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Abstract: Land use segmentation is a fundamental yet challenging task in remote sensing. Most
current methods mainly take images as input and sometimes cannot achieve satisfactory results
due to limited information. Inspired by the inherent relations between land cover and land use,
we investigate land use segmentation using additional land cover data. The topological relations
among land cover objects are beneficial for bridging the semantic gap between land cover and land
use. Specifically, these relations are usually depicted by a geo-object-based graph structure. Deep
convolutional neural networks (CNNs) are capable of extracting local patterns but fail to efficiently
explore topological relations. In contrast, contextual relations among objects can be easily captured
by graph convolutional networks (GCNs). In this study, we integrated CNNs and GCNs and pro-
posed the CNN-enhanced HEterogeneous Graph Convolutional Network (CHeGCN) to incorporate
local spectral-spatial features and long-range dependencies. We represent topological relations by
heterogeneous graphs which are constructed with images and land cover data. Afterwards, we
employed GCNs to build topological relations by graph reasoning. Finally, we fused CNN and GCN
features to accomplish the inference from land cover to land use. Compared with other homogeneous
graph-based models, the land cover data provide more sufficient information for graph reasoning.
The proposed method can achieve the transformation from land cover to land use. Extensive experi-
ments showed the competitive performance of CHeGCN and demonstrated the positive effects of
land cover data. On the IoU metric over two datasets, CHeGCN outperforms CNNs and GCNs by
nearly 3.5% and 5%, respectively. In contrast to homogeneous graphs, heterogeneous graphs have an
IoU improvement of approximately 2.5% in the ablation experiments. Furthermore, the generated
visualizations help explore the underlying mechanism of CHeGCN. It is worth noting that CHeGCN
can be easily degenerated to scenarios where no land cover information is available and achieves
satisfactory performance.

Keywords: land use; semantic segmentation; heterogeneous graph; graph convolutional network (GCN)

1. Introduction

Land use information is critical for understanding complex human–environment
relationships and promoting human socioeconomic development, such as environmental
change [1], ecosystem deterioration [2], and urban planning [3]. There is a tremendous
demand for land use mapping for sustainable urban development in this era of rapid
urbanization and population growth. However, land use, in contrast to land cover, is more
difficult to distinguish. Land cover can be directly identified from images as it relates to the
physical characteristics of the ground surface [4], while land use reflects the socio-economic
activities that take place on that surface. A land use unit may comprise a variety of diverse
land cover types, resulting in dramatic differences in spatial arrangement and spectral
characteristics, even in a homogeneous land use region [5]. Thus, it is challenging to obtain
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reliable land use segmentation using low-level image features, such as spectral and textural
features. Meanwhile, information about land use is implicitly provided as patterns or high-
level semantic functions in very fine spatial resolution (VFSR) satellite images [6]. Hence, it
is essential to extract high-level semantic features from detailed images for accurate land
use segmentation.

The topological relations among land cover elements are beneficial for narrowing the
semantic gap between land cover and land use [7–9]. Topological relations can describe
the complicated spatial configuration of land cover objects, which are beneficial for land
use identification. This assumption is built on the fact that land use parcels with similar
structures tend to possess similar functional attributes [5]. From another perspective,
accurate land use segmentation necessitates a thorough understanding of complex urban
structures. This structure is a global perception of urban areas, which is built on the long-
range dependencies of land cover units. According to the perceptual organization theory,
humans group visual objects together to recognize the visual as a whole, where topological
relations play an important role in the grouping process.

The positive effects of topological relations can be illustrated by the application of
urban park segmentation. Urban parks (hereinafter referred to as parks) are designated
areas of natural, semi-natural, or planted space inside cities for human recreation. There
are usually multiple land cover types inside a park unit, such as water, buildings, and
forest. Thus, the spectral feature distribution of park pixels is irregular and difficult
to distinguish. For instance, a building area in a park is easily recognized as non-park
because most buildings do not appear in parks. Land cover data are advantageous for
solving this problem, as topological relations can be better depicted. For example, a
building surrounded by forests is more likely to belong to a park than one surrounded by
buildings. As a result, land use segmentation can be further improved by the topological
relation inference using land cover data. Meanwhile, land cover classification is one of
the most fundamental tasks in remote sensing [10]. There are many well-known public
land cover products available, such as GlobeLand30 [11], Finer Resolution Observation
and Monitoring of Global Land Cover (FROM-GLC) [12], and ESA’s Land Cover Climate
Change Initiative (LC-CCI). Therefore, an appealing idea is to use land cover to support land
use segmentation, and models capable of effectively extracting topological relationships
are required.

In recent decades, many investigations have been conducted to improve the accuracy
of land use segmentation. These approaches can be generally divided into two categories re-
garding the use of spatial information: grid-based and object-based. Grid-based algorithms
learn image representation from regular regions, and the most basic strategy is to use only
spectral characteristics for pixel-wise segmentation. Researchers have tried to increase the
size of grids to get spatial context features since pixel-wise methods fail to describe the spa-
tial structure of land use. The most successful design among them are deep CNNs, as CNNs
provide a powerful framework for local pattern modeling by end-to-end and hierarchical
learning. Many attempts have been made to better exploit spatial information. Dilated
convolutions are exploited to enlarge receptive fields [13]. Local features are enhanced
with a global context vector obtained by global pooling [14]. A pyramid pooling module
was employed to collect semantic features [15,16], and on this basis, the atrous special
pyramid pooling (ASPP) further incorporates the atrous algorithm [17–20]. It is worth
mentioning that the use of spatial context boosts models’ performance and robustness.
Thus, CNNs, such as fully convolutional network (FCN) [21], U-net [22], pyramid scene
parsing network (PSPNet) [15], and DeepLabv3 [19] have achieved outstanding results in
semantic segmentation. However, these models are highly inefficient in describing long-
distance relationships because they are composed of the local operations of convolution
and pooling [23,24].

