
Citation: Li, J.; Li, Z.; Chen, M.;

Wang, Y.; Luo, Q. A New Ship

Detection Algorithm in Optical

Remote Sensing Images Based on

Improved R3Det. Remote Sens. 2022,

14, 5048. https://doi.org/

10.3390/rs14195048

Academic Editors: Xinghua Li,

Fan Zhang, Bo Tang, Wei Yao,

Zhongling Huang and Zongxu Pan

Received: 25 August 2022

Accepted: 4 October 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A New Ship Detection Algorithm in Optical Remote Sensing
Images Based on Improved R3Det
Jianfeng Li 1,* , Zongfeng Li 1,2, Mingxu Chen 1 , Yongling Wang 1 and Qinghua Luo 1

1 School of Information Science and Engineering, Harbin Institute of Technology at Weihai,
Weihai 264209, China

2 School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
* Correspondence: lijianfeng@hit.edu.cn

Abstract: The task of ship target detection based on remote sensing images has attracted more and
more attention because of its important value in civil and military fields. To solve the problem of
low accuracy in ship target detection in optical remote sensing ship images due to complex scenes
and large-target-scale differences, an improved R3Det algorithm is proposed in this paper. On the
basis of R3Det, a feature pyramid network (FPN) structure is replaced by a search architecture-based
feature pyramid network (NAS FPN) so that the network can adaptively learn and select the feature
combination update and enrich the multiscale feature information. After the feature extraction
network, a shallow feature is added to the context information enhancement (COT) module to
supplement the small target semantic information. An efficient channel attention (ECA) module is
added to make the network gather in the target area. The improved algorithm is applied to the ship
data in the remote sensing image data set FAIR1M. The effectiveness of the improved model in a
complex environment and for small target detection is verified through comparison experiments
with R3Det and other models.

Keywords: optical remote sensing image; ship detection; R3Det; attention mechanism; context
information; NAS FPN

1. Introduction

With the continuous development of satellite technology, the resolution and imaging
quality of remote sensing optical images have also been greatly improved [1]. Compared
with traditional synthetic aperture radar (SAR) imaging, it contains a great deal of color
information, ship shape features, and texture structure features, which enables us to
obtain more abundant sea surface information [2]. The recognition and monitoring of
ship targets on the sea based on optical remote sensing images have important application
prospects in the management of maritime traffic, fishing, maritime search and rescue,
border surveillance, and other civil and military aspects [3].

At present, traditional methods based on segmentation and feature and depth learning
methods based on convolutional neural networks are often used in ship target detection [4].

Many traditional detection methods detect ship targets through handcrafted feature
extraction, such as methods based on gray-level features [5,6], template-based matching
methods [7,8], methods based on shape features [9,10], and so on. Most of the traditional
algorithms have achieved success in fixed-scene applications. However, when ships are in
a complex environment, they may encounter bottlenecks. Moreover, the establishment of
handmade features relies too much on expert experience, which makes its generalization
ability weak.

Compared with traditional feature extraction methods, a neural network has more
deep and complex feature expression ability. After nonlinear transformation, the extracted
feature semantic information is more abundant, and the robustness is stronger in the face
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of a complex sea and air environment [11]. Xue et al. proposed a rotation dense feature
pyramid network (R-DFPN) framework, aiming to effectively detect ships in different
scenes, including ocean and port. Through comparative experiments, it was verified that
R-DFPN has excellent performance in multiscale and high-density objects. However, there
are still many false alarms and errors in model detection [12]. Chen et al. proposed an
improved YOLOv3 (ImYOLOv3) based on an attention mechanism. They designed a new
light attention module (DAM) to extract the identification features of ship targets. This
method can accurately detect ships of different scales in different backgrounds in real time.
However, this method has difficulty accurately expressing a ship based on a horizontal
detection frame [13]. Zhang et al. first used a support vector machine (SVM) to divide
an image into small regions of interest (ROIs) that may contain ships and then used an
improved target detection framework, a fast region-based convolutional neural network
(Faster RCNN), to detect ROIs. The model was able to detect both large ships and small
ships, but it also had the problem of inaccurate positioning [14].

