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Abstract: Multitemporal synthetic aperture radar (SAR) images have been widely used for change
detection and monitoring of the environment owing to their competency under all weather conditions.
However, owing to speckle backgrounds and strong reflections, change detection in urban areas
is challenging. In this study, to automatically extract changed objects, we developed a model
that integrated change detection and object extraction in multiple Korean Multi-Purpose Satellite-5
(KOMPSAT-5) images. Initially, two arbitrary L1A-level SAR images were input into the proposed
model, and after pre-processing, such as radio calibration and coordinate system processing, change
detection was performed. Subsequently, the desired targets were automatically extracted from the
change detection results. Finally, the model obtained images of the extraction targets and metadata,
such as date and location. Noise was removed by applying scale-adaptive modification to the
generated difference image during the change detection process, and the detection accuracy was
improved by emphasizing the occurrence of the change. After polygonizing the pixel groups of
the change detection map in the target extraction process, the morphology-based object filtering
technique was applied to minimize the false detection rate. As a result of the proposed approach, the
changed objects in the KOMPSAT-5 images were automatically extracted with 90% accuracy.

Keywords: synthetic aperture radar (SAR); change detection; target extraction; KOMPSAT-5; shape
index; difference image

1. Introduction

Synthetic aperture radar (SAR) employs active electromagnetic waves in the mi-
croband that have high transmittance in the atmosphere and are less affected by weather
conditions than optical images [1,2]. Owing to these advantages, SAR data are becoming
increasingly significant and have been widely used in military and monitoring applications.

By definition, change detection is a technique that identifies changes in status by
performing quantitative analysis from the same geographical area [3], which allows for
the monitoring of natural disasters, such as earthquakes [4] and flooding [5], as well as
the observation of the flow of changes in the urban area. Change detection based on
multitemporal, multispectral, and multisensory imagery has been developed over several
decades, and has aided in timely and comprehensive planning and decision making. In
addition, owing to its high ability to penetrate cloud cover, SAR is widely used for change
detection [6] in remote sensing. The general SAR change detection proceeds through the
following stages: (1) preprocessing, (2) difference image (DI) generation, and (3) change
detection [7,8].

The primary purpose of preprocessing is to reduce noise, make radiometric and
geometric corrections, and coregister multiple images [9]. Speckle noise reduction is a
critical step because it may yield unreliable change detection results if performed inaccu-
rately [10,11]. Frost filtering [12] and nonlocal, deep learning methods have been developed
to reduce speckle noise in SAR images [13].

In the DI generation step, two registered and corrected images were compared pixel-
by-pixel. The most straightforward method for generating a DI is to apply a subtraction
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operation to the two images. However, this method leads to numerous false changed
pixels owing to speckle noise and increases the false alarm rate in the subsequent detection
procedure. As described in Li et al. [14], the log-ratio operation is a better DI generating
approach than the subtraction operation because it can transform multiplicative noise into
additive noise and is less sensitive to radiometric inaccuracies. However, log-ratio opera-
tions compress modified pixels at high intensities [15], which is particularly problematic
for structural objects, such as buildings and vehicles. To improve analysis performance and
the noise robustness of DI, numerous combination methods have been proposed [10]. The
most commonly acquired improved DI values are mean-ratio DI [16], neighbor-based ratio
(NR) DI [17] and Gauss ratio operator [18]. These methods increase the change detection
accuracy by combining local spatial information with a mean operation. However, because
there are no reference maps or prior knowledge of the image in these methods, it is difficult
to determine the optimal window size for the area of interest. In addition, because these
methods do not fully utilize spatial information, the final results can be noisy in some cases.
Bovolo and Bruzzone [19] used wavelet decomposition on log-ratio images to aggregate
multiscale image information and preserve the change details, and Wang et al. [20] intro-
duced a random field based method. Zhuang et al. [21] used heterogeneity to adaptively
select the geographical homogeneity neighborhood and a temporal adaptive technique to
determine multitemporal neighborhood windows. The new DI reduced the negative effects
of noise while preserving the edge details. From the discussion of the aforementioned
improved approaches, it can be inferred that combining different DIs or employing neigh-
borhood information may aid in improving change detection performance. Colin et al. [22]
proposed a coefficient of variation method and criteria for detecting changes in different
data types, such as satellite and unmanned aerial vehicle SAR data.

