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Abstract: The Three-River Headwaters Region (TRHR), located in the hinterland of the Qinghai–
Tibet Plateau (QTP), is an important water-conservation and ecological-function reserve in China.
Studies of the growth of vegetation in the TRHR and its response to climate under the background
of global warming are of great relevance for ecological protection of the QTP. In this study, based
on MOD13Q1 Enhanced Vegetation Index (EVI) data and ERA5-Land climate data, the ensemble
empirical mode decomposition method, random forest algorithm, and Hurst exponent were used
to detect the spatiotemporal dynamics and response to climate change in TRHR vegetation during
2000–2021. The results indicated the following. (1) Comparatively, the condition of vegetation growth
was better in 2021, 2010, and 2018 and poorer in 2015, 2003, and 2008. The EVI gradually decreased
from the southeast to the northwest, and the area of improved vegetation growth was larger than
the area of degraded vegetation growth. (2) The area of zones with either monotonous greening or
monotonous browning of vegetation was 30.30% and 6.30%, respectively, and the trend of reversed
vegetation change occurred in 63.40% of the areas. The area of future degradation of vegetation in
the TRHR was larger than the area of future improvement, and the risk of vegetation degradation
was higher. (3) Precipitation and soil temperature are the main and secondary driving factors of
vegetation change in the TRHR, respectively. Warming and humidification of the QTP climate play
major roles in the improvement of vegetation growth in the TRHR.

Keywords: vegetation; growth status; spatiotemporal characteristics; climate response; TRHR

1. Introduction

As an important part of Earth’s surface and terrestrial ecosystems, vegetation links
the exchange of materials and energy between soil, water bodies, and the atmosphere, and
is an important indicator of the physical geographic environment [1–3]. Climate change
has a direct impact on the status and trends of vegetation growth [4], and vegetation
can also feed back into climate change by regulating the water–carbon cycle and energy
flow [5,6]. According to the latest assessment by the Intergovernmental Panel on Climate
Change, the global concentration of atmospheric CO2 has increased from 285 ppmv in the
second half of the 19th century (1850–1900) to 414 ppmv in 2020, and the average global
temperature has increased concurrently by 1.09 ◦C [7]. In recent years, global warming has
led to the frequent occurrence of extreme weather events such as floods, high temperatures,
and droughts, which have had a huge impact on terrestrial ecosystems [8–10]. Therefore,
studying the growth and trends of changes in vegetation, comprehensively quantifying the
impact of climatic constraints on the growth of terrestrial vegetation, and improving our
understanding of the dynamic response mechanisms of vegetation are of great relevance
for the accurate prediction of future vegetation trends, ecosystem evolution, and global
change, and for the effective implementation of macro-environmental management.
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Monitoring vegetation growth using remote sensing technology has the advantages
of being macroscopic, dynamic, economical, and efficient. Vegetation indexes provide
potential for monitoring vegetation cover on a large scale and for a long period, and have
produced reasonable results in reflecting changes in vegetation growth [11,12]. With the
increase in the volume of archived remote sensing data and the impact of multisensor
technology, recent research has undertaken analysis of long time series of vegetation using
vegetation indexes at different spatiotemporal scales. For example, vegetation dynamics
on the Qinghai–Tibet Plateau (QTP) were investigated by both Peng [13] and Chen [14]
using AVHRR data and MODIS data, respectively, and their results revealed that QTP
vegetation has undergone a continuous greening process since 1983. Bai [15] used AVHRR
data to analyze the growth trend of vegetation in the Three-River Headwaters Region
(TRHR) in China and its response to climate during 1982–2015. Zhai [16] used MODIS data
inversion to assess the aboveground net primary productivity of the main vegetation types
at different stages of growth in the TRHR. The use of long time series of remote sensing
imagery provides a robust scientific approach for the accurate evaluation of long-term
changes in vegetation growth. Moreover, among the dozens of proposed vegetation indexes,
the Enhanced Vegetation Index (EVI), which can correct for both soil and atmospheric
noise, has a great ability to distinguish vegetation in areas of sparse vegetation and has
been widely used in research to evaluate vegetation change [17]. Vegetation is sparse in
large areas of the TRHR, and therefore, the EVI is considered suitable for reflecting local
vegetation growth.

The vegetation growth trend is an indicator of local hydrothermal activities and can
reflect the impact of climate change on terrestrial ecosystems [18]. Most previous related
studies used linear regression analysis, which adopts a constant rate to determine the
trend of a single raster over a long period, thereby reflecting the spatiotemporal patterns
of regional vegetation change. However, vegetation trends are nonlinear and varied, and
linear regression methods might ignore internal abrupt changes and trend shifts, thereby
obscuring the true trends of vegetation change. Ensemble empirical mode decomposition
(EEMD) can divide a nonstationary time series into a finite set of components with de-
creasing frequency and a long-term trend [19]. The long-term trend extracted by EEMD
is monotonic or contains only one extreme value, and the variability varies with time.
Moreover, such long-term trends do not need to follow a priori assumptions and are insen-
sitive to expansion of the time series [20]. This property allows long-term trends extracted
using EEMD to reveal more fundamental information about nonlinear and nonstationary
vegetation time series [18]. The effectiveness of EEMD in monitoring the dynamics and
trend shifts of long time series of vegetation has been proven in previous research [21,22].