The above ship detection algorithms have achieved good detection results, but there
is still much room for improvement in dealing with complex scene interference, ship-scale
differences, and other issues. Therefore, in order to improve the detection effect of ship
targets in remote sensing images, this paper uses R3Det as the benchmark model and
improves the above problems.

This paper makes the following contributions:

1. Atmospheric correction of remote sensing images is performed by the dark channel
prior method, and ship targets are detected and recognized based on the R3Det model.

2. Aiming at the problem of large-scale differences in ship targets in remote sensing
images and easy interference of complex backgrounds, an improved method based
on NAS FPN and channel attention ECA is proposed.

3. Deformation convolution and dilated convolution to enrich the context information
of small ship targets are introduced.

2. Materials and Methods
2.1. FAIR1M Dataset

FAIR1M is the world’s largest satellite optical remote sensing image target recognition
data set released by the China Aerospace Research Institute [15]. Its content includes
image target annotation of various surfaces. Based on the needs of the subject, this paper
selects the ship data. As shown in Figure 1 below, 9 types of ship targets are marked in the
data set.
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Figure 1. Class 9 ship targets in FAIR1M: (a) passenger ship (Ps); (b) motorboat (Mb); (c) fishing 
boat (Fb); (d) tugboat (Tb); (e) engineering ship (Es); (f) liquid cargo ship (Lc); (g) dry cargo ship 
(Dc); (h) war ship (Ws); (i) other ship (Os). 

2.2. Atmospheric Correction 
Satellite-based remote sensing images need long-distance atmospheric transmission, 

and the radiance received by a satellite is attenuated by atmospheric absorption. In addi-
tion, particles in the atmosphere are also reflected into the imaging light path, thus reduc-
ing the contrast of the remote sensing image, resulting in a layer of water mist in the image 
visually [16]. In this paper, dark channel prior theory [17] is used for atmospheric correc-
tion of remote sensing images. The algorithm flow of atmospheric correction is shown in 
Figure 2. 
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Figure 1. Class 9 ship targets in FAIR1M: (a) passenger ship (Ps); (b) motorboat (Mb); (c) fishing boat
(Fb); (d) tugboat (Tb); (e) engineering ship (Es); (f) liquid cargo ship (Lc); (g) dry cargo ship (Dc);
(h) war ship (Ws); (i) other ship (Os).

2.2. Atmospheric Correction

Satellite-based remote sensing images need long-distance atmospheric transmission,
and the radiance received by a satellite is attenuated by atmospheric absorption. In addition,
particles in the atmosphere are also reflected into the imaging light path, thus reducing
the contrast of the remote sensing image, resulting in a layer of water mist in the image
visually [16]. In this paper, dark channel prior theory [17] is used for atmospheric correction
of remote sensing images. The algorithm flow of atmospheric correction is shown in
Figure 2.

The images before and after atmospheric correction are shown in Figure 3. It can be
seen from the figure that the ship target and background in the corrected image are clearer,
which is conducive to improving the detection accuracy of ships.

2.3. Training Set and Test Set

The size of the remote sensing images in the data set is different and generally large, but
due to the limitation of computing hardware, current object detection networks generally
allow input images of small size [18]. Van Etten [19] demonstrated that directly scaling
remote sensing images to sizes allowed by a network would lose many image details.
Therefore, this section cuts the training image to 800 × 800, overlaps 100 pixels, and
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generates 6622 training images and 1126 testing images in total. Table 1 shows the number
of various ship targets in the training set and the test set.
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Table 1. Number of ships in training set and test set.