Recently, deep-learning-based methods have achieved significant success in fields
where remote sensing has been applied. In general, machine-learning-based change de-
tection can be divided into supervised and unsupervised approaches [23]. The lack of
ground reference data and labor intensive manual labeling processes are major difficulties
in the supervised approach [24]. Shu et al. [25] suggested an unsupervised patch based
method to iteratively learn the features of changes and reduce the noise effect on the change
detection result.

As high resolution SAR images have been acquired with the development of SAR
technology, accurate and quick target detection has become a popular topic [26,27]. A target
is the object of interest in target detection, such as a vehicle or a ship. In contrast, clutter
is the environment, such as land, sea, or trees; targets can be differentiated from clutter
provided that imperfections in the images such as noise can be appropriately eliminated
or mitigated.

The constant false alarm rate (CFAR) approach, which reorganizes the pixel-level
intensity differences between the targets and clutter based on a statistical model, has been
the most widely utilized method for target detection owing to its advantages of low-cost
computation and adaptive threshold determination [28]. Based on the strategy used to
implement the CFAR technique, there are various strategies, such as the cell averaging
CFAR (CA-CFAR) [29], the smallest of CFAR (SO-CFAR) detector [30], and adaptive and
fast CFAR(AAF-CFAR) [31]. These methods recognize targets based on the difference
between the target and the background clutter using statistical models. However, because
the observation situation differs, statistical models of clutter, such as the Gaussian and
gamma log-normal, are not well suited to some cases, and the accuracy of CFAR is low. In
addition, unpredictable factors can cause a phenomenon that exceeds the threshold, and
when the model and clutter do not match well, the detection accuracy of the CFAR may
also decrease. Therefore, in a complex scenario, the detector performance may degrade,
which implies that a different CFAR should be applied to each image or characteristic
of the SAR [32]. Xie and Wei [33] explored the region of interest of a mask, which was
obtained from the geographical information system, and used image data for detection.
Liao et al. [34] divided SAR images into N subimages, and the pixels of the desired target
were extracted by the thresholds of the different parts.
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To the best of our knowledge, this is the first study to propose an integrated model that
can automatically extract changed objects from multiple Korean Multi Purpose Satellite
(KOMPSAT-5) images. The main contributions of this study are summarized as follows:

1. To improve the change detection performance, a scale-adaptive DI modification
method was proposed. This method can be applied regardless of the image complexity
or resolution because it performs a scalable transformation of the overall DI. Unlike
existing techniques, the proposed algorithm does not require a sliding window or
region of interest selection. Hence, it can be processed at a high speed, regardless of
the size of the input image.

2. The candidate pixel groups were individualized to extract the object of interest from
the area where the change occurred, and a morphology-based filtering method was
applied. The proposed model can extract a target with high performance and exhibits
robust characteristics regardless of noise.

3. Change detection and object extraction algorithms were integrated to automatically
extract change objects for an arbitrary pair of KOMPSAT-5 images; the model provided
the resulting image along with the metadata of the extracted objects, such as location,
date, and morphology information.

The remainder of this paper is organized as follows. Section 2 describes the experi-
mental setup and dataset. Section 3 presents the proposed change detection method and
experimental results. Section 4 introduces the proposed target extraction method and per-
formance. The integrated model performance and contribution are presented in Section 5
and the conclusions are drawn in Section 6.

2. Experimental Setup

In this study, we developed an automatic changed target extraction model for KOMPSAT-
5 images. The model comprises the proposed change detection and object extraction
algorithms; preprocessing of the KOMPSAT-5 images was also performed.

2.1. Dataset

The KOMPSAT-5 was first launched in 2013 to provide SAR images for geographic
information applications and disaster monitoring systems in Korea. The payload of
KOMPSAT-5 includes an X-band (9.66 GHz) SAR system for multimodal observations.
The orbit repeat cycle of KOMPSAT-5 is 28 days. Table 1 lists the specifications of the [35]
dataset. The satellite provides 1 m-resolution in spotlight mode and 3 m-resolution in
strip mode.

Table 1. KOMPSAT-5 specifications.

Specification Value

Incidence Angles 20–45 deg (normal)

Orbit 28 days repeat

Polarization Single (HH/HV/VH/VV)

Looking Mode Right(default)/Left

Image Mode/Resolution (m) Spotlight(HR) : 1/Strip(ST) : 3/ScanSAR(WS) : 20

Used mode: Enhanced HR (EH) Resolution 1 × 1 (m)
Swath 5 (km)

In this study, we used enhanced high-resolution (EH) mode imagery with a uniform
resolution in the range direction. The chosen dataset pairs comprised images taken with a
time difference of approximately a month to half a year.