The TRHR, which is located in the central part of the QTP, is the source area of the
Yangtze, Yellow, and Lancang rivers and is known as the “Asian Water Tower.” Since
the 1950s, the QTP has experienced a uniform trend of warming that is almost twice the
global rate of warming [23,24], and this trend is expected to continue until the end of
the 21st century [25]. Concurrently, precipitation on the QTP has shown a slight increase
and strong spatial heterogeneity [26], and the overall warming and humidification of the
QTP have become increasingly pronounced. The TRHR is sensitive and responsive to
global warming, and climate change might have a substantial impact on the growth of QTP
vegetation [27,28]. Owing to the complexity and nonlinearity of the response relationship
between vegetation and climate change, it is difficult to describe the interrelationships
between vegetation and climatic factors in a single regression equation [29]. Since 2000,
under the background of global warming and socioeconomic development, the impact
of humans on the TRHR has reached a new level. To understand the mechanism of the
observed changes in alpine meadow in the context of global warming, as well as to provide
theoretical support for sustainable development of the ecology, economy, and society of the
QTP, it is important to study vegetation growth in the TRHR and its response to climate.
Therefore, this study used MODIS EVI data and ERA5-Land climate data to determine the
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spatiotemporal dynamics of vegetation in the TRHR over the past 20 years and to reveal its
spatiotemporal response to climate.

The objectives of this study were as follows: (1) to analyze the spatiotemporal char-
acteristics of vegetation growth in the study area over the past 20 years, (2) to analyze
the trend change characteristics of vegetation growth and its future trend prediction, and
(3) to identify the main climatic factors affecting vegetation change through quantitative
spatiotemporal analysis.

2. Study Area and Data
2.1. Study Area

The TRHR is located in the south of Qinghai Province in China (31◦38′–36◦20′N,
89◦31′–102◦14′E), covering an area of approximately 363,000 km2 (Figure 1). The TRHR is
the source region of the Yangtze River, Yellow River, and Lancang River, and is known as
the Asian Water Tower. It is an area with a fragile ecological environment that is sensitive to
the effects of climate change. The average elevation of the terrain of the TRHR is >4000 m.
The average annual temperature is between −5.6 and 4.9 ◦C, and the mean temperature
difference between day and night can exceed 20 ◦C. Annual precipitation is in the range
of 390–764 mm, and precipitation is mainly concentrated during June–September. The
eastern part of the TRHR is wetter and has more precipitation than the western part, which
is arid and semiarid with less precipitation. The region has a continental plateau-type
climate with distinct hot/cold and alternating wet/dry seasons. The distributions of soil
and vegetation have the common characteristic of obvious vertical change. With increasing
elevation, the soil type changes from alpine steppe soil to alpine meadow soil, and to alpine
cold desert soil. The main vegetation type is grassland, which accounts for approximately
70% of the total area. The main grassland types are alpine grassland, alpine meadow, and
sparse grassland.
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2.2. Data and Processing

MOD13Q1-EVI (V006) data from 2001 to 2021, obtained from NASA’s Land Processes
Distributed Active Archive Center, were used in this study. The MOD13Q1-EVI product
is a 16-day synthetic vegetation index with a 250 m spatial resolution. The data can be
used for monitoring global vegetation conditions and for characterizing surface biophysical
properties and processes, indicating land cover change. The method of determining the
common maximum-value composite of the annual maximum EVI images was used to
investigate the spatiotemporal change in vegetation in the study area.

The climate data used in the study comprised the 2 m temperature (air temperature
at 2 meters above the surface of the land, sea, or in-land waters, TMP), soil temperature
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level 2 (STMP), total precipitation (PRE), surface pressure (SP), and surface net solar
radiation (SSR) data extracted from the ERA5-Land climate data with a 0.1◦ resolution
(https://cds.climate.copernicus.eu/ (accessed on 20 April 2022)). The diurnal temperature
difference in the TRHR is large, and the surface soil temperature is more susceptible to
external environmental effects; therefore, the STMP at 7–20 cm was used to represent
ground temperature. In this research, 250 m spatial resolution EVI data were used for
analyzing the spatiotemporal characteristics of vegetation growth, while for the analysis of
vegetation response to climate, the EVI data were resampled to a 0.1◦ resolution using the
nearest interpolation method in order to be consistent with the climate data.

Land cover type data were obtained from the global 30 m land cover product with a
fine classification system for 2020 (https://data.casearth.cn/ (accessed on 20 April 2022)),
and water bodies and permanent snow and ice were removed for improved accuracy. The
digital elevation model data were derived from the Shuttle Radar Topography Mission
data, jointly measured by NASA and the National Imagery and Mapping Agency, with a
90 m spatial resolution.

3. Methodology
3.1. Linear Regression Analysis

Trend analysis based on the linear regression method can appropriately reflect the
spatiotemporal patterns of vegetation change in the study region [22]. The trend of EVI
changes in the TRHR during 2000–2021 was analyzed using linear regression, and the
spatial characteristics of the vegetation changes in different periods were examined. The
specific calculation formula is as follows:

Slope =
n

n
∑

i=1
(iEVIi)−

(
n
∑

i=1
i
)(

n
∑

i=1
EVIi

)
n

n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (1)

where n is the total number of years in the time period, EVIi is the annual maximum EVI
value in the i-th year, and Slope is the change rate of the regression equation. Slope > 0
means that the EVI value had an increasing trend during the 22-year period; conversely,
Slope < 0 means that the EVI value had a decreasing trend.