Category Ps Mb Fb Tb Es Lc Dc Ws Os

Training Set 792 7434 4791 1472 1485 3428 10627 761 2314
Testing Set 121 1393 1061 250 300 602 1962 101 601

In Table 1: passenger ship, Ps; motorboat, Mb; fishing boat, Fb; tugboat, Tb; engineering ship, Es; liquid cargo
ship, Lc; dry cargo ship, Dc; war ship, Ws; other ship, Os.

3. Methods

In this paper, a single-stage rotating target detector R3Det [20] is selected to detect
ship targets in remote sensing images. R3Det is an improvement based on the Retinanet
algorithm [21], adding an FRM (feature refinement module) and designing a loss function
of the approximate skew bound intersection (SkewIOU) to enhance the detection effect of
rotating targets. The structure of R3Det is shown in Figure 4.
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Figure 4. R3Det model structure.

The R3Det algorithm takes ResNet50 as the feature extraction network and performs
feature multiscale fusion expression through FPN (feature pyramid network) to enhance
the detection ability of multiscale targets. The predictor is divided into two convolution
networks with shared weights to realize category regression and prediction frame parame-
ter regression, respectively, and the FRM is designed. Its structure is shown in Figure 5,
which solves the problem of feature misalignment in rotating box regression.
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R3Det combines the advantages of high recall of horizontal anchors and dense adapt-
ability of rotating anchors. In the first stage, horizontal anchors are generated to improve
detection accuracy. In the refinement stage, the bounding box is filtered, and only the
bounding box with the highest score of each feature point is retained to improve detection
speed. In the FRM, the five coordinates (center and four vertices) of the feature point
bounding box are bilinearly interpolated to obtain the corresponding position information,
and the entire feature map is reconstructed pixel by pixel to achieve alignment between the
rotation box and the target feature.

Due to the large-scale differences in each ship target, the artificially designed top–
down feature fusion path in FPN has difficulty accurately expressing multiscale features. In
this paper, the feature pyramid structure of FPN in R3Det is replaced by the feature search
fusion network structure, NAS FPN. The network updates and combines multiscale features
through reinforcement learning to enrich multiscale feature information. Considering the
background interference caused by the wide imaging range of remote sensing images,
adding an attention mechanism can improve the significance of target features and improve
the positioning accuracy of ship targets. This paper adds a lightweight channel attention
module, ECA, to make the model focus on the target region. In order to solve the problem
of detection difficulty caused by the less available features of small ship targets, a context
information enhancement module COT, based on deformation convolution and dilated
convolution, is designed to enrich the features of small ship targets by using the context
information around small targets. The size of anchors in the original R3Det algorithm is not
suitable for ship targets with large aspect ratios. This paper modifies the size of anchors
based on the model and uses k-means clustering analysis to design the prior frame aspect
ratio to improve the detection and positioning effect. The problems and improved methods
of ship detection based on R3Det are shown in Figure 6.
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The improved model structure is shown in Figure 7. The ECA modules are added to
the input feature layers of FPN, and COT is added to the shallow feature layer.
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3.1. Search Architecture-Based Feature Pyramid Network (NAS FPN)

The network architecture search algorithm (NAS) is a popular algorithm in the field of
deep learning that can adaptively learn and modify the neural network structure based
on the characteristics of the data [22]. Wang et al. improved the FPN structure by using
the NAS algorithm and designed a frame-adaptive search-based FPN model [23]. In FPN,
only the path from the top feature to the bottom feature is simply adopted, while NAS
FPN selects the appropriate feature fusion path through reinforcement learning. The fusion
process is shown in Figure 8. NAS FPN is composed of an RNN controller and fusion
module. Firstly, the feature map extracted from the backbone network is put into the
candidate feature layer. The RNN controller controls the fusion module to select two
feature maps as inputs in the candidate feature pool. Select the output size and fusion
operation output features as new features, put them into the candidate feature layer, or
output them until each layer of the feature pyramid is output, replacing the manually
designed fusion path to realize multiscale feature cross fusion. The RNN controller adopts
the reinforcement learning method, and its parameter learning takes the AP value detected
by the model as the update excitation.
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3.2. Channel Attention Module (ECA)

In recent years, attention mechanism models inspired by human visual attention have
been developing continuously. Implementing attention techniques in neural networks
helps the network focus on the essential parts of a problem, maximizing accuracy and
efficiency [24]. The large-scale background interference in remote sensing images brings
great challenges to target detection [25]. Adding an attention model can improve the
robustness of the model against interference and the positioning accuracy of ship targets.

