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Abstract: Non-optically active water quality parameters in water bodies are important evaluation
indicators in monitoring urban water quality. Over the past years, satellite remote sensing techniques
have increasingly been used to assess different types of substances in urban water bodies. However, it
is challenging to retrieve accurate data for some of the non-optically active water quality parameters
from satellite images due to weak spectral characteristics. This study aims to examine the potential of
ZY1-02D hyperspectral images in retrieving non-optical active water quality parameters, including
dissolved oxygen (DO), permanganate index (CODMn), and total phosphorus (TP) in urban rivers
and lakes. We first simulated the in situ measured reflectance to the satellite equivalent reflectance
using the ZY1-02D and Sentinel-2 spectral response function. Further, we used four machine learning
models to compare the retrieval performance of these two sensors with different bandwidths. The
mean absolute percentage errors (MAPE) are 24.28%, 18.44%, and 37.04% for DO, CODMn, and TP,
respectively, and the root mean square errors (RMSE) are 1.67, 0.96, and 0.07 mg/L, respectively.
Finally, we validated the accuracy and consistency of aquatic products retrieved from ZY1-02D and
Sentinel-2 images. The remote sensing reflectance (Rrs) products of ZY1-02D are slightly overesti-
mated compared to Sentinel-2 Rrs. ZY1-02D has high accuracy and consistency in mapping CODMn

products in urban water. The results show the potential of ZY1-02D hyperspectral images in mapping
non-optically active water quality parameters.

Keywords: urban water quality; non-optically active parameters; remote sensing; ZY1-02D; Sentinel-2

1. Introduction

Water resources have a significant role in different functions of cities, such as drinking
water, industrial production, and landscape [1]. Rivers and lakes are an important part of
urban water bodies. However, with the rapid development of urban society and economy,
living needs grow rapidly, and the discharge of domestic water, agricultural water, and
industrial water exceeded the self-cleaning capacity of water bodies, causing serious
pollution to urban rivers and lakes [2]. Deterioration of urban water quality brings the
safety issue of drinking water and destruction of the ecological environment, which in turn
affects human health and biodiversity [3]. The city water department needs to regularly
formulate policies based on water quality assessment data for the further development of
the city.

Water quality monitoring is an important part of water quality evaluation. It aims to
understand the water quality of urban water bodies, especially rivers and lakes. Although
traditional water quality monitoring methods including manual field sampling and labo-
ratory measurements or automatic in situ measurements have high accuracy, the manual
method is labor-intensive, and the construction and maintenance of the automatic station
requires expensive costs. Furthermore, both methods can only reflect the water quality
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at specific sampling points; it is challenging to meet the requirements to monitor water
quality over the entire water surface of rivers and lakes [4]. In comparison, remote sensing
has been widely used to monitor water quality since the 1970s with temporal and spatial
characteristics [5,6].

Dissolved oxygen (DO), permanganate index (CODMn), and total phosphorus (TP)
are important chemical indicators for water quality monitoring. These parameters are
called non-optically active parameters because they do not absorb light and are difficult
to estimate directly from spectral characteristics [7]. DO is the amount of oxygen that
is present in water and is impacted in complex ways by Chl-a and algae [8]. Although
DO can absorb ultraviolet light, this only makes it measurable in the laboratory. CODMn
is the amount of potassium permanganate oxidant consumed in the treatment of water
samples and reflects the concentrations of organic pollutants in water [9]. Phosphorus
provides favorable conditions for algal growth [10]. For remote sensing, based on the
strong correlation between optically active parameters and non-optically active parameters,
indirect methods have been used to estimate or measure several of these important water
quality parameters [11].