3.2. Coefficient of Variation

Standard deviation (SD) and coefficient of variation (CV) are used widely as important
indicators in quantitative evaluation of the dispersion of an array. SD is a measure of the
degree of dispersion of a set of values from the mean. CV, as a statistical measure of the
degree of variation of each observation in a data set, is the ratio of the SD to the mean,
which can eliminate the influence of different units or means on the comparison of the
degree of variation of two or more data sets to reflect the degree of dispersion of the unit
mean. The equations for the calculation of SD and CV can be expressed as follows:

σ =

√√√√ 1
n

n

∑
i=1

(xi − x)
2

(i = 1, 2, 3 . . .) (2)

CV =
σ

µ
, (3)

where σ is the SD, µ is the mean of the EVI array, x is the array (in this study, EVI), and i
and n are the numbers of years in 2000–2021.

https://cds.climate.copernicus.eu/
https://data.casearth.cn/
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3.3. EEMD Method

The EEMD method is based on empirical mode decomposition, and can be used to
decompose a nonstationary time series into a finite set of decreasing frequency components
(intrinsic mode functions (IMFs)) and a residual long-term trend. The extracted long-term
trend is monotonic or contains only a single extreme value, varies over time, and shows
no abrupt variation in the rate of change. More importantly, this long-term trend does not
need to follow a predetermined functional form and is insensitive to the expansion of the
time series. In this study, we decomposed the nonlinear trend of vegetation change and its
succession over time using the EEMD method. The specific steps adopted were as follows.

Step 1: Add Gaussian white noise w1(t) to the original data x(t). The amplitude of the
white noise is 0.2 times the SD of the original data:

x1(t) = x(t) + w1(t) (4)

Step 2: Connect all the maximal and minimal points with three spline curves to form
the upper and lower envelopes of the new time series data x1(t), respectively. Then, subtract
the mean value m1(t) of the upper and lower envelopes from the new time series data x1(t):

f1(t) = x1(t)−m1(t) (5)

Step 3: Determine whether m1(t) satisfies the stopping condition (close enough to zero
at any point). If the stopping condition is satisfied, the decomposition is topped; otherwise,
take f1(t) as the new time series data and repeat step 2. Eventually, the first IMF (imf1(t))
is obtained:

f2(t) = f1(t)−m2(t), (6)

im f1(t) = fk(t) = fk−1(t)−mk(t). (7)

Step 4: Subtract imf1(t) from x1(t) to obtain the remaining quantity R1(t). Repeat steps 2
and 3 with R1(t) as the new time series data if R1(t) still contains an oscillatory component:

R1(t) = x1(t)− im f1(t), (8)

Rn(t) = Rn−1(t)− im fn(t), (9)

Thus, x1(t) is decomposed into a series of IMFs with decreasing frequency and a trend
term that is monotonic or has, at most, a single extreme point:

x1(t) =
n

∑
j=1

im f j(t) + Rn(t). (10)

Step 5: Repeat steps 1–4 i times (here, i was set to 1000), adding a different Gaus-
sian white noise sequence to the original data each time, and finally, using the average
value obtained from these calculations as the final result. In this study, the analysis was
implemented in R software using the ‘Rlibeemd’ package [30].

The EVI time series data were classified into four trends according to the properties of
monotonicity and extreme value points obtained from the EEMD method:

Greening-to-greening (G to G)/browning-to-browning (B to B): the trends were mono-
tonically increasing/decreasing;

Greening-to-browning (G to B)/browning-to-greening (B to G): the trends contained a
single local maximum/minimum.

3.4. Hurst Exponent Method

To predict future trends in vegetation and to assess the sustainability of the time series,
the Hurst exponent method based on the Rescaled Range Analysis (R/S) was used. The
Hurst exponent, proposed by the British hydrologist Hurst [31], is used widely in the fields
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of hydrology, economics, climatology, and ecology [14,32,33]. The main equations can be
expressed as in the following.

Step 1: Divide the long time series {EVI (t)} (τ = 1, 2, . . . , n) into τ subseries X (t), and
for each series, t = 1, . . . , τ.

Step 2: Define the long-term memory of the time series of the mean EVI:

EVI(τ) =
1
τ

τ

∑
t=1

EVI(τ)τ = 1, 2, . . . , n. (11)

Step 3: Calculate the cumulative deviation:

X(t,τ) =
t

∑
u=1

(
EVI(u) − EVI(τ)

)
1 ≤ t ≤ τ. (12)

Step 4: Create the range sequence:

R(τ) = max
1≤t≤τ

X(x,τ) − min
1≤t≤τ

X(t,τ)τ = 1, 2, . . . , n. (13)

Step 5: Create the SD sequence:

S(τ) =

[
i
τ

τ

∑
t=1

(
EVI(t) − EVI(τ)

)2] 1
2

. (14)

Step 6: Calculate the Hurst exponent:

R(τ)/S(τ) = τH . (15)

The Hurst exponent varies in the range of 0–1 and can be categorized into three cases.
If H is close to 0.5, it indicates that the time series is an independent random series and that
the future trend is independent of the trend during the study period. If 0.5 < H, it indicates
that the time series is persistent and that the future trend is consistent with that of the past,
and the closer the value of H is to 1, the stronger the persistence. If H < 0.5, it indicates that
the time series has inverse persistence, where the future trend is the opposite to that of the
past, and the closer the value of H is to 0, the stronger the inverse persistence.