In this paper, a lightweight channel attention mechanism module ECA [26] without
dimensionality reduction is added to the model. The structure of the ECA module is shown
in Figure 9. The input feature map through global average pooling and the size k of the
convolution kernel is determined by the adaptive method to carry out the one-dimensional
convolution operation so as to realize the cross-channel interaction of information. After
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the sigmoid activation function, the weight of each channel is obtained. Finally, the weight
is multiplied by the original feature map to improve the saliency of the target feature.
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Figure 9. ECA module structure.

There is a mapping relationship between the size k of the one-dimensional convolution
kernel and the input channel C:

C = ϕ(k) = 22k−1 (1)

Therefore, given the dimension C of the input channel, the size of the convolution
kernel can be obtained:

k = Φ(C) =
∣∣∣∣ log2(C)

2
+

1
2

∣∣∣∣
odd

(2)

3.3. Context Information Enhancement Module (COT)

The difficult problem of detecting small targets has always been an important task
to be solved in the task of target recognition. Usually, the pixels of small targets in an
image are low, and the features available for mining are limited, which makes the model
insensitive to small targets and difficult to locate accurately [27]. To solve this problem,
expanding the feature receptive field and taking the background information of small
targets as a supplement can effectively improve the positioning accuracy of the model for
small targets [28].

Inspired by the ac-fpn [29] structure proposed by Cao et al., this paper introduces
deformable convolution and dilated convolution and designs the COT context information
enhancement module. Its structure is shown in Figure 10. At the same time, considering
the feature volatility and model complexity of small targets in the deep network [30], just
add the COT module to the shallow feature map extracted by the ResNet50 network to
realize the supplement and enhancement of the context information of small targets.
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Compared with ordinary convolution, deformable convolution adds an adaptive
learning offset [31] to the receptive field of convolution so that the receptive field is no
longer a simple rectangle but changes with the shape of the target object to adapt to the
geometric deformation of various objects, as shown in Figure 11b. Considering that the
ship target has obvious length and width differences and is distributed at any angle in
a remote sensing image [32], the rectangular receptive field of ordinary convolution will
introduce too much background interference, and the deformation convolution will make
the receptive field concentrate around the ship target to improve the feature significance.
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Dilated convolution [33] is based on ordinary convolution; the void rate is set, and the
characteristic sampling points of the original convolution are expanded externally, which
expands the target perception field, but the convolution kernel size is not changed [34].
Figure 11c shows the 3 × 3 hole convolution receptive field with a hole rate of 1. The
dilated convolution is used to supplement the context information of the ship target to
enrich the semantic features [35], such as near shore information, sea surface information,
the position information of the ship berthing side by side, and other hidden information
associated with the ship target. The feature information of a small ship target is used to
improve detection accuracy.

In the COT module shown in Figure 11, the features are first convoluted through
deformation to significantly enhance the features of the ship target, and then the compact
context information around the target is extracted through dilated convolution to avoid
more background interference caused by the holes in the receptive field.

3.4. Anchor Improvement

In view of the inaccurate positioning of the target detection above, this section modifies
the scale of the anchors. The R3Det model performs regression prediction on the rotating
target based on the horizontal anchors. The sizes of the anchors are manually set, and they
need to be adapted for the actual detection task. The base anchors for the multiscale feature
outputs by the FPN in the original model are (32, 64, 128, 256, 512). However, the size of
512 × 512 is not suitable for ship targets in remote sensing images. Considering that the
size of small ship targets is generally below 20 × 20, this paper modifies the sizes of the
basic anchors to (16, 32, 64, 128, 256). At the same time, the aspect ratio of the original
anchors (1:1, 2:1, 1:2) does not have a good pertinence for the ship target. In this paper,
the k-means clustering method is used to cluster the length–width ratio of the data. Class
analysis is performed to obtain the optimized aspect ratio.