In previous studies, the researchers often carried out research using empirical methods
to estimate non-optically active parameters [12–14]. Empirical methods typically train and
calibrate a regression model between image-derived features and water quality parameter
concentrations from in situ observations [15]. Therefore, empirical methods rely on using
multispectral sensors because they have a good temporal and spatial resolution to obtain
more ground matching to train models. For instance, Al-Shaibah et al. [16] built empirical
algorithms between Landsat images and water quality (V-phenol, DO, NH4-N, NO3-N).
Huang et al. [17] used the super-resolution algorithm and statistical regression models to
retrieve NH3-N, COD, and TP in small-sized rivers. Gao et al. [18] used band combinations
and regional multivariate statistical modeling techniques to retrieve the TP from HJ-1A
images in Chaohu Lake. For hyperspectral sensors, Chang et al. [19] and Merin et al. [20]
used Moderate-resolution Imaging Spectroradiometer (MODIS) images to retrieve nutrient
(TN or TP) concentrations, but the spatial resolution of most spaceborne hyperspectral
sensors limits the application to small and medium-sized inland rivers and lakes. In
addition, non-optically active parameters can be estimated by their correlation with other
parameters such as chlorophyll-a, organic matter, etc. [21]. Lu [22] developed an indirect
algorithm based on the correlation between TP and optically active parameters. However,
the correlation between the non-optically active parameters and optically active parameters
was not assured in different regions [23]. Instead of using image-derived features, a more
general regression model can be trained and calibrated using a broad range of in situ
observations, including optical properties and concentration of water quality [24]. Up to
now, methods based on in situ observation modeling in the literature are mostly limited to
the use of optically active parameters [25].

In this study, we retrieve the water quality parameters from ZY1-02D and Sentinel-2
images based on an in situ observation modeling method. We used four machine learning
algorithms to train and calibrate models between simulated in situ reflectance and con-
centrations. The in situ observations-based inversion of water quality parameters requires
precise atmospheric correction, which is not critical for image-derived-based methods. We
assessed the consistency of the ZY1-02D-derived Rrs and water quality products with those
of Sentinel-2. The comparisons of the two sensors provide direct evidence for the potential
of ZY1-02D hyperspectral imagery for retrieving water quality parameters.

2. Materials and Methods
2.1. Study Area

Shanghai is located in the delta region in the lower reaches of the Yangtze River, at
120◦52′–122◦12′E longitude and 30◦40′–31◦53′N latitude (Figure 1). Shanghai is densely
covered with rivers and lakes, and it covers a water area of 649.2 km2, with a river density
of 4.79 km/km2 and a surface water region ratio of 10.24% [26]. The main natural water
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systems are the Yangtze River, Huangpu River, and Dianshan Lake, which provide most of
the domestic water for inhabitants. As one of the largest cities in China with a population of
over 24 million in the year 2020 [27], the rapid economic development and human activities
have led to the deterioration of the water quality in Shanghai [28].

In this study, two typical and important rivers and lakes were selected for detailed
evaluation and analysis. They are the Huangpu River and its upper tributaries and Dian-
shan Lake. Huangpu River is the largest river in Shanghai and flows through most of the
districts. Dianshan Lake is the largest lake in Shanghai and is located in Qingpu District.
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sample distribution in Shanghai.

2.2. Materials
2.2.1. In Situ Data

From September 2018 to November 2021, 12 remote sensing reflectance (Rrs) field
measurements were carried out in 90 rivers of Shanghai. The average transparency of these
rivers is lower than 0.6 m, so the reflectance from the bottom of the rivers cannot affect
the Rrs measurements of surface water [29]. The main goal of all measurements was to
characterize the relationship between non-optically active parameters and optically active
parameters by measuring as many rivers as possible at different dates and locations. The
average width of these rivers ranges from 10 to 150 m. We tried to balance the number of
rivers with good and bad water quality, and some rivers measured in 2018 were defined
as black and smelly water bodies. Finally, a total of 183 sets of data were obtained. The
measurements covered all seasons and nine districts in Shanghai (Table 1).

For each measurement, Rrs was measured on the bank or bridge of rivers using a
Fieldspec 4 spectroradiometer ranging from 350 to 2500 nm (1 nm interval). Referring to the
above-water method and NASA-recommended measurement standards [30,31], specifically,
measurements were performed between 9:00 and 15:00 on sunny windless days, and the
zenith angle and the azimuth angle were 45◦ and 135◦, respectively. Total water surface
radiation (Lsw(λ)), skylight radiance (Lsky(λ)), and the reference plate radiance (Lp(λ))
were measured at each site. Rrs was calculated by the following equation:

Rrs(λ) =
Lsw(λ)− ρsky(λ)Lsky(λ)

πLp(λ)/ρp(λ)
, (1)

where the ρsky is the air–water interface skylight reflectance and related to wind speed and
solar altitude. According to field measurement conditions, we used 0.028 [31]. ρp is the
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irradiance reflectance of the gray plate (30%). The in situ measured Rrs of these sampling
sites are shown in Figure 2.

Table 1. Dates, locations, and sample number of each measurement.