3.5. Correlation Analysis

The correlation coefficient measures the linear relationship between two variables.
In this study, the correlation coefficients between the EVI and the climatic factors were
calculated using the Pearson correlation method, which can be expressed mathematically
as follows:

r =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

(16)

where r is the correlation coefficient, and x and y are the means of the respective variables.
The correlation coefficient has a range of −1 to 1, and the closer its value is to −1 or 1, the
stronger the correlation between the variables.

3.6. Random Forest Model

The RF is a machine learning method consisting of an ensemble of randomized clas-
sification and regression trees, where a random subsample is constructed for each tree,
and the final result is obtained by voting on the modeling results of all trees [34]. The RF
algorithm reduces the computational effort while improving prediction accuracy. Moreover,
the algorithm is insensitive to multivariate covariance, is robust to missing and unbalanced
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data, and can be well adapted to data sets with up to several thousand explanatory vari-
ables [35,36]. The RF algorithm uses the increase in node purity (IncNodePurity) as an
estimate of the importance of the predictor variables. IncNodePurity is measured by the
sum of the squared residuals and represents the effect of each variable on the heterogeneity
of observations at each node of the classification tree, where a larger value indicates greater
importance of the variable.

The EVI and the climate data from 2000 to 2021 were discretized into 22 periods of
raster data with EVI as the dependent variable and the climatic factors as the independent
variables, and the EVI was fitted based on RF regression to qualitatively analyze the
spatial influence of climatic factors on the EVI. In this process, 70% of the data were
randomly selected for modeling, and the remaining 30% of the data were used for model
accuracy validation. The analysis was implemented in R software using the ‘randomForest’
package [37].

4. Results and Analysis
4.1. Spatiotemporal Characteristics of Vegetation Growth
4.1.1. Temporal Characteristics of Vegetation Growth

The TRHR is located in the hinterland of the QTP and has a typical plateau continental
climate. Generally, the coldest time in each region of the TRHR is January, and the hottest
time in most regions is July, with an annual average temperature of between−8.6 and 4.9 ◦C.
Precipitation is concentrated in summer, with up to 80% of the total rainfall occurring
during May–September [28,29]. The effect of rain and heat in the same period caused the
vegetation index change curve of the TRHR to show a single-peaked wave during the
year (Figure 2a). In terms of vegetation growth, the EVI increased constantly in early May,
when the temperature rose and the permafrost layer gradually thawed, and vegetation in
the TRHR began to sprout and grow. In summer, the vegetation grew under the suitable
hydrological and thermal conditions, and the amount of precipitation and snow meltwater
increased. Thus, the EVI gradually increased and reached its annual peak in mid-July.
In autumn and winter, as the temperature dropped markedly, most of the leaves of the
vegetation began to wither, and the EVI declined gradually, reaching its lowest point in
late October.
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4.2. Characteristics of Vegetation Growth Trend 
4.2.1. Vegetation Growth Trend 

Figure 2. Variations in annual EVI (a) and interannual EVI (b) during 2000–2021.

In terms of interannual change, the multiyear average EVI of the TRHR was 0.3340
between 2000 and 2021. The years in which the departure from the average EVI (hereafter,
expressed as ∆EVI) was positive were mainly 2009, 2010, 2018, 2020, and 2021, with the
highest ∆EVI of 0.0312, 0.0279, and 0.0271 in 2021, 2010, and 2018 at 0.0312 and 0.0279,
respectively. The years with negative ∆EVI were mainly 2003, 2007, 2008, 2015, and
2016, with the lowest EVI of −0.0231, −0.0229, and −0.0173 in 2015, 2003, and 2008,
respectively. During 2000–2021, the average EVI of the TRHR increased slowly at a rate
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of 0.0011/a (p < 0.001) (Figure 2b). Using image scales to calculate the difference between
the annual EVI and the average EVI revealed that during 2000–2021, the EVI of the TRHR
was dominated by slight fluctuations, with the area of −0.1 < ∆EVI < 0.1 accounting for
more than 91.88% of the total area. The area of −0.1 < ∆EVI < 0 was the largest in 2015,
followed by 2003, accounting for 77.82% and 77.57% of the total area, respectively. The
area of 0 < ∆EVI < 0.1 was the largest in 2021, followed by 2010, accounting for 69.78% and
63.23% of the total area, respectively.

4.1.2. Spatial Characteristics of Vegetation Growth

The variation in the EVI in the TRHR during 2000–2021 ranged from 0.0112 to 0.8469,
and the vegetation showed a gradual decline from the southeast to the northwest (Figure 3a).
Areas of low vegetation cover (EVI < 0.3) accounted for 46.32% of the study area, and were
mainly distributed in higher elevation areas such as the western and northern parts of
the TRHR. Areas of medium vegetation cover (0.3 ≤ EVI < 0.6) were mainly distributed
in central parts of the TRHR. Areas of high vegetation cover (EVI ≥ 0.6) were mainly
distributed in the Yellow River source area in the east and the Lancang River source area in
the south, where elevation is lower and the vegetation types are mainly forest and scrub.
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The topography of the TRHR area is complex, and differences in elevation greatly
affect the types and growth conditions of regional vegetation. The distribution of the EVI
within the TRHR interval was calculated using a 500 m elevation interval (Figure 3b). In the
TRHR, the elevation of 2500–3000 m is relatively low and the area of distribution of human
settlements is comparatively large. The process of urbanization and the intensity of human
activities have a great impact on vegetation growth in the TRHR. As elevation rises, the
footprint of human activities gradually decreases, and the vegetation type changes from
scrub and alpine meadow to alpine grassland and sparse grassland, reaching a maximum
at 3500–4000 m (average EVI: 0.56). The vegetation further degrades at elevations above
4000 m to adapt to the low-temperature climate. In areas above 5500 m, vegetation is
relatively sparse and the vegetation index is at a minimum (average EVI: 0.08).