Every dataset had the same conditions (beam mode, polarization, looking mode, and
path direction) but with different dates from 2018 to 2019. Each dataset comprised two
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multitemporal images in the EH mode and level 1A. Level 1A is a process involving spectral
correlation similarity, a single-look complex, and slant range. The original KOMSPAT-5
files had a maximum size of 10,000 × 10,000 pixels and approximately occupy 1.5 GB per
scene. After data acquisition, if the original image contained a wide range of artifacts due
to azimuth ambiguity or excessive layover, it was removed from the analysis list during
the data cleaning process. We constructed a ground truth set of SAR images, and optical
images were used to confirm the model performance. Figure 1 shows an example of ground
truth sets. All metadata were processed in each step with images, such as calibration
coefficients and resolution, which were used in the radio calibration and feature extraction
steps, respectively. Finally, auxiliary information, such as the date and coordinates of the
extracted target location, were provided in the extraction target result. The entire process
of extracting changed targets from a pair of KOMPSAT-5 images is shown in Figure 2.
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Figure 1. Examples of ground truth dataset (targets in the dotted boxes have changed in top and
bottom pair images (A–C). Top: primary images, Bottom: secondary image).

2.2. Preprocessing

In the preprocessing step, we first performed radiometric calibration, which is the
process of objectively quantifying each image by calculating the net reflection value for the
topography and ground features. Equation (1) derived from the final updated KOMPSAT-
5 SAR processor and the absolute radiation correction results described by Yang and
Jeong [36] were applied in the radiometric calibration.

σ0[dB] = 10 log10

[
CALCO
N(ρcρL)

{|(Ii,j × RF)2 + (Qi,j × RF)2| sin(θi,j)}
]

(1)

Here, CALCO is the calibration constant; RF is the rescaling factor; and Ii,j and Qi,j
are the real and imaginary pixel values at the ith row and jth column, respectively. N is
the number of pixels, ρc and ρL are the column and line pixel spacing, and θ is the local
incidence angle. All variables in Equation (1) are derived from the auxiliary data (.xml).

Meanwhile, even under the assumption that imaging conditions, such as attitude and
orbit, are similar, it is impossible to obtain a pair of images with perfectly identical quality
owing to the scattering characteristics of the terrain. Here, the ’primary’ image indicates
an earlier date among the input pairs, and the ’secondary’ image indicates a later date.
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This inevitable difference affects the final performance of the change detection. Therefore,
for accurate change detection, it is necessary to normalize the dynamic range in pairs of
images [37]; the intensity distribution of each radiometrically calibrated image is normal-
ized to have a distribution of [0, 1].

Figure 2. The flowchart of the proposed change target extraction method.

3. Proposed Change Detection Method and Performance
3.1. Difference Image Generation

After preprocessing, as described in Section 2.2, the data of the primary and secondary
images were distributed within the same dynamic range; however, the two images still had
geometrical position errors. For precise image coregistration and correction of geometrical
errors, we implemented a two-step registration method; the registration involved fast
Fourier transform (FFT) and cross-correlation. FFT-based registration was based on the
Fourier shift theorem [38], and the amount of translation required for the secondary image
to precisely fit the primary image was converted into a phase difference in the frequency
domain. Subsequently, by using the inverse FFT, the phase correlation can be computed
using Equation (2),

Phase correlation = F−1{ F(u, v)∗G(u, v)
|F(u, v)∗G(u, v)| } = F−1{e(−i(u∆x+v∆y))} (2)
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where i =
√
−1; F(x, y) and G(x, y) are the corresponding FT of f (x, y) and g(x, y), respec-

tively; and F−1 denotes the inverse FT; * denotes the complex conjugate. In this step, the
position mismatch error of the order of 103 pixels was reduced to subpixels.

Once the secondary image was approximately aligned using FFT translation, addi-
tional fine registration was required to increase the detection accuracy. First, the primary
and shifted secondary images were stacked based on the geometry of the primary image.
As a result of the stack operation, the two images obtained similar dimensions and shared
geometrical information, such as the orbit. When the two images were aligned, the band
data of the shifted secondary image were resampled into the primary image using the
nearest interpolation.