No. Date The District of Shanghai Number

1 19 September 2018, 26 September
2018, 27 September 2018 Jiading 37

2 17 December 2018 Jiading 12
3 12 April 2019, 17 April 2019 Qingpu 21
4 21 May 2019, 22 May 2019 Jiading 11
5 7 April 2021, 8 April 2021 Qingpu, Pudong 25
6 9 May 2021, 10 May 2021 Changning, Jinshan 15
7 1 June 2021, 6 June 2021 Qingpu, Chongming 12
8 6 July 2021 Chongming 5
9 5 August 2021, 9 August 2021 Xuhui, Yangpu 17
10 7 September 2021 Pudong 8
11 12 October 2021 Hongkou 12
12 13 November 2021 Yangpu 8

Total / / 183
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Figure 2. In situ measured Rrs.

The field-measured DO, CODMn, and TP concentration data were provided by Shang-
hai Hydrological Station. Table 2 shows the laboratory analysis methods and descriptive
statistics of parameters. The dataset shows a large water quality parameter range. The
DO, CODMn, and TP concentration measurements were in accordance with the GB 7489-87,
GB 11892-89, and GB 11893-89, respectively.

Table 2. Laboratory analysis methods and statistics of DO, CODMn, and TP.

Water Quality
Parameters

Laboratory Measurement
Methods Mean Min. Max. Std

DO Iodometry method 5.9 2.0 12.8 2.3

CODMn
Permanganate index

method 4.58 2.10 11.40 1.58

TP Molybdenum antimony
spectrophotometry 0.172 0.041 0.664 0.093

All data were divided into two parts (Figure 1b). Dataset 1 (183 samples) was con-
current with radiometric measurements used to develop the algorithm for water quality
parameter estimation. Figure 3 shows the distributions of each parameter. All parameters
were missing the high concentration part, and CODMn and TP were more concentrated
in low concentration areas. Dataset 2 (30 samples) was the near-coincident data obtained
under Sentinel-2 and ZY1-02D overpasses used to validate the image-retrieved results.
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Dataset 2 was mainly distributed in Dianshan Lake and rivers with a width greater than
100 m. According to our field investigation, the water change cycle of Dianshan Lake is
7 days and the flow rate of these rivers is slow. Therefore, in the absence of precipitation
and sudden pollution, the water quality of these sites does not change much in a short
period of time.
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2.2.2. Independent Dataset in Taihu Lake

We also used in situ Rrs and water quality concentrations (Dataset 3) from Taihu Lake
in 2009 to validate the suitability of Dataset 1’s models across locations and times. Samples
were collected monthly at 32 stations in Taihu Lake (Figure 4). Rrs, DO, CODMn, and
TP were determined using the methods described in Section 2.2.1. Overall, we selected
91 samples distributed across Taihu Lake between February and May.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 18 
 

 

under Sentinel-2 and ZY1-02D overpasses used to validate the image-retrieved results. 149 
Dataset 2 was mainly distributed in Dianshan Lake and rivers with a width greater than 150 
100m. According to our field investigation, the water change cycle of Dianshan Lake is 7 151 
days and the flow rate of these rivers is slow. Therefore, in the absence of precipitation 152 
and sudden pollution, the water quality of these sites does not change much in a short 153 
period of time. 154 

 155 
Figure 3. Distributions of Dataset 1’s DO (a), CODMn (b), and TP (c). 156 

2.2.2. Independent Dataset in Taihu Lake 157 
We also used in situ 𝑅  and water quality concentrations (Dataset 3) from Taihu 158 

Lake in 2009 to validate the suitability of Dataset 1’s models across locations and times. 159 
Samples were collected monthly at 32 stations in Taihu Lake (Figure 4). 𝑅 , DO, CODMn, 160 
and TP were determined using the methods described in Section 2.2.1. Overall, we se- 161 
lected 91 samples distributed across Taihu Lake between February and May. 162 

 163 
Figure 4. Locations of Dataset 3 collected in Taihu Lake. 164 

2.2.3. Satellite Data 165 
The multispectral data used in this study was a Sentinel-2 image with a spatial reso- 166 

lution of 10-60 m. The Multispectral Instrument (MSI) onboard Sentinel-2(A/B) has both 167 
13 bands and short temporal resolution. The S2A-MSI Level 1C image of Shanghai ac- 168 
quired on 13 May 2020 was downloaded from the Copernicus Open Access Hub 169 
(https://scihub.copernicus.eu/). 170 