It is preferable to depict relationships between objects rather than regular grids (the
comparison can be seen in Figure 1). On the one hand, interregional dependencies are
of significantly longer range than those represented by local convolutions [23]. On the
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other hand, objects and regions are of arbitrary shape in the real world, and object-based
methods are more capable of describing the “reality” of human perception than pixel-
level approaches [25]. Furthermore, object-based techniques are more ideal for expressing
topological relations among land cover objects inside a land use parcel, which, as mentioned
before, is extremely beneficial for bridging the semantic gap between land cover and
land use. As previous deep learning models are prepared for Euclidean data, complex
topological relations among land cover objects are frequently neglected.

Figure 1. Comparison of CNNs, homogeneous GCNs, and heterogeneous GCNs in feature extrac-
tion. The CNNs employ convolutions and pooling on regular regions to obtain feature maps and
upsample them to the pixel level. Homogeneous GCNs first transform images into graphs by graph
projection, and then apply GCN to obtain node-level features, and finally produce pixel-level feature
maps by graph re-projection. Heterogeneous graphs differ from homogeneous graphs in the graph
construction. Nodes of heterogeneous graphs are labeled with land cover classes in graph projection.
Edge weights are determined by the corresponding node pair’s class. Graph projection is described
in detail at the bottom, and graph reprojection is the inverse process of this.

It is natural to consider graphs to explore relationships, because images can be easily
converted into graphs with vertices and edges indicating image regions and their sim-
ilarities. Graphs are a widely used data structure as well as a universal language for
describing complex systems, and Euclidean data such as images (2D grids) can be regarded
as instances of graphs. Graphs, which focus on relationships among objects rather than
the attributes of individual objects [26], have shown great expressive power in various
domains, including social science [27], protein–protein interaction networks [28], and net-
work biology [29]. Subsequently, context modeling is typically postulated as an inference
issue on graphs [30]. In practice, the process of relation reasoning, i.e., context modeling, is
realized by the aggregation of node information. The aggregation process depends on the
graph structure, which is dominated by the topological relationships of geo-objects. Finally,
a land use segmentation problem is converted into a node classification problem.

However, most current models are built on homogeneous graphs and fail to fully
employ the rich semantic information of heterogeneous data. Recently, GCNs [31] have
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received increasing attention for their ability to aggregate information by generalizing
convolutions to graph-structure data. By employing GCNs on graphs transformed from
images, relations among objects can be explicitly inferred along graph edges, and spatial
structures can be better portrayed. For example, GCNs are used to model contextual
structures in hyperspectral image classification problems [32–35]. In detail, GCNs are
employed through graph reprojection [23], in which vertex features are projected back
to grid space based on region assignments. Then, the projected features are integrated
(using operations such as addition) into the CNN feature maps. As mentioned above,
it is suggested to accomplish land use segmentation with land cover data. However,
these homogeneous graph-based approaches are severely limited in their ability to merge
additional data. For instance, a co-occurrence matrix of node classes [36] is employed in an
implicit and inefficient way, and the use of coarse prediction maps [37] ignores inter-class
relationships and treats nodes of different classes equally.

Heterogeneous graphs [38] are introduced to solve the aforementioned issues, which
can appropriately infer land use from land cover. In a heterogeneous graph, the total
number of node types and edge types is greater than two, whereas there is only one node
type and one edge type in a homogeneous graph (see Figure 1 for the difference).This
work [38] fully exploits the heterogeneity and rich semantic information embedded in
the multiple node and edge types by using hierarchical attention, which consists of node-
level and semantic-level attention. Specifically, the node and edge types are taken into
consideration when aggregating features. Heterogeneous graphs are experts in portraying
complex relationships among various classes of nodes. Thus, heterogeneous graph-based
methods can better mine topological relations among different land cover nodes.

Our model is proposed based on heterogeneous graphs to bridge the semantic gap
between land cover and land use. Specifically, in the case of park segmentation, there are m
node types and m(m+1)

2 edge types, where m denotes the number of land cover types. Thus,
we can build heterogeneous graphs with land cover data. It makes sense to define different
edge calculation functions among the nodes of different land cover classes. For instance,
reducing weights between road and forest objects is beneficial given that roads frequently
appear outside parks. Moreover, the parameters of class-specific edge calculation functions
are automatically learned, making the relation inference more adaptive. Similarly to the
feature fusion framework [32,39], we integrate CNNs and our heterogeneous graph-based
model to derive long-distance relationships among objects while preserving spatial details,
since the shallow features of CNNs retain more spatial information. To this end, we propose
the CNN-enhanced HEterogeneous Graph Convolutional Network(CHeGCN) for land use
segmentation. The main distinction between CHeGCN and the existing models [32,39] is
that CHeGCN is constructed on heterogeneous graphs, whereas these existing models are
intended for homogeneous graphs and are thus unable to make use of extra data, such as
land cover data. Furthermore, CHeGCN can also be easily degraded to situations without
additional land cover data, which is detailed in ablation experiments.

Experiments have been conducted to show the capability of CHeGCN in land use
segmentation, and visualization results reveal that land cover information can significantly
improve the graph inference. It can be observed that the contributions of objects with
various land cover labels are different by visualizing the weights of graph edges, which
is consistent with our knowledge. The main contributions of our work are summarized
as follows:

1. We propose a novel CHeGCN that fully explores the relations between land cover
and land use. CHeGCN is able to infer and extract high-level semantic features based
on the heterogeneous graphs, which can significantly improve land use segmentation.
Furthermore, our model provides a general framework that can be applied not only
to land cover and land use segmentation, but also to land use segmentation with
additional land cover data;

2. CHeGCN is an early attempt to investigate heterogeneous graph neural networks in
the field of remote sensing. CHeGCN is a good example of successfully exploiting
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heterogeneous data, which further strengthened the inference ability of graphs with
additional data. This work may encourage the integration of other Earth observa-
tion products;

3. CHeGCN outperforms CNNs and homogeneous graph-based models in our park
segmentation datasets, mainly owing to the incorporation of local spectral-spatial
features and long-distance topological relationships. In particular, class-specific calcu-
lation functions of edge weight boost the representation of the topology of land cover
objects within land use parcels.

