAO Penman–Monteith equation. The results
show that 78% of the 109 cotton sampling points near the Kungard meteorological station
have correlations higher than 0.6, while only 69% of the cotton samples around the Nukus
meteorological station have correlations higher than 0.6 (Figure 4a). The correlation of a
total of 90% of the rice sampling points around Kungrad meteorological station is higher
than 0.6, with the highest value reaching 0.98. At Nukus and Chimboy meteorological
stations, only 79% and 38% of the rice sampling sites have correlations higher than 0.6; there
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are only eight rice sampling sites near the Chimboy meteorological station; therefore, these
results are more uncertain (Figure 4b). The correlation of wheat is higher overall, with all
87 wheat sampling points near Kungrad meteorological station having correlations higher
than 0.6, and 93% of wheat sampling points around the Nukus meteorological station being
higher than 0.6 (Figure 4c). Overall, the evapotranspiration simulated by the SEBAL model
(ETsebal) has a good degree of fit with the ETc. These results demonstrate that the SEBAL
model has good applicability in the study area.
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3.2. The Comparison of Temporal Variations of ETa between the IAAD and the IASD

In the most recent 20 years, the trends of average evapotranspiration between the
IAAD and IASD are inconsistent. Figure 5 shows the ETa inverted by SEBAL in the growing
seasons (from April to October) of 2000, 2005, 2012, 2015, 2019, and 2020 in the two irrigation
areas. Due to the disturbance of human activities and meteorological factors, as well as the
uncertainty of SEBAL model itself, the ‘cold’ and ‘hot’ point assumption is too idealistic
and long-term evapotranspiration inversion increases the uncertainty of SEBAL model
results, and the maximum value of ETa in the irrigated areas fluctuates over many years.
For the IAAD, the maximum value of 2087 mm for the ETa appeared in 2012 for the water
body in the north of the irrigation area, while the maximum ETa in the growing season of
2020 was the smallest, being only 1676 mm. The southern part of IAAD is mostly cultivated
land, while the northern part is mostly desert; therefore, ETa presents a spatial distribution
pattern, high in the south and low in the north. However, the maximum value of water
evaporation in the IASD appeared in 2005, reaching 1873 mm, and the maximum ETa value
of 2020 was the lowest of all years surveyed, being only 1399 mm, which is consistent with
the IAAD. The northern part of the IASD is mostly waterbodies, and the cultivated land
and bare land are evenly distributed in space; therefore, the ETa of the IASD was higher in
the north and more evenly distributed in space than that of the IAAD.
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The monthly ETa results simulated by SEBAL from 2000 to 2020 in the IAAD and
IASD are exhibited in Figure 6. The ETa of the two irrigation areas is consistent on the
monthly scale and shows a single peak distribution, but is different in range. For IAAD,
the average ETa in July ranged from 182 mm to 243 mm; the highest ETa was in July of
2012; and July of 2019 had the lowest ETa performance of any other month in the same
period, just 182 mm. April and October are the lowest ETa months in the growing season
in IAAD because of the low air temperatures and Rn, with an average ETa of only 110 mm
(Figure 6a). As for IASD, the highest ETa occurred in July of 2015, reaching 198 mm, and
the lowest ETa occurred in April and October, with an average of only 90mm (Figure 6b). In
terms of the inter-annual scale, the ETa of the IAAD and IASD fluctuated, but the average
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ETa of IAAD in each year was higher than that of IASD (Figure 6c). The average ETa of
IAAD over the years surveyed was 1138mm, while that of IASD was only 820 mm. In
addition, the two irrigation areas had different ETa performances in the same years. For
example, in 2012, IAAD had a higher ETa with an average value of 1294 mm, while IASD
had a lower average ETa of just 687 mm. Furthermore, from the multi-year variation rate of
ETa, the ETa of IAAD tended to decrease, whereas that of IASD tended to increase.
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of 2000–2020 in the irrigation of the Amu Darya delta (IAAD), (b) in the irrigation of Syr Darya delta
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3.3. The Comparison of Spatial Heterogeneity of ETa between the IAAD and IASD