Hyperspectral data with coincident Sentinel-2 images were acquired by the Ad- 171 
vanced HyperSpectral Imager (AHSI) onboard the ZY1-02D satellite of China. The AHSI 172 
has 150 bands in the visible and near-infrared (VNIR) and 180 bands in the short-wave 173 
infrared (SWIR) with 10 and 20 nm spectral resolution, respectively [32]. Meanwhile, it 174 
has a spatial resolution of 30m, which can meet the needs of urban water monitoring. In 175 
addition to Band 5 of MSI, AHSI can have at least 2 bands in each of the MSI band’s con- 176 
figurations (Table 3). 177 

Figure 4. Locations of Dataset 3 collected in Taihu Lake.

2.2.3. Satellite Data

The multispectral data used in this study was a Sentinel-2 image with a spatial res-
olution of 10–60 m. The Multispectral Instrument (MSI) onboard Sentinel-2(A/B) has
both 13 bands and short temporal resolution. The S2A-MSI Level 1C image of Shang-
hai acquired on 13 May 2020 was downloaded from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/ accessed on 5 December 2020).

Hyperspectral data with coincident Sentinel-2 images were acquired by the Advanced
HyperSpectral Imager (AHSI) onboard the ZY1-02D satellite of China. The AHSI has
150 bands in the visible and near-infrared (VNIR) and 180 bands in the short-wave infrared
(SWIR) with 10 and 20 nm spectral resolution, respectively [32]. Meanwhile, it has a spatial
resolution of 30 m, which can meet the needs of urban water monitoring. In addition to
Band 5 of MSI, AHSI can have at least 2 bands in each of the MSI band’s configurations
(Table 3).

Both the Sentinel-2 and ZY1-02D images have less than 10% cloud coverage and a
time difference of ±3 days with Dataset 2.

https://scihub.copernicus.eu/
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Table 3. Band number, wavelength, and resolution of the MSI and AHSI used in this study.

Sentinel-2A MSI ZY1-02D AHSI

Band
Number

Wavelength
(nm)

Resolution
(m)

Band
Number

Wavelength
(nm)

Resolution
(m)

1 433–453 60 6–7 433–452 30
2 458–523 10 9–15 459–521 30
3 543–578 10 19–22 545–581 30
4 650–680 10 31–34 648–675 30
5 698–713 20 37 700–710 30
6 733–748 20 41–42 734–753 30
7 773–793 20 45–47 769–796 30
8 785–900 10 47–59 786–899 30

8A 855–875 20 55–56 854–873 30

2.3. Methods
2.3.1. Satellite Band Rrs Simulation

To develop retrieval models that can be used on MSI and AHSI images, the in situ Rrs
should be simulated to satellite band equivalent reflectance. To achieve this, convolution
via Equation (2) based on the spectral response function (SRF) of MSI and AHSI sensors
was calculated as follows:

Rrs(Bi) =

∫ λmax
λmin

Rrs(λ)SRFi(λ)dλ∫ λmax
λmin

SRFi(λ)dλ
, (2)

where SRFi(λ) is the relative SRF of the MSI and AHSI ith band, and the Gaussian function
was used to describe SRF of the AHSI sensor [33]. λmax and λmin are the wavelength ranges
in this band.

The MSI and AHSI equivalent reflectance spectra are displayed in Figure 5. Figure 5c
shows the average of in situ Rrs and the equivalent reflectance simulated by the two sensors.
For the hyperspectral sensor AHSI, the average equivalent reflectance of each band and
in situ Rrs basically coincide. However, some bands’ average equivalent reflectance of the
multispectral sensor MSI deviates significantly from the in situ Rrs.
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2.3.2. Model Development

The Pearson-based correlation analysis was used to describe the correlation between
the water quality parameters and the satellite equivalent reflectances. The Pearson correla-
tion coefficient (r) ranges from −1 to +1. When the r is close to −1 or +1, this indicates a
strong inverse or positive correlation between the variables, respectively. However, the r
close to zero indicates no correlation between the variables [34]. As shown in Figure 6, the
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correlations varied significantly for different water quality parameters, but they are both at
a low level (highest |r| = 0.41).
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In this study, there were four machine learning methods that were considered to
develop retrieval models: support vector regression (SVR), partial least squares regression
(PLSR), K-nearest neighbor (KNN), and XGBoost. SVR can solve the non-linear problems in
low dimensional feature space by transforming the input data to a high dimensional space
with a non-linear function, then seeking a linear regression hyperplane in high dimensional
feature space [35]. PLSR model the covariance relations between features and targets by
finding the latent variables, so it can reduce the multicollinearity among input values [36].
KNN predicts the target by local interpolation of the targets associated with the nearest
neighbors in the training set [37], and XGBoost is a gradient boosting tree model, which
predicts the sum of scores in multiple regression trees [38]. All methods were implemented
by scikit-learn of Python.