Furthermore, the fine registration and cross-correlation method were executed by
maximizing the coherence. One thousand ground control points (GCPs) were randomly
selected to calculate the correlation. Beginning with the coarse registered secondary GCPs,
the optimal subpixel shift was computed such that the new secondary image at the new
GCP position provided maximum coherence with the primary image within the defined
sliding window. Once the valid GCPs were selected using the least squares method that
maps the new pairs of GCPs, we computed the polynomial in the order of 1 in an iterative
manner. During the processing, the root mean square (RMS) and standard deviations of the
residuals were computed. Only GCPs smaller than the mean RMS were used. Finally, the
GCP pairs were filtered at a threshold of 0.05, and the final warp function was computed
using the remaining GCP pairs.

The primary image (Im) in Figure 3a and secondary image (Is) in Figure 3b were
obtained from June 2018 and September 2018. The DI is the result of linear subtraction
of the secondary from the primary image. The structure shown in Figure 3a,b (i.e., the
red-dotted box), appears in a different position; it denotes the value of the positional error
between the two images. To verify the performance of our proposed registration method,
we compared the results with those of two other methods. The first method suggested
matching the two images using the orbit and precise external digital elevation model
(DEM) data. Each primary and secondary image was required to be resampled in a bilinear
method to be matched based on the DEM. We used the external Shuttle Radar Topography
Mission (SRTM) 1 arc sec DEM [39] file in the Geotiff format. As the previously used
image of the KOMPSAT-5 was taken with precise orbit processing at the level product
step, the additional orbit matching process was not required. As a result of the DEM
based registration, as depicted in Figure 3c, we observed an inconsistency as the roads or
structures appeared as two lines. The DI by the second method in Figure 3d was generated
by the cross-correlation method; in this method, FFT was not applied, unlike our proposed
two-step registration. This method is widely used, and unlike the DEM method, the
matching performance is satisfactory, as shown in Figure 3d. However, a peculiar pattern
may occur during the resampling or warp process. In addition, when the initial position
error between the pair of images is large, registration fails. The results of our two-step
coregistration are shown in Figure 3e. Unlike the other two methods, the overlapping
phenomenon completely disappeared, and a clear DI could be obtained, as depicted in
Figure 3e.

Subsequently, the geometric range can be distorted in SAR images because of the tilt
angle of the sensor and topographical variations of the scene. As we used a pair of Level 1A
images to create the DI, terrain correction was required to compensate for these distortions
such that the geometric representation of the image would be as close as possible to the
real world. The same DEM data used for terrain correction were also used.
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(a) (b)

(c) (d) (e)

Figure 3. Comparison of the proposed coregistration result on difference image with other method.
(a) Original primary image, Im. (b) Original secondary image, Is. (c) DI result by DEM coregistra-
tion method. (d) DI result by cross-correlation coregistration method. (e) DI result by proposed
coregistration method.

3.2. Scale-Adaptive DI Modification Method

In change detection, a feature that exists only in the primary or secondary image
shows a strong pattern, but the parts that are not removed, such as noise or background,
appear in both images with different intensity levels. In addition, the high performance of
change detection implies that as much noise as possible is removed, and only the parts with
significant differences are extracted from the two images. The log-ratio intensity method
is widely used for change detection in SAR. However, instead of log-ratio intensity, we
propose a scale-adaptive modification of DI for high-performance change detection. When
generating DI, the intensity distribution refers to the linear difference Im−Is between the
two scaled images that has a value in the range [0, 1], and the DI that has a value in the
range [−1, 1].

As shown in Figure 4a, in the dynamic range distribution of the DI, the left tail of the
graph denotes the part that exists only in the secondary image and the right tail corresponds
to the primary image. The middle part in Figure 4a is present in both images; therefore,
it can be considered to be noise or an unchanged part similar to the background in both
images. As our final goal was to detect the changed objects in the two images, it was
necessary to maximize the difference by analyzing the dynamic range and modifying the
distribution by applying Equation (3).

NDij =


1, if NDij > max(NDij)× 0.3
−1, if NDij < min(NDij)× 0.3
0, otherwise.

(3)

where NDij represents the normalized difference map value. According to Equation (3),
we set the convert values exceeding 30% of the maximum value in the original DI (NDij)
to 1, and the values below 0.3 of the minimum value to −1 (refer to Figure 4b). Here,
30% is the optimal value obtained through the experimental results while changing the
corresponding parameter by 2%. If the processing criterion is less than 30%, the change
in the target feature size is drastically reduced. However, when it is higher than 30%, the
background noise increases; the number of extraction candidates sharply increases; and
ultimately, the number of false positives increases.
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(a) (b)

Figure 4. Intensity distribution change by applying scale-adaptive modification. (a) Intensity distri-
bution of original difference image. (b) Intensity distribution of modified difference image.