2. Materials and Methods

In this section, we describe our proposed CHeGCN model. As shown in Figure 2, it is
an encoder–decoder network, where the encoder is composed of two modules. The CNN
module mainly focuses on local features, and the GCN module concentrates more on global
relations among objects. The latter module is actually to apply GCN on heterogeneous
graphs. Thus, it is necessary to construct heterogeneous graphs first. After that, convolution
operations are employed on these graphs. Features extracted from graph-structure data
are fused with CNN features to accomplish the final segmentation task. The decoder is
actually a pixel-wise classifier, which determines the label of each pixel. Then, we detail
our CHeGCN, which is mainly composed of four parts: (1) the CNN module; (2) the
heterogeneous graph construction; (3) the GCN model; and (4) the feature fusion and
the classifier.

Figure 2. The architecture of CNN-enhanced HEterogeneous Graph Convolutional Network
(CHeGCN) model. CHeGCN contains a CNN module and a GCN module, where the former
focuses more on a local extraction pattern and the latter concentrates more on long-range dependency
modeling. Before the GCN module is applied, the heterogeneous graph needs to be constructed.
Nodes in the heterogeneous graph are determined by land cover superpixels and attributed by CNN
feature maps. Edges are linked based on topological relations among nodes. Finally, GCN features
are reprojected and fused with CNN features to accomplish park segmentation.

2.1. CNN Module

CNNs are generally selected as the backbone network for semantic segmentation
because of their strong ability to describe local patterns. However, it is problematic to
employ CNNs on a small dataset, which can easily lead to overfitting [40]. In order to
reduce the risk of overfitting, we adopt ResNet [41] pretrained with ImageNet [42] as the
CNN module. ResNet uses stacked residual blocks with skip connections between each
one to solve the optimization problem posed by the network’s growing depth. As a result,
this structure makes it quite successful across various segmentation datasets. Specifically,
we select the pretrained ResNet-18 and remove the last four convolutional layers, the
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average pooling layer, and the fully connected layer. The last four layers in ResNet-18
contain 256, 256, 512, and 512 convolution kernels, respectively. These four layers consist
of too many parameters for our datasets. By removing them, the number of parameters
declines from 11.18 M to 0.69 M. The robustness to overfitting can be increased due to
the considerably decreased size of the pretrained module. Furthermore, we upsample
the output feature maps of the CNN module to obtain pixel-level features using bilinear
interpolation. The upsampled output is then fed into a 1× 1 convolutional layer to reduce
dimensions. Finally, the output is entered into the heterogeneous graph construction part
and the feature fusion part.

2.2. Heterogeneous Graph Construction

It is necessary to convert images from grid-structure into graph-structure data before
applying graph convolution. We take the feature maps of the CNN module as the input
for heterogeneous graph construction, as the spectral band number of VFSR images is
limited. The extended features provide more discriminating features to enhance our model.
Although a pixel can be regarded as a node in a graph [35,43], this would result in a large
graph with intractable computation. Meanwhile, topological relations among land cover
objects inside land use units are advantageous for land use segmentation. Therefore, we
transformed the feature maps to an undirected graph G = (V , E) using land cover data,
where V and E denote the vertices and edges of the graph, respectively. The vertex set V is
composed of land cover superpixels obtained by the simple linear iterative clustering (SLIC)
algorithm [44]. The link set E is determined by the topological relations of nodes, where the
nodes of each edge in E are spatially adjacent. In detail, land cover superpixels are obtained
in two steps. First, we obtain the masks of each land cover class from land cover data. Then,
we apply SLIC to images with land cover masks to obtain land cover superpixels. Because
directly applying SLIC to land cover data is actually random clustering in local regions, the
values inside a land cover region are the same. This class-wise SLIC method makes use of
an image texture to achieve clustering and guarantees that all pixels in a superpixel belong
to the same land cover category. It is worth noting that directly adopting land cover masks
as land cover nodes is not recommended because node features will be over-smoothed.

In practice, the V and E are presented by a vertex feature matrix X ∈ R|V|×d and an
adjacency matrix A ∈ R|V|×|V|, where |V| and d indicate the number and the dimensions of
nodes, respectively. The ith row of X indicates the feature vector xi ∈ Rd of node vi. Node
features are obtained by graph projection, which assigns the pixels located in the same
superpixel to the related node. Then, the features of this node are the average signatures of
the pixels involved. Aij denotes the edge weight between node vi and node vj. The higher
the value of Aij, the closer the nodes vi and vj are connected. The adjacency matrix of the
undirected graph is symmetric and thus Aij equals Aji. The symmetric adjacency matrix A
is calculated with the attention mechanism [45] as:

Aij =

{
softmaxi(xT

i xj), if vi ∈ N(vj)

0, otherwise.
(1)

where xi, xj indicate the features of nodes vi and vj, and N(vj) represents the set composed
of the neighboring nodes of vj. In addition, the adjacency matrix is normalized in row
direction by the softmax function to make coefficients comparable across nodes.

As previously stated, topological relations among land cover elements are of impor-
tance to land use segmentation. However, homogeneous graphs fail to fully take advantage
of land cover information in graph construction processes, treating nodes of different land
cover classes equally in Equation (1). Thus, they are insufficient for modeling dependencies
among heterogeneous regions (regions with different land cover labels). We propose to
adaptively model the relations based on land cover categories through heterogeneous
graphs. As seen in Figure 1, the graph projection operation transforms raster data into
graph-structure data, where pixel-level feature maps are projected to the node level. At
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the same time, each node is assigned a land cover label that it is colored against. The
node label is selected by the mode value of the land cover category the involved pixels.
The meta-path P is taken into consideration in the adjacency matrix calculation. Relations
among nodes with different labels are better explored since relations among land cover
objects are closely related to their land cover types. In the case of park segmentation, it
makes sense to modify the edge weight based on the land cover type of the corresponding
node pair. For instance, reducing the weight between road and forest objects is beneficial,

given that roads frequently appear outside parks. Meta-path P = vi
R→ vj describes relation

R between node vi and vj, where R is determined by the land cover labels of node pair (i, j).
In fact, the meta-path can be regarded as an edge type, where the edge eij in Figure 1 is
rendered by the gradient color of node vi to node vj. The meta-path of node pair (i, j) is the
same as the meta-path of node pair (j, i) because graphs are undirected. As a result, the
total number of meta-path types is (m(m+1))

2 , where m denotes the number of land cover
classes. Given a vertex pair (i, j) that is connected though meta-path P, the edge calculation
function in heterogeneous graphs is

Aij =

{
softmaxi(aP(xT

i xj) + bP), if vi ∈ N(vj)

0, otherwise.
(2)

where aP and bP are scalar parameters to adjust the importance of meta-path P. In contrast
to [38], we use a simpler yet effective method to compute node embedding. The node-level
attention calculation formula is the same for nodes with different land cover labels since
all nodes are located in the same feature space. The semantic-level attention is a linear
function whose parameters aP and bP vary with respect to the meta-path P.