The change rate of ETa in IAAD over the past 20 years was obtained using the least
squares method (Figure 7a). The variation rate of ETa in the IAAD was extremely uneven
in spatial distribution, whereas the change rate of ETa in the southern irrigation area was
lower than the northern irrigation area. The ETa of cultivated land in the north part of the
IAAD showed an obvious increasing trend, especially on the eastern and western edges of
the cultivated land, which indicates that the cultivated land in the northern IAAD had a
trend of outward expansion, whereas the cultivated land in the southern irrigation area
was in a state of high saturation; therefore, the change rate of ETa was low, maintaining a
low rate of growth even at the edge of the cultivated land, as ETa tended to decrease due to
abandoned farming. As a result of a reduction in the area of wetland and natural vegetation
coverage, the ETa of some wetlands in the north of IAAD tended to decrease. The change
rate of the ETa of the waterbody in the IAAD was not large, fluctuating around 0. Due to the
factors of abandoned farming and cultivated land expansion, the change rate of the ETa of
the cultivated land in the IASD increased and decreased locally (Figure 7b). On the whole,
the cultivated land expansion trend is obvious. Similarly, due to the reduction in wetland
area and natural vegetation area, the ETa of wetland in IASD showed a significant trend of
reduction, whereas the change rate of the waterbody in the IASD was not obvious, also
fluctuating around 0. The coefficient of variation of the IAAD is shown in Figure 7c, where
it can be seen that the regions with a greater coefficient of variation in ETa mostly occur
in the regions with changes in land-use types. The ETa stability of cultivated land area in
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IAAD was higher, and the ETa stability of the waterbody was also higher, whereas the ETa
stability of the cultivated land edge and wetland was lower due to the drastic changes in
the area. The ETa instability in the IASD was 46% less than the IAAD due to more potential
arable land for development, which will lead to an increase in ETa in the future (Figure 7d);
the change in the cultivated land area led to the instability of ETa. Similarly, the stability of
wetlands in the IASD was low, whereas the stability of the waterbody was high.
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Due to the reduction in wetland area, there were plots with a steady drastic reduction
in ETa in the IAAD that cover an area of 412 km2. At the same time, there were obvious
expansions of cultivated land in the northern IAAD, leading to stable and drastic increases
in ETa at some edges of cultivated land with an area of 937 km2. As for the IASD, the
regions where ETa was stable or drastically reduced were mainly located in wetland areas
of up to 165 km2. Although the IASD has more potential farmland, its reclamation intensity
and irrigation efficiency were lower than in the IAAD; therefore, there was no dramatic
increase in evapotranspiration in the irrigation area.

In conclusion, the stability of ETa in the IAAD was higher than in the IASD due to
currently small potential cultivated land area, but due to the higher irrigation water supply
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and lower water productivity, which will be discussed below, the change rate of ETa in the
IAAD was much higher than IASD locally.