Thus, if the scaling of the entire intensity distribution of DI is adjusted and changed,
the overall intensity of the change can be clearly distinguished. In addition, the background
or noise present in both images is removed and, in particular, the degree of change is
maximized by discretely changing the continuously distributed change scaling. When
Equation (3) was applied to the original DI in Figure 5a, more than 99% of high-intensity
speckle noise was removed as shown in Figure 5b.

(a) (b) (c)

Figure 5. Example of pixels change around target by applying scale-adaptive modification. (a) Origi-
nal Image. (b) Image after applying Equation (3). (c) Image after applying median filter.

In the next step, the 3× 3 median filter, as described in Equation (4), was adopted to
remove the remaining noise and maintain the shape of the object by smoothing.

y[m, n] = median{x[i, j], (i, j) ∈ w} (4)

The median filter [40] is a nonlinear method that defines the median value within a set
window area and removes outliers that are beyond the sorted values. The bottom right box
in Figure 5c shows the effects of the median filter that highlights the shape by filling the
pixels of the changed objects displayed in green and removing almost all the background
pixels. Through this process, a clear change detection map was obtained. As shown in
Figure 6, after applying the scale-adaptive modification and median filter proposed to
DI, it can be confirmed that the clutter part of the noise around the target was completely
removed, and the features of the targets were obtained.
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(a) (b)

Figure 6. 3D distribution of change detection results around the target applied by the proposed
scale-adaptive modification. (a) 3D Histogram of original DI. (b) 3D Histogram of modified DI.

4. Proposed Desired Target Extraction Method and Performance

This section introduces the process of extracting target candidates from the change
detection map.

4.1. Feature-Based Polygonization of Changed Pixels Groups

As described in Section 3.2, the pixels in the change detection map had −1, 0, and
1 in the same dimension. The raster image in the change detection was mapped into
each valued dimension, −1, 0, and 1; we named this process reclassification. During the
reclassification process, the raster image in the change detection map is mapped to each
valued dimension.

In this process, neighboring pixels with the same value comprise one polygon. Through
polygonization of the pixel groups on the dimension map, each pixel group can be analyzed
as an object with its shape. As shown in Figure 7, zero-valued pixels were considered to be
noise; therefore, they were not converted into polygons, and all corresponding information
was deleted. Only two polygon sets, one composed of −1 valued (red) pixels and the other
of 1 valued (green) pixels, were created and considered as candidate groups of objects.

Figure 7. Polygonization of candidate pixel groups.

When a change detection map was created using two KOMPSAT-5 images and con-
verted into a polygon set, the number of polygons in each set was approximately 103–104.
Therefore, it is necessary to apply an algorithm that focuses solely on meaningful tar-
get polygons.

4.2. Morphology-Based Target Extraction Method

In this study, the target of interest was a vehicle at an urban site. We collected more
than 300 cars as the ground truth dataset and analyzed their morphological characteristics,
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such as area, length, and shape index (SI). The SI was calculated based on the combination
of the perimeter and area of each polygon using the following formula [41]:

SI =
Pi

2
√

πai
(5)

where Pi is the perimeter of the input polygon ith and ai is the area of the ith input polygon,
respectively. When the SI value is close to 1, the polygon has a form close to the regular
form, such as a circle or square, whereas the polygon has an elongated atypical form when
the SI value is large. The SI is applied for the first time to target extraction in SAR images
in this study and is used as a discriminator to differentiate between undesired and target
objects. The criteria for each parameter were also set through morphological analysis of the
ground truth data. The morphological parameters are shown in Figure 8.

Figure 8. Area, length, and perimeter of shapes.

Among the parameter filters, we first applied the ’area’ filter. Only polygons that were
larger than the threshold (=18) area were considered as the candidate objects of interest;
smaller ones were considered to be errors and were removed.