The process of adopting the k-means clustering method is shown in Figure 12. First, K
clustering centers are set, their values are randomly selected in the data, and the distances
between each sample and the K clustering centers are respectively calculated. In this paper,
the intersection union ratio IOU of the bounding box is used to calculate the distance
between the sample and the K clustering centers, and all the boxes are divided into K
regions according to the distance. The average value of each region is calculated to replace
the original clustering center, and the iterative cycle is carried out until the value of the
cluster center does not change.

The results after clustering are shown in Table 2. Three anchors with different aspect
ratios are used in the original model, so K is set to 3. Since the results of 3 cluster centers
are similar, this paper uses the analysis results of 5 cluster centers to set the aspect ratio as
(0.63, 1, 2.49).
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Table 2. Clustering results of data.

Cluster Center Aspect Ratio IoU

2 (1.11 1.15) 44.8
3 (1.06 1.11 1.12) 50.2
4 (0.92 1.0 1.11 1.23) 53.8
5 (0.63 1.05 1.08 1.15 2.49) 56.7

4. Results
4.1. Training Process

In this paper, the R3Det model is trained in the windows system. The software
environment is pytorch1.3 and python3.7, and the hardware environment is an Intel (R)
core (TM) i7-8750h, NVIDIA GTX 1070 (8 GB), and 16 GB memory. The initial learning rate
is set to 0.004, the IOU threshold is set to 0.4, the number of training data is 6621, and the
number of testing data is 1126. When inputting the model, random flipping is performed.

4.2. Evaluation Index

In this paper, average precision AP (average precision) is used as the performance
evaluation index of the ship detection model, and the calculation formula is:

p = TP
TP+FP

r = TP
TP+FN

AP =
∫ 1

0 p(r) dr
(3)

TP is the number of targets correctly classified, FP is the number of backgrounds
recognized as targets, and FN is the number of objects recognized as the background. The
accuracy rate p (precision) represents the ratio of the correct target detected in all detection
results. The recall rate r (recall) indicates the ratio of the detected correct target to the true
value of all targets. The area enclosed by the curve with p as the vertical axis and r as the
horizontal axis and the coordinate axis is the AP value. AP is used to measure the detection
accuracy of single-class targets. The closer the AP value is to 1, the higher the detection
accuracy. Map is the AP mean of object detection in multiclassification tasks.

4.3. Improvement Effect

The R3Det model can detect ship targets in remote sensing images accurately. However,
the detection effect of the model for small ship targets is poor, there are many missed
detections when the small ships are densely arranged, and the positioning of the ships
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is inaccurate. Based on the above improvements, the two types of problems have been
effectively improved, as shown in Figures 13 and 14.

Ablation experiments were carried out for each improvement. The recognition effect
of some ship targets that are difficult to detect is shown in Table 3. Through a comparison
of experiments one and two, the use of NAS FPN as a multiscale fusion network has better
advantages than FPN in the expression of multiscale target features because NAS FPN
searches for an optimized feature fusion path through reinforcement learning, and the
feature expression is rich, which makes the model perform better. Through experiments
two and three, it can be observed that the improvement in the anchor and the addition
of the attention mechanism can significantly improve the detection performance of the
model, and the attention mechanism can filter the background interference to obtain more
significant characteristics of the ship. The recognition accuracy of the model for small ship
targets has been greatly improved, and the sensitivity of the model to small ship targets has
been improved. Comparative experiments four and five show that the introduced context
information enhancement structure enriches the feature information of small target ships
and enhances the sensitivity of the model to target ships.
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As shown in Table 3, the addition of each module can effectively improve the recog-
nition rate. In order to more accurately illustrate the effect of the model improvement,
experiment four and experiment five are taken as examples (the experimental results are
close), and the model is trained three times, respectively. The average value is taken as the
final result, and the mean and standard deviation of the detection accuracy is calculated.
The result is shown in Tables 4 and 5.