4.2. Characteristics of Vegetation Growth Trend
4.2.1. Vegetation Growth Trend

Trend analysis can comprehensively reflect the spatiotemporal change characteristics
of vegetation growth in the study area, and the vegetation growth trend of the TRHR over
the past 20 years was calculated using the method of linear regression analysis. The results
revealed that the area of improved vegetation (Slope > 0) was much larger than the area of
degraded vegetation (Slope < 0) during 2000–2021 (Figure 4a). The area of improvement
was 236,803.38 km2, accounting for 74.77% of the total area, and the area of degradation was
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103,474.31 km2, accounting for 25.23% of the total area. The areas with a significant trend
of improvement (Slope > 0.003) were mainly distributed in the northeast and southeast of
the TRHR, and areas with a significant trend of degradation (Slope < −0.003) were mainly
distributed in the central part of the TRHR. With changing elevation, the trend of vegetation
growth also showed significant differences. At elevations below 3500 m above sea level,
the vegetation growth trend mainly showed significant improvement, which might be
related to ecological management measures and the development of more suitable climatic
conditions in recent years. With the increase in elevation, the impact of anthropogenic
disturbance gradually decreases, and the climatic conditions tend to be more stable; thus,
the slope of the EVI gradually decreases and the trend of vegetation growth is less obvious
(Figure 4b).
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4.2.2. Vegetation Growth Volatility

To enhance the comparability of the maximum annual fluctuation of the EVI at differ-
ent spatial scales, the CV was used as the fluctuation evaluation index to quantitatively
evaluate the degree of ∆EVI variability in the TRHR. The EVI time series spectra of the
TRHR area during 2000–2021 were calculated and processed to obtain the CV spatial distri-
bution (Figure 5). Analysis showed that the CV of ∆EVI in the TRHR during 2000–2021
was mainly concentrated between 0.06 and 0.18, with a peak located at 0.1017. The ar-
eas with CV values in the range of 0 ≤ CV < 0.06, 0.06 ≤ CV < 0.18, 0.12 ≤ CV < 0.18,
0.18 ≤ CV < 0.24, and CV ≥ 0.24 accounted for 1.15%, 45.55%, 36.19%, 10.19%, and
6.92% of the total area of the region, respectively. Of these, the area with CV values in
the range 0.06 ≤ CV < 0.18 represents the largest proportion of fluctuating vegetation in
the TRHR, representing 81.74% of the study area, mainly distributed in the western and
southeastern areas.

4.2.3. EEMD Trends of Vegetation Growth

In terms of long-term trends, the spatial distribution of the EEMD secular trends of
the EVI was similar to that determined using linear regression analysis, with 63.79% and
36.21% vegetation improvement and vegetation degradation, respectively. This indicates
that in the past 20 years, most areas of the TRHR have shown a greening trend, with
vegetation improvement areas mainly in the northern and southern parts of the Yellow
River source area and western parts of the Yangtze River source area. The vegetation
degradation areas are mainly in the central parts of the Yellow River source area, western
parts of the Yangtze River source area, and most of the Lancang River source area. However,
unlike linear regression analysis, in addition to determining the monotonic change trend of
vegetation, the EEMD method can detect the trend variations of vegetation from greening-
to-browning and from browning-to-greening. As can be seen in Figure 6a, areas with
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monotonically greening vegetation accounted for 30.30% of the total area (i.e., 44.47%
less than that detected using linear regression analysis) and the percentage of areas with
monotonically browning vegetation was 6.30%. Trend conversion occurred in 63.40% of
the areas, among which 33.49% of the areas had browning-to-greening reversals, mainly
concentrated in the eastern and southern parts of the TRHR, and 29.91% of the areas had
greening-to-browning reversals, mainly concentrated in the central parts of the TRHR. The
change points of the EVI trend mainly occurred after 2005 (Figure 6b), which might be
related to anthropogenic activities in 2005 and the influence of climate change. In addition
to the changes in climatic factors, the first phase of the TRHR Ecological Protection and
Construction Project was officially launched in 2005; it introduced many measures such
as grazing and grass restoration, ecological migration, and artificial rainfall with the aim
of fully restoring the ecological environment of the TRHR. The implementation of active
ecological management measures evidently had an important impact on the change in EVI
growth trends.
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Figure 6. Spatial distributions of EVI trends (a) and the timing of change points derived using the
EEMD method (b).

4.2.4. Prediction of Future Vegetation Trends

The Hurst exponent was used to predict the vegetation growth trend in the TRHR,
and the results showed that the Hurst index (H) value of the EVI in the TRHR area was in
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the range of 0.0061–0.9543 (mean value: 0.4349), in which the number of pixels with a value
of H < 0.5 accounted for 79.57%; this indicated that the inverse feature of vegetation change
in the TRHR area was stronger than the isotropic feature. However, 62.79% of the pixels
had H values of 0.4–0.6, which means that their future EVI trends are uncertain. Pixels with
strong consistent trends (H > 0.6) and strong reverse trends (H < 0.4) accounted for 2.60%
and 34.61% of the total area, respectively.