The shape of the desired objects was close to a rectangle, and as the size of the object
increased, a more elongated rectangular shape was obtained; the horizontal lengths of
the small and large objects were similar, but the vertical length increased. Therefore, a
large vehicle has a higher SI value than a small vehicle. The object we intend to extract in
this step is not the original shape; thus, there is an inevitable change in the shape of the
objects. The second criteria for polygon selection are listed in Table 2. Considering image
resolution and dataset uncertainty, we categorized the object types into three categories:
type 1 denotes small vehicles; type 2 denotes medium sized vehicles, such as buses and
trucks; and type 3 denotes large-sized objects, such as heavy equipment vehicles. Examples
of the three types of desired/undesired objects and their morphological information are
depicted in Figures 9 and 10.

Table 2. SI and area criteria for target extraction.

Category Shape Index Area (m2)

Type 1 1.4 < SI < 2.2 18 < Area < 40
Type 2 1.5 < SI < 2.9 40 < Area < 80
Type 3 1.8 < SI < 3 80 < Area < 100

Finally, to distinguish meaningful targets from incorrect objects, such as artificial
structures, the long axis of the polygon was calculated as the length of the target, as depicted
in Figure 8. After creating a line connecting all points of the polygon, the maximum length
of the polygon was set as the longest line. In this study, only polygons longer than 10 m
(10 m-size) were selected as the final target object.
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Figure 9. Morphology characteristics of desired targets.

Figure 10. Morphology characteristics of undesired targets.

4.3. Target Extraction Performance

Our test sets of KOMPSAT-5 images are in the HDF5 format, and level 1A of size
10, 000× 10, 000 and 10 test pairs of the images acquired between January 2018 and August
2020 were randomly selected. To validate our method, we counted all candidate targets
in the results of each filter step. Table 3 describes the overall performance of the target
extraction process and the final precision of changed target extraction.

Table 3. Performance of the filtering process and final precision of the changed moving target
extraction.

Set

Number of Candidates of Target Moving Objects

Ground TruthInitial Cut-off Apply Apply
Status by Area SI Criteria Length Criteria

1 7665 152 111 40 37

2 6827 60 49 18 15

3 9794 120 93 35 31

4 11,023 90 72 33 33

5 6553 76 55 31 29

6 10,834 102 65 31 25

7 3524 75 60 29 26

8 13,996 149 107 37 37

9 13,714 85 68 28 26

10 95,733 352 203 63 56

In this test, we evaluated the performance of morphology-based extraction perfor-
mance. The initial status in Table 3 represents the number of polygons after the completion
of the polygonization process, as described in Section 4.1; more than 104 polygons were con-
sidered to be initial target candidates, as described in the 2nd column in Table 3. Compared
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with the 2nd and 3rd columns in Table 3, approximately 99% of the undesired polygons
were removed in the area filtering step. In the SI filtering step described in the 4th column,
18–37% of the objects are filtered out. Finally, we applied the length criteria described in
the 5th column. After the SI filter step, the extraction accuracy was increased by removing
the wrong targets of similar shapes. As a result, we extracted 0.39% of the ratio of the
initial status to objects after applying the cutoff, SI, and length criteria. This implies that
the proposed filter works effectively at each step.

5. Integrated Performance and Discussion

The implemented method is intended for changed vehicle extraction from a pair of
SAR images. The detector was evaluated on randomly selected 10 pairs of the test set, and
the final extraction result was compared with the optical image.

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2× recall × precision
recall + precision

(6)

The precision of Equation (6), which is an object extraction performance index, was
calculated by comparing the extracted changed objects with the ground truth sheet. We
denote the set of correctly detected objects as true positives (TPs), the set of falsely detected
objects as false positives (FPs), and missed objects as false negatives (FN). As shown in
Table 4, from 10 pairs of arbitrary test sets, an average extraction performance precision of
84%, a recall of 91%, and F1 score of 87% were obtained.

Table 4. Performance of the desired target extraction.

Set Precision Recall F1 Score

1 0.88 0.97 0.92
2 0.94 0.94 0.94
3 0.91 0.97 0.94
4 0.82 0.96 0.89
5 0.74 0.92 0.82
6 0.81 0.81 0.81
7 0.79 0.96 0.87
8 0.78 0.91 0.84
9 0.93 0.84 0.88

10 0.84 0.80 0.81

The CNES/Airbus and Maxar [42] optical images were used as auxiliary data to un-
derstand the extraction performance. Figures 11–13 depict examples of verification of the
extraction performance by comparing the developed methodology with optical images.
Figures 11a–13a are matched optical images with the SAR primary image shown in
Figures 11c–13c and Figures 11b–13b are matched with Figures 11d–13d. The red dotted
boxes in Figures 11e–13e indicate the area from which the change object was extracted.