2.3. Graph Convolutional Network

Motivated by CNN, GCN is proposed to generalize convolutions from Euclidean
data to non-Euclidean data. Euclidean data, such as images, speech, and videos, has
an underlying Euclidean structure. In contrast, non-Euclidean data, such as graphs and
manifolds, are data whose underlying domain does not obey Euclidean distance as a metric
between points in the domain. Consequently, basic operations such as convolution cannot
be directly applied to non-Euclidean data since non-Euclidean data lack shift invariance [46].
GCN successfully translates the deep learning methods designed for Euclidean data, such
as CNN, to non-Euclidean data. Specifically, GCN inherits the key elements of CNNs: (1) a
locally connected structure; (2) shared weights to reduce the computational cost; and (3) the
use of multiple layers to exploit hierarchical information. The architecture of GCN is built
on the basis of a localized first-order approximation of spectral graph convolutions [31],
which updates the node embedding by aggregating information from 1 to hop neighboring
nodes. To be specific, the single graph convolutional layer is a combination of graph
convolution, with a trainable weight matrix, and a non-linear function. The forward
propagation process of a GCN layer can be formulated as:

Xl+1 = σ(ÃXlW l) (3)

where Xl ∈ R|V|×dl
and X(l+1) ∈ R|V|×dl+1

are the input and output node feature matrix
of lth layer, respectively. Both of them have |V| rows, but the column number of Xl+1 is
determined by W l . W l ∈ Rdl×dl+1

is a learnable matrix, which linearly maps the input
feature space to the output feature space. The Ã = D̂−

1
2 ÂD̂−

1
2 is a symmetric normalized

adjacency matrix (with self-loops) which is used to fuse the features of neighboring nodes.
Â = A + I, where A denotes the adjacency matrix and I indicates the identical matrix.
The identical matrix is used to add self-loop connections, which ensures that the previous
node embedding is engaged in the node feature update process. D̂ is the diagonal degree
matrix of Â and is employed to normalize Â. It is necessary to keep the magnitude of
node features consistent because aggregation operations can be extremely sensitive to node
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degrees. The normalized adjacency matrix is useful to overcome numerical instabilities and
optimization difficulties [26]. σ(·) is a non-linear activation function, and rectified linear
units (ReLU) [47] were selected in this paper.

Afterwards, we can build a powerful model by stacking multiple graph convolutional
layers in the form of Equation (3), where different layers of the same graph share the same
adjacency matrix. By doing this, GCN is able to implicitly operate beyond the first-order
polynomials of the adjacency matrix, and then extract global context information. In fact,
the insight of graph convolution is a weighted sum of all adjacent nodes, including the
node itself. Thus, the graph convolution is equivalent to a local node-level filter, whose
receptive field is defined as the neighboring nodes. As the size of neighboring nodes can be
arbitrary, the filter is adaptively determined by the local neighborhood structure. This is
the key difference between GCN and CNN, where the filters in CNN are identical in all
positions of grids.

As a result, the determination of the adjacency matrix is critical because the weight
matrix Ã is calculated by A. The simplest solution is to set Aij to one if node vi and vj
are adjacent, otherwise set Aij to zero. This method is equivalent to take a simple average
of neighborhoods, which restricts the complexity of GCN. Considering the importance
of different nodes varies, weighted adjacency matrix emerges, such as RBF kernel [33,34],
semidefinite kernel [48], and self-attention mechanism [45]. However, these methods
are disabled to leverage additional information. In our heterogeneous graph, we take
land cover labels into consideration to calculate A, which further strengthen the relations
expression of GCN. Meanwhile, the parameters of this function are learnable, which is
adaptively adjusted in the training process.

2.4. Feature Fusion and Classifier

The VFSR image representations obtained by different network architectures vary
greatly. CNNs focus on spectral-spatial features, and GCNs pay more attention to topo-
logical relations among objects. Typically, features provided by a single architecture are
limited, which makes it hard to obtain optimal results. Therefore, we enhance the GCN
module with CNN features to attain better performance. Before feature fusion, we have
to map the node-level outputs of the GCN module to pixels, which is an inverse process
of graph projection, called graph reprojection. The graph reprojection assigns the features
of a node to pixels located in that node. Then, element-wise addition is performed on the
reprojected GCN feature maps and the upsampled CNN feature maps. Finally, pixel-level
segmentation results are obtained after feeding fused feature maps into the classifier, which
comprises a 1× 1 convolutional layer, a softmax function, and an arg max operation on the
feature dimension, as shown in Equation (4).

Output = arg max
d

(softmax(Conv(XCNN + XGCN))) (4)

3. Results

In the experiments, our proposed CHeGCN model is evaluated on our two park seg-
mentation datasets. Six state-of-the-art deep learning approaches are compared with our
method: FCN [21], U-net [22], PSPNet [15], DeepLabv3 [19], CNN-enhanced graph convo-
lutional network (CEGCN) [32], and global reasoning unit (GloRe unit) [24]. Three metrics,
overall accuracy (OA), kappa coefficient (Kappa), and intersection over union (IoU), are
adopted to measure the performance of models. Since the Kappa and IoU can better de-
scribe the segmentation results, we will focus on them more in the following analysis. The
mean and standard deviation of these three indicators are presented after each experiment
is repeated five times. Finally, ablation experiments and visualization results are conducted
to demonstrate the benefits brought by heterogeneous graphs, which are constructed with
land cover data.
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3.1. Dataset

We created two new land use segmentation datasets with two categories: park and non-
park. Parks that are too large or too small are excluded, because topological relationships
among land cover objects in a park area cannot be well expressed by fixed-size image
blocks at the current resolution. For a large park, an image block cannot reflect the overall
spatial structure of it. For a small park, land cover data are not sufficiently refined to
support the segmentation of tiny regions. In the Beijing dataset, we selected 157 parks
of appropriate size in Beijing, China. In the Shenzhen dataset, we selected 99 parks in
Shenzhen, Guangdong province, China. Due to the different shapes of these parks, we
cropped them into image blocks of size 256× 256 to facilitate the subsequent process. These
samples are then randomly split into training, validation, and test sets in a 4:1:1 ratio using
parks as units, which prevents data leakage. Samples in these sets are evenly distributed
across districts (see Figure 3). Each sample has three components obtained in 2015: a VFSR
image, a park label, and a land cover label.