On the basis of the trend of the EEMD method and the Hurst exponent, we constructed
a grading system for future prediction of the vegetation growth trend in the TRHR (Table 1)
and calculated the future trend characteristics of vegetation growth change in the TRHR
(Figure 7). The area of future continuous vegetation improvement and the area of future
continuous vegetation degradation in the TRHR area accounted for 1.46% and 1.15% of the
total area, respectively. The area of future browning-to-greening vegetation accounted for
12.36% of the total area. The area of future greening-to-browning vegetation accounted for
22.24% of the total area. The area showing a random trend, indicating an unclear future
change in vegetation, accounted for 62.79% of the area. The area of future vegetation
degradation in the TRHR was larger than the area of future vegetation improvement, and
the risk of vegetation degradation is higher.

Table 1. Classification of EVI variation in the future.

EEMD H < 0.4 0.4 < H < 0.6 H > 0.6

G TO G
B TO G G TO B Uncertain G TO G

B TO B
G TO B B TO G Uncertain B TO B
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4.3. Climatic Effects of Vegetation Growth
4.3.1. Changes in Climatic Factors

In addition to the role of soil fertility, changes in vegetation growth are more often
influenced by a combination of hydrological and thermal factors [38]. To analyze the
climatic effects of vegetation growth in the TRHR during 2000–2021, the changes in TMP,
STMP, PRE, SP, and SSR during the same period were statistically analyzed separately
(Figure 8). The results revealed that the annual average value of TMP was −5.68 ◦C, which
is influenced by global warming, and the temperature of the TRHR has been increasing
slowly over the past 20 years. The annual average value of STMP was −0.99 ◦C, which
was relatively stable before 2006, but then, fluctuated slightly thereafter. The topography
of the TRHR is complex, and the warm and humid airflow is blocked by high mountains,
which results in low precipitation in the TRHR, that is, the annual average precipitation
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is 700.01 mm. Owing to the high elevation and plateau’s high pressure, the TRHR has
thin air, long sunshine duration, and strong solar radiation, with an annual average SSR of
4351.70 MJ/m2 and an annual average SP of 581.54 hPa.
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Sudden changes in climate could have a major impact on the growth status of veg-
etation. Before 2005, temperature and precipitation both showed a slow upward trend,
with gradual improvement in the climatic conditions suitable for vegetation growth, and
the EVI increased. However, in 2006, the TRHR suffered a severe drought with recorded
precipitation of 27.68 mm less than the annual average, which reduced crop yields on a
large scale and threatened the regional grassland ecology. This trend continued until 2008
and the EVI also showed a decreasing trend during 2006–2008. The air temperature and soil
temperature decreased significantly in 2011 and 2012, and the long-term low-temperature
conditions inhibited vegetation growth and reduced plant photosynthesis. This effect could
have a certain time lag, and the EVI also showed a decreasing trend during 2011–2015.
However, after 2015, precipitation and soil temperature both gradually increased, and
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the improved hydrological and thermal conditions led to markedly improved vegetation
growth and a gradual increase in the EVI.

4.3.2. Vegetation Response to Climate Change

Owing to the complex topography of the TRHR and the great spatial heterogeneity of
the regional climatic conditions, there is also strong spatial variability in the response of
vegetation to climatic factors (Figure 9). During 2000–2021, the correlation analysis between
PRE and the EVI showed that the areas with a positive correlation accounted for 77.84% of
the study area and were mainly distributed in the northern and southern areas of the TRHR.
Areas with a positive correlation between either STMP or TMP and the EVI accounted
for 71.25% and 62.91% of the study area, respectively. In the area with a relatively high
EVI in the central part of the TRHR, TMP and the EVI showed a strong correlation, while
temperature gradually decreased with increasing elevation, and STMP became one of the
main factors affecting vegetation growth. Areas with a negative correlation between SSR
and the EVI accounted for 61.90% of the study area, indicating that radiation might have
an inhibitory effect on vegetation growth, while areas with a strong negative correlation
between SSR and the EVI were mainly in areas of vegetation improvement such as the
southeastern part of the TRHR. The response of vegetation to SP showed strong spatial
differences, with positive correlation pixels mainly distributed in eastern parts of the TRHR
(51.70%) and negative correlation pixels mainly distributed in central and southeastern
parts (48.30%).
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The RF model was used to analyze the spatial response of vegetation to climate. In
the RF model, the coefficients of determination between simulated and real data were in
the range of 0.6488–0.7355, with an average explained variation of 68.55% (Figure 10). The
climatic factors clearly explained the differences in the spatial distribution of vegetation and
could satisfy the quantitative analysis of the drivers of vegetation change. The importance
of independent variables derived from the RF model was used to indicate the contribution
of predictors in controlling the EVI, while the importance was normalized. On the basis of
the contribution of each climatic factor in the RF model, the influence of each of the climatic
factors on vegetation growth in the TRHR during 2000–2021 was analyzed. PRE had the
greatest influence on the spatial distribution of the EVI in the study area (average impor-
tance: 26.57%), and the second largest contribution came from STMP (average importance:
24.03%). However, the average importance of TMP was only 16.64%, which indicates that
the spatial influence of TMP on vegetation distribution was much less than that of STMP,
and the average importance of SP and SSR was 19.39% and 13.35%, respectively.
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5. Discussion
5.1. Characteristics of Vegetation Change