3.4. The Comparison of Water Productivity between the IAAD and IASD

Based on the detailed LUCC classification map in 2019 and combined with the in-
version ETa, the water productivity of the main crop types in the two irrigated areas was
compared. Figure 8a,b shows the main crop area in the two irrigation areas; wheat is
the dominant crop in the IAAD, whereas the IASD is mainly cultivated with cotton. By
comparing the ETa of the main crop types in the two irrigation areas, it can be seen that
the average ETa of cotton, rice, orchards, and vegetables in the IAAD is higher than that in
IASD. Wheat is the only exception. Among all crops, rice and orchards have the highest
ETa, followed by cotton and wheat, and vegetables have the lowest (Figure 8c). In addition,
the area of all crops in the IASD is much smaller than that in IAAD, which also explains
why the ETa of the IASD is much smaller than that of the IAAD (Figure 8d,e).
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As shown in Figure 9a, the irrigation water supply in the IAAD is much higher than
that in the IASD. More specifically, there are obvious dry and wet years in the IAAD;
in 2005, there was a large amount of irrigation water, but in years with more cultivated
land, such as in 2000, there was little water for irrigation. The uneven distribution and
unreasonable allocation of water resources in time and space in the IAAD cause more water
waste. Combined with the statistical data on crop yield, the WPc and WPI of wheat, rice,
and cotton in the two irrigated areas have been calculated. The average WPc of cotton in
the IASD (cotton—S) is 0.19 kg/m3, whereas in the IAAD (cotton—A) it is 0.17 kg/m3, the
average WPc for wheat (wheat—S) is 0.42 kg/m3, and wheat—N is 0.32 kg/m3; rice WPc
averages 0.40 kg/m3 (rice—S), and just 0.27 kg/m3 in IAAD. In general, the WPc of each
crop in the IASD is higher than that in the IAAD; this reflects the fact that Kazakhstan’s
irrigation system and technology are superior to Uzbekistan’s (Figure 9b,c).
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Figure 9. (a) The irrigation water supply in irrigation of Amu Darya delta (IAAD) and Syr Darya
delta (IASD), (b) the crop water productivity (WPc) on the IAAD and IASD, (c) the irrigation water
productivity (WPI) on the IAAD and IASD. the suffix-A stands for IAAD and the suffix-S stands
for IASD.

4. Discussion
4.1. Accuracy Assessment of the SEBAL Model

In this study, the ETa modeled by SEBAL in the IAAD is between 900 mm and 1200 mm
from 2000 to 2020, whereas the ETa of IASD is between 600 mm and 900 mm. Compared
with the measured data of meteorological station, flux station, and evaporation pan in the
study area, the SEBAL-modeled ETa fits the measured data well, with R2 higher than 0.7,
maximum RMSE at 1.76, and maximum percent bias at 15%. However, due to the large
area, complex land-cover types, and scarcity of measured points, it is far from enough to
evaluate the SEBAL simulation results with only a few measured data point. Therefore, the
Penman–Monteith equation is also used to verify the modeled results. The ETc calculated
by the Penman–Monteith equation and the crop coefficient Kc is also used to verify the
modeled results. The results show that the SEBAL model has a good simulation result for
the ETc of crops: the average R2 of rice was 0.84 and percent bias was 7.02%, the average R2

and a percent bias of wheat were 0.80 and 7.23%, and the average R2 and a percent bias of
cotton were 0.72 and 10.89%. Because the water content of rice is more abundant, close to
the optimal soil moisture conditions described in ETo, the correlation between ETc and ETa
of rice is higher than wheat and cotton. The ETa returned by this study still needs to be
compared with that in previous studies.

Ochege et al. [43] simulated the ETa of the IASD in 2012 using the SEBAL model,
and the results showed that the growing season ETa for land surfaces ranged between 658
and 850 mm; the average ETa of the IASD was 687 mm and the average ETa of cultivated
land was 842 mm. Conrad et al. [42] used the SEBAL model to invert the ETa in the south
IAAD in 2004. The seasonal ETa was over 1200 mm from April to October, and the ETa
modeled in IAAD for 2005 was 1294 mm. Liu et al. [14] also used the SEBAL model to
invert the ETa in the north IAAD over the past 30 years and found that the ETa ranged from
900 mm to 1200 mm, which is consistent with this study. Besides remote sensing inversion
research, the evaporation from oasis agriculture could be as high as 1546 mm in central
Asia [57]; the observed ETa of the Aral Sea in 1990 reached 1220 mm [58]. Using the water
balance to calculate the evapotranspiration of the Aral Sea from 1911 to 1989, the annual
evapotranspiration of the Aral Sea was between 900 mm and 1100 mm [3], and combined
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with a mathematical method to predict the evaporation of the Aral Sea from 2000 to 2050
with an average annual increase of 1.5 m, it could reach 1500 mm [59]. To sum up, the
simulation ETa results of this study are comparable to previous studies, which proves the
applicability of the SEBAL model to typical irrigation areas of the Aral Sea basin.