A large vehicle that was not visible in the red box in Figure 11c appeared in
Figure 11d, which is the target we intend to extract. When the proposed model was
applied to the primary and secondary images, as shown in Figure 11e, the recently emerged
vehicle was extracted, excluding the buildings and roads that existed in both images.

Figure 12e shows the result of extraction from the other set of Figure 12c,d, and the
large vehicle found between the complex buildings in the secondary image was accurately
extracted. The results showed that the changed vehicle, which appeared in the secondary
image, was not detected in the primary. In fact, structures that existed in both the images,
such as roads and houses, were not detected. Figure 12 displays the results where only
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vehicles in the yellow boxes that exist between more complex buildings were detected.
In particular, only the target was detected using the proposed method, even though the
smearing phenomenon appeared in the secondary image. Similarly, Figure 13 shows that a
newly parked vehicle next to the building was accurately detected.

Figure 11. Target extraction result between two images captured on January and February 2018.
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Figure 12. Target extraction result between two images captured on January and February 2018.
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Figure 13. Target extraction result between two images captured on October and November 2019.

It was confirmed that the automatic detection integrated model (change detection,
object extraction) developed in this study effectively extracts the changed target from the
two images of KOMPSAT-5 as described above. In the change detection model, a method
of applying scale-adaptation correction to the difference image was proposed in order to
emphasize the part where the change occurred in two arbitrary images. Scale-adaptation
plays a role in highlighting the part where the change occurs in order to differentiate from
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the speckle noise included in the SAR image and the fixed objects present in both time series
data. Through parameter change and multiple tests, the part corresponding to 30% of the
maximum/minimum value in the difference image was converted to +/−1, and the other
parts were replaced with 0, making it possible to distinguish the change object from the
background. The median filter enhances the change detection performance by emphasizing
the shape of the change-occurring part and removing the remaining noise. In the object
extraction step, by polygonizing the remaining candidate pixel groups in the result of
the change detection step, they are transformed into individual objects. As a result, the
change detection result was changed to a collection of objects that can analyze individual
characteristics. By applying the shape index to the object extraction in the SAR image, we
enabled effective extraction based on the morphology feature of the objects of interest. In
particular, when objects are extracted from a change detection image (difference image), an
object such as a vehicle changes to an irregular shape in the difference step; nevertheless,
we were able to extract the desire targets with high performance. We finally integrated the
above two change detection/object extraction models including preprocessing into one
model, and this model extracts the results within about 5 min for two arbitrary KOMPSAT-5
images. The extraction result image (.img) of the desired targets in which the change has
occurred and auxiliary data about the extraction are described as a result. In particular, the
model was developed so that auxiliary data of the extracted targets such as date, location,
and shape information (length, area, etc.) are described in separate documents (.csv and
.shp). It is expected that such an automated extraction model will be helpful in monitoring
and calculating statistical data for the region of interest.

In this study, an extraction method was proposed based on a pair of images with
the same imaging conditions. However, in the case of SAR, many cases are taken while
changing the incidence angle/looking mode. In particular, when the incidence angle is
changed, the spacing of pixels for each image changes, making it impossible to analyze
with the proposed model. Therefore, to overcome this limitation, we plan to enhance the
model in the future, such as by image spacing conversion according to the incidence angle
and automatic adjustment of the analysis area that are dependent on the looking mode.

6. Conclusions

In this study, to automatically extract changed objects in multiple KOMPAT-5 datasets,
we developed a model that integrated change detection and object extraction for the first
time. We adopted scale-adaptive difference image modification to highlight the changed
parts. In addition, morphology-based indicators effectively discriminate between desired
and undesired objects and improve the final extraction accuracy. The proposed method
achieved an accuracy of approximately 90% for changed target extraction from two random
SAR images. This integrated model is expected to be effectively utilized for extracting
various target-based statistical information from multiple KOMPSAT-5 datasets. However,
it remains challenging to reduce the false detection rate when the incidence angles are
distinctly different for each image. This yields a difference in pixel spacing between
the images, resulting in large positional errors or distortions. Furthermore, owing to
the limitation of the image resolution, when the type of vehicle or parking direction is
slightly changed, detection poses a difficulty. Therefore, in the future, we will improve
the proposed method through the adaptive conversion of pixel spacing or by using a
deep-learning technique.
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