The EVI of the TRHR during 2000–2021 shows an increasing trend. The Tibetan
Climate Change Monitoring Bulletin shows that the average annual surface temperature
in Tibet has increased by 0.31 ◦C/10a on average over the past half-century, and that the
temperature in the TRHR in the hinterland of the Tibetan Plateau has increased by nearly
2 ◦C, with the average annual increase much higher than the global average. During
1961–2013, the average annual precipitation on the Tibetan Plateau showed an increasing
trend, with an average increase of 6.8 mm/10a. Xu [39] reported that the vegetation in
the TRHR showed a slight increase during 1982–2006, and this trend continued from 1982
to the present, indicating that the TRHR has experienced continuous greening in the past
half-century.

The growth of vegetation is affected by a combination of anthropogenic and natural
factors such as water and heat, and the hydrological and thermal conditions tend to vary
widely from year to year. The occurrences of drought and extreme high temperature
events will affect the vegetation growth status of the TRHR. During 2000–2021, 74.77%
of the vegetation growth in the TRHR showed a trend of slow improvement, but some
areas still had vegetation degradation. Areas with degradation were mainly distributed
in and around the Lancang River source area, probably because such areas were affected
by extreme weather such as drought from 2006 to 2008, which inhibited the growth of
pasture in the TRHR, threatened the grassland ecology, and caused extensive damage to
crops. In 2006, the average temperature of the Yushu Tibetan Autonomous Prefecture in
the TRHR was 12.3 ◦C, which was 2.6 ◦C higher than the climatic average of the period
from 1971 to 2000, making it the warmest year since 1961. In addition, human factors,
such as population growth and overgrazing, were considered to be the main causes of
grassland destruction [40,41]. Additionally, the activities of some soil-dwelling endemic
small mammals might also accelerate local vegetation degradation [42].

On the other hand, active human policies and projects could improve local vegetation
growth status. In 2005, China launched the Ecological Protection and Construction Project
(EPCP) in the TRHR. Ecosystem degradation in the TRHR was initially contained and
partially improved [43,44], there was a realistic livestock carrying capacity, and the grazing
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pressure index of grassland decreased significantly [45]. In the first EPCP phase (2005–2012),
the areas of the newly increased and improved grassland in the TRHR were 123.70 km2 and
27260.53 km2, respectively, while the area of the desert ecosystem decreased by 492.61 km2.
In the second phase (2013–2020), the area of improved grassland was 6572.11 km2, and
the area of desert ecosystems was reduced by 266.12 km2. With the implementation of the
EPCP from 2005 to 2020, the forest and grassland coverage in the TRHR increased from 4.8%
to 7.43% and from 73% to 75%, respectively. In general, the increase in vegetation coverage
and the decrease in desert ecosystem area have played a positive role in the improvement
of the vegetation growth status in the TRHR. Meanwhile, climate change and artificial
rainfall operations have resulted in increases in grassland net primary productivity and in
the theoretical livestock carrying capacity [46]. The implementation of degraded grassland
treatment in “black soil peach” and of rodent control was also conducive to the recovery
of degraded grassland. The active ecological protection projects and policies, such as the
Grain-to-Green Program, led some grassland to no longer assume an agricultural function.
At the same time, the increase in precipitation, the restoration of vegetation, and wetland
protection increased the water conservation capacity of the TRHR. Additionally, the areas
of lakes and marshes showed a trend of expansion, with a significant increase in wildlife
populations and the gradual recovery of biodiversity [47]. Owing to reduced interference
from human activities, fluctuations in vegetation growth have stabilized in most areas of
the TRHR, with only a few areas still experiencing large fluctuations in vegetation growth.

The traditional linear regression analysis method can only reveal changes in the
monotonic trend of vegetation growth conditions while ignoring the trend transition of
vegetation throughout the period, whereas the EEMD method can detect trend changes in
vegetation growth from greening-to-browning and from browning-to-greening. Areas with
monotonic greening of vegetation were found to account for 30.30% of the total area, which
was 44.47% less than the area of monotonic greening detected using the linear regression
analysis method. Moreover, most of the areas (63.40%) experienced trend transitions, which
indicated that the vegetation change was not linear but complex and unstable. Meanwhile,
the change point of the trend shift occurred mainly after 2005, which is consistent with
the findings of Shen [48], and was mainly due to the implementation of policies aimed at
restoring the ecological environment of the TRHR and promoting vegetation improvement
in this year, as well as the large abrupt changes in climatic factors after 2005.

Notably, the results of the Hurst exponent indicate that 62.79% of the areas show a
stochastic nature of future vegetation changes and 23.39% of the areas might undergo
degradation in the future, a large portion of which is from improvements to degradation.
However, the Hurst exponent relies only on a single calculation of the vegetation time
series, and vegetation growth is often influenced by multiple factors. Therefore, the Hurst
exponent does not provide a definite time for the prediction of vegetation, but instead,
represents more of a risk indication [14]. However, this risk indication is an important
reference value for guiding ecological conservation and restoration in the TRHR.