2.3.3. Satellite Data Preprocessing

The main preprocessing of the satellite images included atmospheric correction (AC),
water body extent extraction, and remote sensing reflectance calculation [39]. First, the
radiometric calibration coefficients of AHSI were used to convert the digital number
values to top-of-atmosphere radiances. Second, the Sen2Cor processor was used to obtain
the Sentinel-2 Level 2A Bottom of Atmosphere reflectance product [40]. The FLAASH
atmospheric correction module in ENVI was used to retrieve surface reflectance for AHSI
images [41]. In this study, the mid-latitude summer atmosphere and rural aerosol were
selected in FLAASH.

The modified normalized difference water index (MNDWI) and the OTSU [42] method
were used to segment the water bodies from images. Based on the assumption that the
minimum surface reflectance in the SWIR band of turbid water is composed only of
residual aerosol scattering, skylight, and sun glint, a remote sensing reflectance estimation
method [43] was used for MSI and AHSI surface reflectance images to correct the skylight
effect and retrieve remote sensing reflectance as follows:

Rc
rs(λ) =

R(λ)−min(RSWIR)

π
, (3)

where Rc
rs(λ) represents the remote sensing reflectance, R(λ) represents the surface re-

flectance, and min(RSWIR) indicates the minimum surface reflectance of the SWIR band in
MSI and AHSI, where RSWIR of AHSI use the average of R in the 1530–1630 nm bands.
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2.3.4. Accuracy Assessment

The coefficient of determination (R2), mean absolute percentage error (MAPE), and
root mean square error (RMSE) were used to assess the performance of water quality
retrieval models and the agreement between in situ data and image retrievals [44].

R2 = 1− ∑n
i=1(Mi − Ei)

2

∑n
i=1
(

Mi −M
)2 , (4)

MAPE =
1
n

n

∑
i=1

|Mi − Ei|
Mi

× 100%, and (5)

RMSE =

√
∑n

i=1(Mi − Ei)
2

n
, (6)

where n is the number of samples, Mi and Ei represent the measured values and estimated
values, respectively.

3. Results
3.1. Spectral Response to Non-Optically Water Quality Parameter Variation

The mean values of in situ spectra for DO, CODMn, and TP concentrations in different
value ranges are shown in Figure 7. Overall, the spectral reflectance between 400 and
700 nm is inversely proportional to the DO concentration. In 2–8 mg/L and 8–12 mg/L
regions, the spectral reflectance is similar from 700 to 900 nm. When the DO concentration
is higher, the spectral reflectance trough at 675 nm and peak at 705 nm are more obvious.
These indicate that for water with lower DO, suspended sediment accounts for the largest
proportion, and for water with higher DO, the spectral variability as a response to Chl-a
and algae is more obvious.

Similarly, the reflectance between 400 and 700 nm is inversely proportional to the
CODMn concentration. When the CODMn concentration is greater than 3 mg/L, the spectral
reflectance is similar from 700 to 900 nm. The water with CODMn concentration over
6 mg/L is usually considered to be polluted. As shown in Figure 7b, the spectral reflectance
peak at ~700 nm of high CODMn concentration moves toward the longer wave.