4.2. The Impact of LUCC on ETa Variations

For nearly 20 years, temperatures in both IAAD and IASD have fluctuated around
12.5 ◦C. However, the ETa of the IAAD is quite different from IASD in terms of temporal
and spatial variation. Because ESA’s LUCC data are relatively robust in identifying land
cover temporal changes [60], they are used for analysis in order to explain the following
differences. However, the resolution of LUCC data is 300 m, whereas the resolution of ETa
inversed by SEBAL is 30 m, indicating a mismatch in scale and increasing the deviation of
ETa among kinds of land use.

1. The average ETa of IAAD is much higher than that of IASD. Figure 10a shows the
ETa of different land covers from 2000 to 2015; there is no significant difference in the
waterbodies or the woodland, whereas there is a large difference in the cultivated land.
The ETa of cultivated land in IAAD is maintained at over 1150 mm for many years
due to higher irrigation and lower water productivity, as discussed below, whereas
that of IASD is around 800 mm. Considering the proportion of cultivated land in the
two irrigation areas (Figure 10b,c), it can be concluded that the variation of cultivated
land is the main reason for the spatio-temporal heterogeneity of ETa. The IASD is
largely distributed between cultivated and bare land, leading to a much lower ETa
than for the IAAD, which is mainly composed of cultivated land.
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2. In the past 20 years, the ETa of IAAD showed a decreasing trend, whereas that of
IASD showed an increasing trend. The cultivated land area in the IAAD decreased
from 1992 to 2005 and increased from 2010 to 2015; there is a decreasing trend on
the whole, which is consistent with the previous research [14,61,62]. As a result, the
ETa has tended to decrease. The cultivated area of the IASD has shown a slightly
increasing trend during the past 20 years, accompanied by an increasing ETa.
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3. The stability of ETa in the IAAD is higher than that of the IASD. It is precisely because
of the low saturation of the cultivated land in the IASD that the ETa instability in the
irrigation area has increased. The cultivated land of IASD accounts for 60% of the
total irrigation area, and there is still a large amount of arable land for development.
The cultivated land area of IASD has shown an increasing trend recently. From 2012 to
2015, the cultivated land area of IASD has increased by 100 km2; the ETa of the IASD
also showed an increasing trend (Figure 6c), which directly leads to the instability of
the IASD’S ETa. In the IAAD, the cultivated land accounts for 87% of the total area,
and the cultivated land area tends to be saturated; therefore, the stability of ETa is
relatively high.

4.3. Accuracy Assessment of Water Productivity and Policy Implications

The WPc and WPI of IAAD are lower than that of IASD because the average irrigation
water consumption of IAAD during 2000, 2005, 2012, and 2015 is 4.18 times than IASD,
and the ETa of the IAAD is 1.38 times than IASD over the same period. The ETa of
irrigation areas is affected by LUCC to a certain extent [55] and by the irrigation amount,
together affecting the regional water productivity (WPc and WPI). Meanwhile, there are
some deviations in the statistical survey methods of different countries, which also bring
uncertainty to the assessment of water productivity.

Compared with previous studies, the water productivity in this study is lower than
the field observations but close to the remote sensing results, which is consistent with Liu
et al.’s [40] conclusion, who calculated that the average results of grain WPc in Central Asia
from 2000 to 2016 were 0.24–0.39 kg/m3, and 0.21–0.27 kg/m3 for cotton. Using an SSEB
remote sensing model, the WPc of cotton in the typical irrigation area of the Syr River basin
in 2006 was calculated as reaching 0–0.54 kg/m3 [41]. The site observations of cotton WPc in
the Syr River basin and Fergana basin were 0.40–0.75 kg/m3 and 0.38–0.89 kg/m3 [63,64].
The grain and cotton WPc of the Aral Sea basin from 2000 to 2014 were 0.88 and 0.45,
respectively, according to WUEMoCA statistics [10]. This study also confirmed that crop
and water productivity in irrigated areas along the Syr Darya river was greater than the
Amu Darya River. Except for wheat, the WPI of other crop types in the IAAD was lower
than in the IASD, findings which are in line with those of Liu et al. [40]. These can be
compared with the WPc of other regions: maize WPc values average 2.1 kg/m3 at the
Agricultural Science Center at Farmington [65], the WPc of grain in the Heihe basin in
China is 0.83 kg/m3 [66], and the maize WPc in India is 1.58 kg/m3 [67]. The crop water
productivity around the Aral Sea basin has a huge potential to increase.