Remote Sens. 2022, 14, 5048 12 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 13. Display of test results before and after model improvement—small target missed detec-
tion improvement. 

 
Figure 14. Display of test results before and after model improvement—inaccurate
positioning improvement.

Table 3. Test results of improved ablation experiments.

R3Det NAS
FPN ECA Improve

Anchor
Atmospheric

Correction COT Mb
(AP)

Fb
(AP)

Os
(AP) mAP

1
√ 1 0.341 0.308 0.166 0.535

2
√ √

0.394 0.401 0.222 0.586
3

√ √ √ √
0.527 0.497 0.301 0.621

4
√ √ √ √ √

0.546 0.522 0.382 0.651
5

√ √ √ √ √ √
0.648 0.547 0.402 0.661

1 √: This module is added to the model.

Table 4. AP values of various targets detected in experiment four.

Category Ps Mb Fb Tb Es Lc Dc Ws Os mAP

First 0.680 0.546 0.522 0.715 0.720 0.769 0.769 0.754 0.382 0.651
Second 0.646 0.549 0.518 0.725 0.734 0.772 0.763 0.721 0.356 0.643
Third 0.647 0.555 0.515 0.727 0.735 0.761 0.763 0.724 0.367 0.644
Mean
value 0.658 0.550 0.518 0.722 0.730 0.767 0.765 0.733 0.368 0.646

Standard
deviation 0.016 0.004 0.003 0.005 0.007 0.005 0.003 0.015 0.011 0.004
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Table 5. AP values of various targets detected in experiment five.

Category Ps Mb Fb Tb Es Lc Dc Ws Os mAP

First 0.640 0.648 0.547 0.728 0.742 0.771 0.771 0.703 0.402 0.661
Second 0.671 0.633 0.526 0.727 0.734 0.775 0.769 0.743 0.393 0.664
Third 0.697 0.650 0.525 0.710 0.743 0.774 0.772 0.742 0.405 0.669
Mean
value 0.669 0.644 0.533 0.722 0.740 0.773 0.771 0.729 0.400 0.665

Standard
deviation 0.023 0.008 0.010 0.008 0.004 0.002 0.001 0.019 0.005 0.003

The results of the above experiments show that the addition of each module can
effectively improve the detection accuracy of the model.

Due to the large difference between the scales of different ships, the multiscale feature
information of the model before the improvement is limited. Figure 15 shows the detection
and comparison results of the model before and after replacement with NAS FPN. It can be
observed that the improved model improves sensitivity to the targets of ships of various
scales and performs a deeper expression of the feature information.

The large-scale background in the remote sensing image has strong interference with
the detection task. Figure 16 shows the detection effect before and after adding ECA.
Adding the channel attention mechanism ECA to the model can preserve the effective
feature information of the region, effectively overcoming the interference caused by the
complex land background in the port environment and, thus, improving feature saliency.
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By comparing the detection effects before and after adding COT in Figure 17, it is
shown that this structure can improve detection performance by mining the hidden context
relevance of the dense arrangement of ship targets. The deformation convolution can
effectively deal with the direction rotation, and the dilated convolution is rich in feature
information, thus enhancing the significance of shallow features.

4.4. Influence of Deformation Convolution Size in COT

In order to verify the effect of deformation convolution size on detection accuracy, the
deformation convolution size of 3 × 3 and 5 × 5 in COT are used in the experiments. The
experimental results are shown in Table 6.

Table 6. AP values of various targets detected using different deformation convolution sizes.