In 0.1–0.4 mg/L regions of TP concentration, the spectral reflectance between 400 and
700 nm is inversely proportional to concentration, and the spectral reflectance between
700 and 900 nm is similar. When the TP concentration is lower than 0.1 mg/L, the spectral
reflectance also shows the characteristics of a high Chl-a concentration, which indicates that
in one water body the correlation with Chl-a might be with P or N. The spectral reflectance
peak of high TP concentration is also obvious at 705 nm.
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3.2. Development and Validation of Machine Learning Models
3.2.1. Model Structure and Inputs

To compare the aquatic products retrieved from AHSI and MSI, the band selection
range in this study was the nine visible and near-infrared bands of MSI and the AHSI
bands of the corresponding wavelength range (Table 3). Although other bands of AHSI
could be more suitable, we did not consider the bands out of range for the MSI sensor’s
spectral configuration. The input of each model included nine bands and three band ratios.
Previous studies have confirmed that adding band ratios can improve the performance
of water quality retrieval models [45–47]. The second correlation analysis between water
quality parameters and equivalent reflectance ratios was carried out to find better model
inputs. According to Figure 6 and Table 4, the most appropriate band composition of each
water quality parameter was used to develop SVR, PLSR, KNN, and XGBoost models. For
band ratios, all of the variables were significantly correlated at the 95% confidence level,
with higher correlation coefficients compared to the single-band variables.

Table 4. The absolute value of r and p-value between water quality parameters and MSI and AHSI
equivalent reflectance ratios.

Band Ratio
|r|

DO CODMn TP

MSI

Rrs(B3)/Rrs(B4) 0.4 * 0.41 * 0.12
Rrs(B5)/Rrs(B4) 0.38 * 0.66 * 0.42 *
Rrs(B6)/Rrs(B4) 0.25 * 0.59 * 0.43 *
Rrs(B6)/Rrs(B7) 0.32 * 0.16 * 0.02
Rrs(B7)/Rrs(B4) 0.21 * 0.56 * 0.41 *

AHSI

Rrs(B22)/Rrs(B33) 0.44 * 0.4 * 0.06
Rrs(B37)/Rrs(B31) 0.35 * 0.66 * 0.44 *
Rrs(B37)/Rrs(B33) 0.4 * 0.66 * 0.4 *
Rrs(B37)/Rrs(B34) 0.4 * 0.66 * 0.41 *
Rrs(B41)/Rrs(B33) 0.29 * 0.63 * 0.43 *
Rrs(B42)/Rrs(B45) 0.34 * 0.17 * 0.03
Rrs(B45)/Rrs(B33) 0.25 * 0.6 * 0.42 *
Rrs(B47)/Rrs(B34) 0.24 * 0.6 * 0.42 *

* Significant at 5% probability, the band ratios selected for each parameter are marked.

To examine that adding variables to inputs is not just fitting noise, we tested the
performance of XGBoost on the validation dataset using three combinations: (1) five bands
without red-edge bands; (2) total nine bands; (3) nine bands and three band ratios. Table 5
shows that the input variables with 12 variables produced the best performance.

Table 5. Performance metrics of XGBoost model using three combinations.

Parameter Variables R2 MAPE (%) RMSE (mg/L)

DO
5 0.21 29.98 2.18
9 0.32 29.30 2.02

12 0.53 24.28 1.67

CODMn

5 0.38 21.56 1.33
9 0.42 21.47 1.29

12 0.65 17.99 1.0

TP
5 0.08 37.69 0.096
9 0.27 39.88 0.086

12 0.48 37.04 0.073

3.2.2. Performances of Machine Learning Models

Dataset 1 was randomly divided into a training dataset (N = 128) and a validation
dataset (N = 55). For the development of the model, all machine learning models used
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the same training dataset, and the hyperparameters were determined by the strategy of
grid search. Comparing the water quality parameters estimated by the machine learning
models with the validation dataset, the optimal model of each water quality parameter for
two satellites was selected as follows:

For DO retrieval models, XGBoost had the best performance for Sentinel-2 (R2 = 0.53,
MAPE = 22.66%, RMSE = 1.69 mg/L) and ZY1-02D (R2 = 0.53, MAPE = 24.28%,
RMSE = 1.67 mg/L) (Figure 8).
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For CODMn retrieval models, SVR had the best performance for Sentinel-2 (R2 = 0.71,
MAPE = 17.96%, RMSE = 0.91 mg/L) and ZY1-02D (R2 = 0.68, MAPE = 18.44%,
RMSE = 0.96 mg/L) (Figure 9).
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Figure 9. Performance evaluation of CODMn retrievals using the SVR for Sentinel-2 (a) and ZY1-
02D (b).

For TP retrieval models, SVR had the best performance for Sentinel-2 (R2 = 0.46,
MAPE = 37.81%, RMSE = 0.08 mg/L) and XGBoost had the best performance for ZY1-02D
(R2 = 0.47, MAPE = 37.04%, RMSE = 0.07 mg/L) (Figure 10).