Figure 3. Distribution of samples. These samples are divided into training, validation, and test sets
in a ratio of 4:1:1. The data in each set are evenly distributed across districts.

The VFSR images with RGB bands come from Google Earth imagery. These images
are at a zoom level of 16, with a resolution of 1.8 m for the Beijing dataset and 2.2 m for the
Shenzhen dataset. They are cloud free after careful selection, and most of them were taken
between July and September of 2015. To expand the dataset, we realized dataset augmenta-
tion through adaptively sliding windows with the premise of preserving the park’s integrity
as much as possible. The augmented training dataset is abbreviated as “training-aug”. The
distribution of samples in these two datasets can be seen in Tables 1 and 2.

Table 1. The distribution of samples in Beijing dataset.

Dataset Dongcheng Xicheng Haidian Chaoyang Fengtai Shijingshan Total

Training 17 14 32 52 22 7 144
Training-aug 53 52 166 199 85 27 532

Validation 4 4 9 14 4 2 37
Test 5 4 9 14 6 2 40

Table 2. The distribution of samples in the Shenzhen dataset.

Dataset Luohu Futian Nanshan Yantian Bao’an Longgang Pingshan Longhua Guangming Total

Training 13 12 11 2 23 11 6 7 7 92
Training-aug 30 40 37 8 73 46 14 24 22 294

Validation 1 3 2 1 6 3 1 4 3 24
Test 2 3 4 1 6 3 2 2 1 24
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Park labels are made by manual correction on the basis of the OpenStreetMap (OSM)
project and area of interest (AOI) data collected from Baidu Map. After reprojection and
rasterization, the corrected park vector data are then transformed into raster labels. The
land cover product, with a spatial resolution of 2 m, is generated from GF-1 data and
contains 13 categories. By visual interpretation, we label unknown regions with the other
12 categories. Afterwards, these 12 categories (except the unknown class) are merged into
five classes: grass, forest, buildings, road, and water. The class distribution of the processed
land cover data is shown in Figure 4. Blue bars indicate the distribution of samples in all
areas, while green bars denote the distribution of park regions. It is worth noting that land
cover labels are reprojected and resampled as the coordinate system and resolution of this
product do not match images.

Figure 4. Land cover category distribution of all samples and park areas.

3.2. Hyperparameters Configuration

CHeGCN has four components: the CNN module, the heterogeneous graphs con-
struction, the GCN module, and the classifier. The output dimensions of the CNN module
are 32. The segment number n and compactness c of SLIC are set to 50 and 10, respec-
tively. Parameter n is the approximate number of segments, and c balances the color
proximity and space proximity. There are 3 layers each with 32 units in the GCN module.
Each GCN layer is followed by a batch normalization [49] layer and a ReLU activation
layer. The fused feature maps are followed by a 1 × 1 convolutional layer, a softmax
function, and the cross-entropy loss. We use the Adam optimizer [50] to train CHeGCN
for 130 epochs, with four examples per mini-batch. All hyperparameters are determined
by the performance in the validation dataset, and the same hyperparameter configura-
tion is used for both qualitative and quantitative results. Our code (Code is available at:
https://github.com/Liuzhizhiooo/CHeGCN-CNN_enhanced_Heterogeneous_Graph) is
implemented with Python-3.6 and PyTorch-1.10.2 and is accessed on 6 October 2022.

The learning rate (lr) parameters of modules should be different because the archi-
tectures of the CNN module and the GCN module are different. Meanwhile, the ResNet
backbone is pretrained, thus the lr of it is set lower than convolutional layers that are
used in dimension deduction and the classifier. Specifically, the maximum lr of the GCN
module, the ResNet-18 backbone, and the 1× 1 convolutional layers are 6× 10−4 , 1× 10−4,
and 2× 10−4, respectively. Furthermore, we adopt the warm-up strategy [41], the cosine
annealing warm restarts schedule [51], and periodically decay the amplitude. The lr curves
are shown in Figure 5, and the lr schedule is formulated as Equation (5):

lrt =
1
2

βt′ lrmax(1 + cos(t′π)) (5)

where:

lrt is the learning rate at current epoch t;
β is the periodic decay factor and is set to

√
1/2;

lrmax is the maximum learning rate of modules,

https://github.com/Liuzhizhiooo/CHeGCN-CNN_enhanced_Heterogeneous_Graph
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t′ is a temporary variable and t′ = t−T0
T ;

T0 is the number of epochs for warm-up and is set to 30;
T is the number of epochs between two warm restarts and is set to 20.

Figure 5. Learning rate schedule, which combines the warm-up strategy, cosine annealing warm
restarts schedule, and periodic decay. The maximum learning rates of different components in
CHeGCN are different.

Moreover, the training details of these state-of-the-art models for comparison are as
follows. The pretrained ResNet-18, with the last two down-sampling layers removed, serves
as the backbone for FCN, PSPNet, DeepLabv3, and GloRe. All compared models adopt
the learning rate schedule in Equation (5) with lrmax = 1× 10−4. We employ a heuristic
strategy rather than grid search to determine the model structure and the hyperparameters
because there are a lot of parameters in our model. Specifically, we first determine the
model’s configuration, then the learning rate hyperparameters, and finally other parameters
such as batch size and segmentation scale. All of these parameters are determined by the
performance in the validation dataset. For some key parameters, such as model depth
and segmentation scale, we conducted detailed experiments in the discussion section. It is
worth noting that all quantitative metrics are obtained by the model with the maximum
OA index on the validation dataset.