Category Ps Mb Fb Tb Es Lc Dc Ws Os mAP

3 × 3 0.669 0.644 0.533 0.722 0.740 0.773 0.771 0.729 0.400 0.665
5 × 5 0.630 0.630 0.533 0.730 0.753 0.776 0.767 0.736 0.363 0.658

The results show that after the deformation convolution size is changed from 3 × 3
to 5 × 5, the model parameters are increased, but the detection accuracy is not improved.
Therefore, the deformation convolution size of 3 × 3 is used in the improved model.

Table 7 shows the AP values of various targets detected by the improved model. It
can be observed that the improved model can achieve more accurate detection of various
ship targets.

Table 7. AP values of various targets detected in the model before and after improvement.

Category Ps Mb Fb Tb Es Lc Dc Ws Os

Before 0.522 0.341 0.308 0.568 0.677 0.727 0.718 0.785 0.166
After 0.669 0.644 0.533 0.722 0.740 0.773 0.771 0.729 0.400
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Figure 18 shows the detection results of the improved model in various scenarios.
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In the complex nearshore scene, the model can still overcome the large-scale back-
ground interference and achieve good detection results.

4.5. Comparison of Other Target Detection Methods

In order to further verify the effect of the improved model, the commonly used
detection models in remote sensing target detection are selected and tested on the training
set and test set constructed in this paper. The AP and mAP values of different models are
shown in Table 8.

Table 8. AP values of various targets detected in some models.

Category Ps Mb Fb Tb Es Lc Dc Ws Os mAP

R-Fast Rcnn [36] 0.54 0.43 0.34 0.58 0.71 0.73 0.65 0.50 0.21 0.52
Yolov3 [37] 0.45 0.59 0.59 0.51 0.68 0.84 0.83 0.79 0.15 0.60

SSD [38] 0.39 0.10 0.18 0.25 0.52 0.80 0.68 0.71 0.05 0.41
Fast Rcnn [39] 0.41 0.09 0.18 0.17 0.60 0.82 0.67 0.68 0.05 0.41

Our model 0.67 0.64 0.53 0.72 0.74 0.77 0.77 0.73 0.40 0.66

It can be seen from Table 8 that compared with other models, the improved R3Det
model improves the accuracy of ship detection.

5. Discussion

Firstly, according to the differences between different ship scales, the reinforcement
learning method was used to optimize the fusion effect of multistage features to better
detect targets of different scales. Secondly, starting from the channel dimension, the
channel weighting mechanism was introduced to self-learn the importance of the semantic
representation of each channel, improve the significance of effective features, and improve
the model’s ability to distinguish between ships and the background. In addition, to solve
the problem of the difficult positioning of small ships, context correlation between the
target and surrounding objects was explored from the spatial dimension: the deep semantic
significance and spatial information representation were enhanced, and the detection
ability of the model for small ships was optimized. The ablation experiments show the
effectiveness of the above methods in ship detection.

There is still a certain gap between the ship target detection model constructed in
this paper and the actual application scenario. The actual remote sensing images acquired
by satellites usually contain a large number of sea surface and land backgrounds. It is
inefficient to directly detect ship targets in the images, and it has high requirements for
data storage space and data transmission [40]. Therefore, in order to meet the needs of the
on orbit engineering practice of ship target detection, a further optimization direction of
the detection method is to conduct relevant sea–land separation processing on large-scale
remote sensing images.

6. Conclusions

In this paper, an improved R3Det model based on attention and context information
enhancement is proposed, which can handle different complex scenes and detect multiscale
ship targets. For example, the attention model ECA was used to enhance the characteristics
of the target and reduce interference, and NAS FPN was used to enhance the ability to detect
multiscale targets. Finally, in order to improve the detection accuracy of small target ships,
COT was designed. Under the effect of deformation convolution and dilated convolution,
the context information around small targets was enhanced. The effectiveness of the
improved model in a complex environment and for small target detection was verified
through comparison experiments with R3Det and other models. The future work is to
further improve detection speed and accuracy by performing relevant sea–land separation
processing on large-scale remote sensing images.
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