5.2. Climate Response of Vegetation Growth

In arid and semiarid zones where water resources are relatively scarce, precipitation is
a key factor affecting vegetation growth [49,50]. At the same time, low temperature is also
one of the main factors limiting growth at high elevations [51], and climate warming can
substantially promote the growth of highland vegetation [52]. Most previous studies sug-
gest that temperature is the main driver of vegetation improvement in the TRHR [15,27,53];
however, some studies have found that precipitation has a greater effect on vegetation
growth in the TRHR [29]. The inconsistency between these results might be attributable
to differences in spatiotemporal models of the effects of climate on plant growth, and the
response of different vegetation types to climate change might vary depending on differ-
ences in root morphology and the dominant vegetation species. Zhai [16] reported that
alpine meadow and grassland vegetation in the TRHR are more sensitive to precipitation,
and that alpine shrubs respond more to temperature than to precipitation.
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In the temporal model, the positive response of vegetation to PRE occurred in most
areas of the TRHR, and the negative response was mainly distributed in the areas of
degraded vegetation in the southwest. In the area of high vegetation coverage in the central
TRHR, TMP showed a strong positive correlation with vegetation, probably because alpine
shrubs are more sensitive to temperature [54]. As elevation increases, the importance of
STMP becomes increasingly apparent. The main vegetation types in the central and eastern
parts of the TRHR are sparse grassland and alpine meadow, and their root systems are
mostly distributed in the soil at a depth of approximately 10 cm. STMP will have a direct
effect on the root systems of such vegetation, and because permafrost is widespread in
the TRHR, higher soil temperatures will promote melting of the permafrost [55], which
indirectly promotes vegetation growth. Yang [56] concluded that ground temperature is
the main influencing factor of vegetation growth in the Yellow River and Yangtze River
source areas. Xu [39] also suggested that soil temperature might make a more important
contribution to vegetation change, and our results corroborate the above studies. A certain
level of solar radiation can promote photosynthesis; however, excessive radiation might
exceed the light saturation point of plants, limiting photosynthesis and causing water
evaporation, which inhibits vegetation growth. Figures 8 and 9 show that the reduction in
SSR over the past 20 years has effectively alleviated such inhibitory effects on vegetation
growth in the TRHR.

In the spatial model, these five climate factors can thoroughly explain the regional dif-
ferences in the EVI, and precipitation is considered to be the main climatic factor controlling
the spatial differences in vegetation growth. This is probably because, at the regional scale,
an increase in precipitation can stimulate the accumulation of vegetation carbon [57] and
influence the growing season of vegetation [58], and precipitation is also a key determinant
of spatial changes in soil organic carbon stocks and microbial properties on the QTP [59,60].
Li [61] also found that precipitation plays the most important role in the variation of soil
respiration in the growing and non-growing seasons in the permafrost zone of the QTP.

5.3. Effect of Elevation on Vegetation Growth

The distribution of vegetation is closely related to the elevation gradient [62], and
elevation indirectly controls the growth of vegetation by influencing climatic factors such
as temperature and precipitation [63]. The results showed that the EVI and Slope in
the TRHR increased, and then, decreased with elevation, that the EVI peaked at the
elevation of 3500–4000 m, and that the vegetation changed most drastically at the elevation
of 3000–3500 m (Table 2). The main reason is that anthropogenic activities are more intense
and widespread at lower elevations, and the development of cities and the opening up
of agricultural land have great impacts on vegetation growth. With increasing elevation,
temperature and precipitation both gradually decrease, and the vegetation type changes
from scrub and alpine meadow with higher EVI values to alpine grassland and sparse
grassland with lower EVI values to adapt to the low-temperature climate. However, the CV
values show the same trend as elevation, which might reflect that the CV is more influenced
by the mean value.

Table 2. Variation in vegetation growth status on the elevation gradient.

Elevation/m EVI Slope CV

2500–3000 0.2690 0.0029 0.1934
3000–3500 0.4155 0.0052 0.1591
3500–4000 0.5602 0.0019 0.0997
4000–4500 0.4196 0.0013 0.1241
4500–5000 0.2949 0.0008 0.1390
5000–5500 0.1686 0.0007 0.1787
5500–6000 0.0845 0.0005 0.3700
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6. Conclusions

This study synthesized the spatiotemporal characteristics of vegetation growth in the
TRHR and investigated the trends and responses of vegetation growth to climate since the
beginning of the 21st century. The results of the linear regression analysis of the time series
EVI showed that two-thirds of the regional vegetation in the TRHR showed a greening
trend, and that the vegetation was dominated by mild and moderate fluctuations. The
EEMD method detected a trend shift in 63.40% of the area, and 85.91% of the trend shifts
occurred after 2005. There were significant spatial differences in the response of vegetation
growth to climatic changes in the TRHR. The increase in precipitation substantially pro-
moted vegetation growth in the TRHR, the increase in both ground temperature and air
temperature also led to the improvement of vegetation growth, and the decrease in radia-
tion alleviated the inhibitory effect on vegetation growth. The results of the spatial model
indicate that precipitation is the most important driver of vegetation growth in the TRHR.
However, the investigation of future vegetation dynamics based on the Hurst exponent
showed that the area of degraded vegetation in the TRHR might be larger than the area of
improved vegetation, and that the risk of vegetation degradation is higher. To reduce the
risk of ecological degradation in the TRHR, based on the construction of the TRHR National
Park, a series of measures are needed to protect the ecological environment in and around
the TRHR, to explore the model of harmonious coexistence between humans and nature,
to improve awareness and the participation of local people in ecological environmental
protection, and to support ecological restoration and protection in the TRHR.
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