Table 6 shows the performance comparison of all machine learning models. All
models did slightly underestimate high concentrations because the training dataset lacks
high concentration data.
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Table 6. Performance of all machine learning models.

Sentinel-2 ZY1-02D

Parameter Model R2 MAPE (%) RMSE
(mg/L) R2 MAPE (%) RMSE

(mg/L)

DO

SVR 0.43 22.12 1.85 0.39 22.18 1.92
PLSR 0.34 28.24 1.98 0.35 27.19 1.97
KNN 0.33 26.42 2.00 0.31 26.68 2.03

XGBoost 0.53 22.66 1.69 0.53 24.28 1.67

CODMn

SVR 0.71 17.96 0.91 0.68 18.44 0.96
PLSR 0.65 18.10 1.01 0.65 17.21 1.01
KNN 0.65 17.11 1.00 0.66 17.03 0.99

XGBoost 0.58 19.53 1.10 0.65 17.99 1.0

TP

SVR 0.46 37.81 0.08 0.36 46.97 0.086
PLSR 0.42 37.11 0.082 0.34 37.54 0.088
KNN 0.43 37.18 0.082 0.46 37.67 0.079

XGBoost 0.39 40.88 0.079 0.48 37.04 0.073

3.2.3. Further Validation on Taihu Lake

In situ Rrs data from turbid and eutrophic shallow Taihu Lake were used to estimate
DO, CODMn, and TP, and were compared with measured data to determine the potential of
the machine learning models for producing spatial and temporal products. The Rrs-derived
CODMn values were similar to the in situ data. However, the Rrs-derived DO values were
less than the in situ data and the Rrs-derived TP values were more than the in situ data
(Figure 11).
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3.3. Water Quality Mapping

The water quality maps derived from ZY1-02D AHSI and Sentinel-2 MSI are shown
in Figures 12–14. The waters in the images are Dianshan Lake and the upper reaches of
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the Huangpu River which provide more than 60% of the domestic water for residents [48].
Huangpu River is densely populated with boats, making it difficult to retrieve water quality.
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The range of the color bar was retained consistently for a better comparison. DO
derived from Sentinel-2 and ZY1-02D images had similar spatial distribution characteristics;
the DO concentration in the eastern part of Dianshan Lake and the outflow rivers was low
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(Figure 12). CODMn derived from Sentinel-2 and ZY1-02D images are relatively average in
the study area, which is consistent with the distribution of the in situ measured value. ZY1-
02D overestimated the CODMn concentration in the aquaculture area in the northeastern
part of Dianshan Lake (Figure 13). The agreement is relatively strong for TP retrievals and
DO retrievals of Sentinel-2, while the TP derived from the ZY1-02D image showed some
limitations and higher errors associated (Figure 14).

4. Discussion
4.1. Comparison of Rrs Products between ZY1-02D and Sentinel-2

We compared the average Rrs of Sentinel-2 and ZY1-02D images at Dataset 2 sites. As
shown in Figure 15, the ZY1-02D spectra are in good agreement with Sentinel-2 spectra
in terms of both shape and magnitude. However, ZY1-02D Rrs are brighter than those of
Sentinel-2 in these sites.

The accuracy of the image-derived Rrs affected the accuracy of the estimated water
quality parameter concentration. Therefore, the agreement evaluation of ZY1-02D and
Sentinel-2 image-derived Rrs was conducted using r and RMSE (Figure 16). Here, 704 nm
had the highest r and lowest RMSE, which was the band with the highest agreement
between ZY1-02D Rrs and Sentinel-2 Rrs. Similarly, 560 and 665 nm also had a high
agreement. The energies of these bands were higher than that of other wavelengths, and
they were relatively less affected by noise. Additionally, 443 and 492 nm were affected
by atmosphere scattering. The band after 740 nm was lower in energy; therefore, their
agreement was relatively low.
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4.2. Comparison of Water Quality Products between ZY1-02D and Sentinel-2

The biggest challenge of applying models to satellite images was the performance
of AC methods [49–51]. The optimal model of each water quality parameter was used to
retrieve water quality parameter concentration for Sentinel-2 and ZY1-02D images of the
same day. Given the lack of in situ Rrs for the direct test of AC, Dataset 2 was used to
further validate the accuracy and stability of the models on the satellite images. Spatial
windows (3 × 3 pixels) were applied to extract the average concentration at the location of
Dataset 2 stations. Figure 17 shows the comparison of concentration between Dataset 2 and
image retrievals. The satellite retrievals and the in situ CODMn had the highest agreement,
but they still had significant deviations at high and low concentrations. The DO and
TP retrievals of ZY1-02D had large differences with in situ measurements. This can be
attributed to the three-day difference between satellite overpasses and in situ measurement
as the distribution of the parameters may have some variations.