3.3. Comparison of Classification Performance

Tables 3 and 4 exhibit the segmentation scores (%) of CHeGCN and six state-of-the-
art models in terms of OA, Kappa, and IoU in two datasets. Meanwhile, we show the
qualitative segmentation results of all methods in Figure 6.

Table 3. Quantitative comparison of different methods in the Beijing dataset.

Model OA Kappa IoU

FCN 87.78 ± 0.67 71.05 ± 1.98 66.40 ± 2.22
U-net 85.33 ± 0.65 65.99 ± 2.00 62.22 ± 2.18

PSPNet 87.61 ± 0.31 70.82 ± 0.96 66.30 ± 1.12
DeepLabv3 87.86 ± 0.20 71.46 ± 0.65 66.97 ± 0.80

CEGCN 79.67 ± 0.26 51.67 ± 0.91 49.42 ± 0.95
GloRe 88.02 ± 0.63 71.67 ± 1.93 67.03 ± 2.26

CHeGCN 89.07 ± 0.29 74.71 ± 0.49 70.48 ± 0.49
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Table 4. Quantitative comparison of different methods in the Shenzhen dataset.

Model OA Kappa IoU

FCN 87.46 ± 0.39 65.17 ± 1.57 57.85 ± 1.75
U-net 87.51 ± 0.39 66.07 ± 1.42 59.10 ± 1.58

PSPNet 87.66 ± 0.21 66.37 ± 0.53 59.33 ± 0.50
DeepLabv3 87.17 ± 0.20 64.50 ± 0.98 57.28 ± 1.18

CEGCN 82.64 ± 0.20 52.76 ± 1.04 47.25 ± 1.09
GloRe 87.33 ± 0.33 64.83 ± 0.89 57.52 ± 0.88

CHeGCN 88.37 ± 0.45 69.11 ± 1.79 62.45 ± 2.11

Figure 6. Qualitative segmentation results of different methods. Five examples are provided for
comparison of models. The first column is the images, the second one indicates the land cover data, the
third one lists the corresponding ground truth, and the following columns exhibit the segmentation
results of different models. The color table for land cover categories is listed at the bottom.

In the Beijing dataset, our model performs the best and outperforms the second
one by nearly 3.5% on the IoU metric. All CNNs achieve a similar performance, except
U-net. Under the condition of limited samples, U-net behaves worse than other CNNs
because it is trained from scratch. Meanwhile, we observe that the performance of the
graph-based model CEGCN is unsatisfactory. This could be due to insufficient local spatial
feature extraction. CEGCN is developed for hyperspectral images with abundant spectral
information, which extracts pixel-level features. GloRe has a marginal improvement over
CNNs, which benefits from the constructed long-distance relationships. However, GloRe
builds graphs by applying convolutions to images, resulting in mismatches between nodes
in interaction space and land cover units. Therefore, the improvement is not significant.
Compared to GloRe, CHeGCN builds graphs based on land cover elements and achieves
better performance.

Similarly to the previous dataset, the Shenzhen dataset demonstrates CHeGCN’s
advantages over other models. CHeGCN outperforms CNNs (e.g., DeepLabv3) and homo-
geneous GCNs (e.g., GloRe) by approximately 5% on the Kappa and IoU indices. GloRe,
on the other hand, performs worse than PSPNet and U-net, demonstrating its instability.
The topological relationships among land cover units cannot be properly established since
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GloRe builds graphs on virtual nodes. In contrast, CHeGCN achieves stable improvement
over CNNs.

We further display the qualitative segmentation results of several test samples in
Figure 6. CNNs and CEGCN tend to classify all forest and water pixels as parks (see
sample 1), regardless of the topological positions of these pixels. Meanwhile, CNNs,
CEGCN, and GloRe fail to treat park regions as a whole. They classify buildings in the
marked area of sample 2 as non-park. CNNs ignore the narrow park area in sample 3
as pooling operations of deep CNN severely destroy the spatial structure. In contrast,
CHeGCN removes the last four convolutional layers of ResNet-18 to extract shallow CNN
features, which are beneficial for small object recognition. The same goes for samples 4
and 5, where the predictions of CNNs tend to be over-smoothed and blurred. The noisy
results of CEGCN indicate its lack of spatial features. Comparatively, CHeGCN yields
more accurate results.

3.4. Ablation Experiments

The improvement in the performance of CHeGCN model can be attributed to two
factors: the heterogeneous graph-based reasoning and the pretrained CNN module. We
designed the following experiments on the Beijing dataset to demonstrate the effectiveness
of these factors. It is worth noting that hyperparameters in ablation experiments remain
unchanged unless otherwise specified.

First, we conduct experiments to demonstrate the effectiveness of graph reasoning.
We build a CNN model with the same structure as CHeGCN, except that the CNN model
substitutes the GCN module with three convolutional layers. These layers have the same
hidden units as the GCN layers. As a result, rows 3 and 5 in Table 5 show that the GCN
module plays an important role, improving the accuracy by nearly 3.5%, 8.5%, and 8.5% in
terms of OA, Kappa, and IoU, respectively.

Table 5. The quantitative comparison of different models in ablation experiments.

Model OA Kappa IoU

HoGCN 78.60 ± 0.83 50.04 ± 1.80 48.77 ± 1.57
HeGCN 83.12 ± 0.27 61.86 ± 0.67 59.25 ± 0.82

CNN 85.63 ± 0.40 66.10 ± 1.35 61.85 ± 1.57
CHoGCN 88.05 ± 0.62 72.13 ± 1.32 67.80 ± 1.20
CHeGCN 89.07 ± 0.29 74.71 ± 0.49 70.48 ± 0.49

Furthermore, considering the situation in which there are no land cover data avail-
able, CHeGCN cannot use meta-path parameters to refine edge weights and degenerates
to the CNN-enhanced HOmogeneous Graph Convolutional Network (CHoGCN). The
sole difference from CHeGCN is that nodes in CHoGCN do not have land cover labels.
Therefore, CHoGCN calculates the edge weights by (1). Compared with CHeGCN, there
is a performance drop (nearly 2.5% in Kappa and IoU) in CHoGCN. This suggests that
heterogeneous graphs have a stronger inference capability than homogeneous graphs.
Meanwhile, CHoGCN outperforms the CNN model, demonstrating the effectiveness of
graph reasoning once again.