There are some ways to improve crop water productivity and reduce evapotranspira-
tion, including policies, regulations, and technology. After the collapse of the Soviet Union,
land reform in Kazakhstan and Uzbekistan differed in intensity. Kazakhstan’s land reform
model was relatively radical, and privatization of agricultural land was carried out. How-
ever, Uzbekistan has not fully implemented privatization; inadequate irrigation systems
and infrastructure make Uzbekistan extremely inefficient in terms of water productivity.
One direction of agricultural policy adjustment in the future still lies in promoting the
development of farms, reforming support service systems, and strengthening infrastructure
construction.

The agricultural irrigation water in the arid regions of Central Asia is largely depen-
dent on irrigation canals and drainage networks. Under this irrigation mode, the water
consumption of non-productive evapotranspiration, such as in a canal system, dissipates
greatly. Fully utilizing the water from rainfall and reducing the irrigation water can help
obtain the greatest WPc [68]; meanwhile, adopting new irrigation and crop management
strategies can improve water productivity. Irmak et al. [69] demonstrated that 75% of
the full irrigation treatment, with no yield penalty under subsurface drip and sprinkler
irrigation, can save 25% of irrigation water. In terms of economic efficiency per efficiency
of water quantity in water use, Lee and Jung [70] suggested converting wheat into cotton
using drip irrigation, whose efficiency was the highest. Furthermore, combining this with
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the agriculture model [71] and remote-sensing data can provide information about the
cultivated land area, pests, land productivity, etc., for agricultural production. Guided by
this information, appropriate irrigation systems and policies can be developed to ensure
that unnecessary water consumption is reduced while maintaining the crop yield. To sum
up, countries in the Aral Sea basin still need to make efforts to improve water productivity,
maintain the Aral Sea area, and reduce unnecessary water resource waste.

5. Conclusions

This study used the SEBAL model to simulate ETa in two main irrigation areas around
the Aral Sea from 2000 to 2020, and calculated water productivity to compare and analyze
water consumption and water productivity in the two irrigation areas. The ETa simulated
by the SEBAL model matched the crop evapotranspiration (ETc) calculated by the Penman–
Monteith method, with a correlation coefficient higher than 0.8. The correlation coefficient
between the SEBAL modeled ETa and the ET observed at meteorological stations, the Eddy
Covariance Flux Station data, and evaporation pan measured data were 0.86, 0.71, and
0.81, respectively. The results show that the average annual ETa of the IAAD was 1138 mm,
whereas that of the IASD was 687 mm. The reasons for this difference are that the IAAD has
a higher cultivated land area, higher irrigation water supply, and lower water productivity.
However, there was a large amount of developable cultivated land in the IASD; therefore,
the annual ETa has shown an increasing trend with low stability. In the IAAD, where the
phenomenon of abandoned arable land was serious, the ETa showed a decreasing trend
with high stability. The amount of irrigation water in the IAAD fluctuated greatly, being
near 100× 109 ∼ 300× 109m3 higher than that in the IASD in the same period. Meanwhile,
the water productivity of IAAD was lower than IASD, which reflects Uzbekistan and
Kazakhstan’s differences in water productivity, to a certain extent. However, there is a
long process for improvement in water productivity for IAAD and IASD, which can be
achieved by reducing non-productive evapotranspiration and adopting new irrigation and
crop management strategies such as subsurface drip and sprinkler irrigation.

This study verifies the reliability of energy balance models such as the SEBAL model
in ET inversion in the Aral Sea basin, and also provides ideas for ET inversion in arid
regions with little data; it also provides reference data for agricultural water management
and water resource protection in the Aral Sea basin.
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