The comparison of water quality products between ZY1-02D and Sentinel-2 is shown
in Figure 18. The agreement of the retrieved concentration is examined by comparing the
values extracted from the water quality products. There is a high agreement between the
CODMn retrievals from ZY1-02D and Sentinel-2. Nevertheless, the DO retrievals from ZY1-
02D are underestimated compared with those of Sentinel-2. The TP retrievals from ZY1-02D
are not successful in this image. TP is the parameter most affected by the atmosphere.
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According to the statistical results of accuracy and agreement, even though the models
of ZY1-02D and Sentinel-2 trained by in situ data have the same accuracy, the final water
quality products are still affected by atmospheric correction, radiometric sensitivity, and
signal-to-noise ratio of ZY1-02D and Sentinel-2 sensors.

4.3. Strengths and Limitations of the Models

Whether the image-derived modeling methods or in situ observation modeling meth-
ods, the applicability of water quality parameter inversion models are limited by the
representativeness of the measured data. The revisit time of ZY1-02D is 55 days and the
cloud cover is common in Shanghai, resulting in few scenes per year. Our twelve field
radiometric measurements surveys included 80 rivers in Shanghai and covered all seasons.
For measured rivers, Rrs(550) ranged from 0.0103 to 0.079 sr−1, which is a relatively broad
spectral range. Dataset 1 fully reflects the principal relation between water quality parame-
ters and remote sensing reflectance of the study rivers in Shanghai. Therefore, the models
developed by Dataset 1 would be applicable to the water quality parameter retrievals of
rivers in the study area though some rivers have not been measured. Compared with the
non-optically active water quality parameter (such as TP or TN) retrieval models estab-
lished by Qiao et al. [10], Gao et al. [18], and Lu et al. [22], their application is limited to
specific lakes or rivers and our models have wider applicability. Compared with the DO
retrieval model established by Al-Shaibah et al. [16] using a linear model, the DO retrieval
model in this study based on XGBoost has higher accuracy.

However, our data did not include water quality in large inland lakes. Here, we used
Rrs data and water quality data from Taihu Lake in 2009 to examine the further universality
of models. The models developed by Dataset 1 had slightly lower performance on data of
Taihu Lake than that of the validated dataset described in Section 3.2.2 (Figure 11). This
can be attributed to the ten-year difference between the data in Shanghai and Taihu Lake.
Moreover, precipitation and human factors are important factors affecting river water
quality. Precipitation increases river flow and makes it easier for pollutants to transfer into
rivers [52]. The agricultural activities directly transport nutrients into the rivers. These
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factors mean the actual retrievals of non-optically active water quality parameters in small
rivers may have potential uncertainties.

5. Conclusions

In this study, we examined an in situ observation modeling approach based on ma-
chine learning for inversion of non-optically active water quality parameters from the
hyperspectral ZY1-02D imagery at rivers and lakes in Shanghai. The machine learning
models of ZY1-02D have better performance than those of Sentinel-2 because of finer spec-
tral resolution. We conducted analyses on the applicability in different times and spaces of
models, and the results showed that the models based on the in situ data in Shanghai can
be applied to Taihu Lake. Finally, we validated the accuracy and consistency of Rrs and
water quality products derived from ZY1-02D compared to those derived from Sentinel-2
images. The comparison of Rrs data showed strong agreement at bands of high energies.
The CODMn products showed stronger agreement than DO and TP.

We performed the field-based models’ application to a ZY1-02D image which had been
atmospherically corrected. However, the FLAASH model used in this study was not for
water bodies. Future studies will be dedicated to exploring accurate AC methods for pre-
processing ZY1-02D images in the context of quantitative water quality. Overall, the results
show the high potential of ZY1-02D hyperspectral imagery in aquatic-oriented applications,
though retrieving reliable non-optical water quality parameters is still challenging and
further developments are needed.
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