Moreover, CNN features boost the performance of graph-based models. We report
the accuracy metrics of the HOmogeneous Graph Convolutional Network (HoGCN) and
HEterogeneous Graph Convolutional Network (HeGCN), neither of which employs a CNN
module. The differences between HeGCN and CHeGCN are the initialization of node
features and feature fusion. Node features in HeGCN are the average spectral features
in superpixels of the input image, whereas CHeGCN takes the mean value of the CNN
module’s feature maps as node features. Moreover, HeGCN only employs the GCN output
to classify without using CNN feature maps. The same goes for the differences between
HoGCN and CHoGCN. The CNN module significantly improves the Kappa of HoGCN
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and HeGCN, as shown in Table 5. Meanwhile, HeGCN outperforms HoGCN, which is
consistent with the previous conclusion that land cover data are beneficial.

3.5. Visualization Analysis

In this section, we analyze the underlying mechanism of CHeGCN. We visualize edge
weights among adjacent land cover objects to observe topological relations among land
cover objects in parks. CHoGCN is compared with the proposed CHeGCN to illustrate the
advantages of heterogeneous graphs. Furthermore, we interpret segmentation results with
meta-path parameters. We select two samples to show the edge weights and segmentation
results of CHoGCN and CHeGCN in Figure 7. The top row contains land cover data
overlaid with superpixel boundaries, and the edge weights of models. The second row
includes the zoomed-in views of the highlight boxes in the first row. The third row consists
of the ground truth label, and the predictions of models.

Figure 7. Visualization of edge weights among land cover objects and the segmentation results. There
are two examples shown in (a,b) and the numbers in the second row denote the index numbers of
different nodes. The color bar on the right is used to render edge weights, with higher values making
edges redder.

As shown in Figure 7a, CHoGCN misclassifies the road and water regions in the
lower left of the image. Due to the improper selection of edge weights, the topological
relationships are insufficiently constructed. As mentioned previously, roads generally form
the boundaries of parks. This is consistent with land cover distribution statistics in Figure 4,
where the number of road pixels in parks is much less than that in all regions. However, the
edge weight of CHoGCN between a road object and a forest object is high. Specifically, the
edges between a road node (1) and forest nodes (2, 3, 4) in CHoGCN are high, which are
orange-colored. This will reduce the interclass variance in the feature aggregation, leading
to the false positive classification. CHeGCN decreases the edge weights (rendered in yellow)
between road and forest objects, making these nodes further apart in the feature space.

Figure 7b shows another example. Because of inadequate use of neighboring infor-
mation, CHoGCN incorrectly labels the building area in the park as non-park. CHeGCN
reduces intraclass variance during feature aggregation to smooth local variations, which
finally achieves global perception. In detail, the forest superpixels (nodes 3, 4, 5, 6) surround-
ing the building are more closely connected than those of CHoGCN, and the corresponding
edges in CHeGCN tend to be red. As a result, the features of the building regions (nodes 1,
2) tend to be similar to those of their neighbors, making them easier to recognize as parks.

We visualize meta-path parameters aP, bP in Figure 8 because they play a critical role
in heterogeneous graph construction (the calculation equation is seen in Equation (2)).
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Combined with the above cases, we find these parameters interpretable. Almost all pa-
rameters of the self-connection meta-path are positive, which is profitable for decreasing
the intraclass variance. Most of the values related to roads are negative, especially the
parameters of meta-path “road-grass” and “road-forest”. As such, meta-path parameters
are advantageous for the segmentation of the scene in Figure 7a. Meanwhile, despite being
negative, the absolute values of the parameters of the meta-path “buildings-forest” are
relatively small. These behaviors make it possible to realize global recognition for segmen-
tation, such as the case in Figure 7b. From the above analysis, we find that meta-path-based
adjacency matrix calculation in Equation (2) greatly enhances graph reasoning capability.

Figure 8. Symmetric meta–path parameters aP,bP in edge calculation. The values are rendered with
the color bar on the right, with positive values appearing in blue and negative values in red.

To summarize, the mechanism of the heterogeneous graph-based model is to adap-
tively adjust interclass and intraclass variance based on topological relations. We take the
sample in Figure 7a to show the difference in feature distribution before and after the GCN
module, where the feature dimension is reduced to two by principal component analysis
(PCA) [52]. As shown in Figure 9a, the CNN features of water nodes are close to those
of park nodes since the water regions are located in the middle of two parks. After the
GCN module, the interclass variance between the forest and water nodes are increased (see
Figure 9b), which is consistent with the analysis of the edge weights in Figure 7a. Moreover,
the intraclass variance of buildings is increased after the node feature aggregation. This
makes it possible to distinguish building nodes inside parks from those outside parks. The
building nodes outside parks are gathered together and move away from the park cluster
because the aP of the meta-path “buildings-buildings” is high. Finally, park nodes form a
pure cluster.

Figure 9. Node feature distributions of the CNN module and the GCN module, where PCA reduces
the feature dimension to two. The park cluster is highlighted with a blue dashed circle and nodes are
rendered by their land cover categories.
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4. Discussion

In this section, we further investigated some critical hyperparameters on the Beijing
dataset. Meanwhile, we analyze the reasons behind these phenomena in combination with
previous findings.

4.1. Influence of Segmentation Scale

Graph size is determined by the segmentation scale. The larger n is, the more nodes
there are in the graph. Large objects are easily over-smoothed, whereas small objects are
noisy. Figure 10 shows that, on the first sample, the model performs better with a smaller
n = 20, which filters out the noisy regions. When n = 100, however, the long and narrow
park can be better identified.

Figure 10. Comparison of qualitative results at different segmentation scales. Segmentation results
of different segmentation scales are placed on the image. Predicted differences are marked with
red circles.

Generally, we prefer appropriate over-segmentation, which ensures that the segmented
regions are homogeneous and preserves more spatial details. Furthermore, we believe that
proper over-segmentation can better establish topological relationships. When relations
are described by large objects in Figure 11a, the “surrounded” relation is the same as the
“adjacent” relation because there is only a single edge between node 2 and node 1, and the
same thing between node 2 and node 3. By contrast, there are more edges between node 1
and its surrounding nodes in Figure 11b if over-segmented. Thus, node 1 is more likely
to be identified as a park node. However, when there is a large building in a park, such
as node 4 in Figure 11c, the prediction result will be unsatisfactory if over-segmented. As
aforementioned, CHeGCN can reduce intraclass variation, causing node 4 in Figure 11d
to move away from the park cluster after over-segmentation. As a result, the accuracy of
CHeGCN rises at first, and then falls as n increases in Figure 12. Meanwhile, the standard
deviation is high when n is too high or too low, indicating that using an appropriate
segmentation scale can produce more stable results. The determination of the segment
number is data-dependent and heuristic.

4.2. Influence of Network Depth

Although GCNs have shown promise, their architectures are much shallower than
those of CNNs. Because of the vanishing gradient problem, most current GCNs generally
contain 2–4 layers. The variation of model depth will greatly influence the performance of
the model as the layer number is limited. We investigate the impact of CHeGCN depth in
the following experiments. In more detail, we evaluate the performance of CHeGCN with
1–5 layers, where the number of hidden units in each layer is 32. Other hyperparameters
are unchanged from previously.
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Figure 11. Two examples are provided to illustrate how the segmentation scale affects the construction
of topological relations. In some cases, over-segmentation is beneficial for describing the topological
relations of small objects. For instance, the “surrounding” relationship in (b) can be better expressed
when the sample in (a) is over-segmented. However, describing the actual topological relations
of large objects becomes more challenging when they are over-segmented. For example, (d) is the
over-segmentation of (c). Since the topological relationship of node 4 is incorrectly expressed as being
surrounded by buildings, the segmentation result of (d) is unsatisfactory.

Figure 12. Quantitative comparison of CHeGCN at different segmentation scales.

As seen in Figure 13, the best choice of model depth is three. Excessively shallow
or excessively deep networks have larger deviation values. The model with fewer layers
captures an insufficient global context, resulting in a large variation in the extracted fea-
tures. The model with more layers, on the other hand, is prone to over-smoothing, which
ultimately makes nodes of different types indistinguishable in the feature space. Figure 14
depicts the feature distributions of the last GCN layer in the single-layer CHeGCN and the
five-layer CHeGCN. The intraclass variance of the shallow GCN is high, where the building
nodes are discretely distributed. Meanwhile, the interclass variance of the deeper GCN is
minor. The water and forest nodes are mixed together, and it is difficult to distinguish. As a
result, building an extremely shallow or deep GCN is not recommended. In all of the other
experiments, the layer number is fixed to three.
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Figure 13. Quantitative comparison of models with different depths.

Figure 14. The feature distributions of the last GCN layer in 1-layer CHeGCN and 5-layer CHeGCN.

4.3. Spatially Adjacent vs. Global Adjacent

As mentioned above, land use segmentation requires global context information.
CHeGCN stacks k GCN layers to aggregate features from k-hop neighborhoods based on
topological relations. Another solution is to connect a pixel to all pixels [43,53]. Inspired
by it, we propose a non-local CHoGCN and a non-local CHeGCN, which calculate the
response at a given superpixel as a weighted sum of all superpixels. We compare the results
between non-local models and the local connected models. Each experiment is repeated
five times, with the average of the indices (OA, Kappa, and IoU) recorded in Table 6.

We observe that both non-local CHoGCN and non-local CHeGCN models perform
worse than CHoGCN and CHeGCN, respectively, as model depth is three. Considering
that fully connected non-local models are prone to overfitting, we compare these models in
a single-layer structure. However, these single-layer non-local networks still fail to compete
with the single-layer local connected models. On the one hand, it is difficult to train a
fully connected network with limited samples. On the other hand, park segmentation
relies heavily on topological relations, where non-local models fail to extract dependencies
among heterogeneous regions and cannot capture local spatial structures. Furthermore,
we discover that a non-local structure has far more negative effects on CHeGCN than
on CHoGCN. When adopting the non-local strategy, IoU drops (∆IoU) by 4.55% and
6.89% for 3-layer CHoGCN and 3-layer CHeGCN, respectively. This demonstrates that
the performance of heterogeneous graph-based models will suffer greatly when meta-path
parameters are not appropriately selected.
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Table 6. Quantitative comparison of local and non-local CHeGCN.

Layer Model OA Kappa IoU ∆ IoU

1-layer

CHoGCN 87.44 70.69 66.39
Non-local CHoGCN 86.90 69.30 64.97 −1.42

CHeGCN 87.72 71.42 67.17
Non-local CHeGCN 86.87 69.67 65.69 −1.48

3-layer

CHoGCN 88.05 72.13 67.80
Non-local CHoGCN 86.05 67.39 63.25 −4.55

CHeGCN 89.07 74.71 70.48
Non-local CHeGCN 86.32 67.87 63.59 −6.89

4.4. Other Types of Land Use

Based on the aforementioned experiments and analysis, we demonstrated the great
improvements in park segmentation with land cover data. Furthermore, we believe that,
in addition to parks, there are other types of land use that can benefit from the land cover
information. Some land use categories are combinations of multiple land cover components,
and different land use categories have distinct combination patterns. For example, wetlands
typically consist of water and grass regions while urban parks may also contain buildings.
In addition, the location of land use units is closely tied to the land cover distribution. For
instance, commercial areas regularly emerge in the center of building areas, and fields are
rarely seen among buildings. However, several land use categories, such as forest, grass,
and water, may obtain slight improvements given that they share similar definitions with
land cover.

4.5. Imagery with Multiple Spectral Bands

In this article, the images in our datasets only contain RGB bands, while most of VFSR
images contain four spectral bands (RGB + near-infrared). The simple method to generalize
our model to VFSR images with four bands is to take the RGB bands. On the one hand, the
primary information for land use segmentation is included in RGB bands. On the other
hand, as the short-wave infrared spectrum predominantly provides relevant information
for vegetation recognition, the additional land cover information provides supplemental
information for vegetation. In addition, we could modify the CNN module to better exploit
the multi-spectral data. For example, we can substitute the ResNet-18 backbone with U-net,
which does not restrict the band number at 3. Meanwhile, the U-net trained from scratch
may require more data to obtain comparable results.

5. Conclusions

In this paper, we propose a heterogeneous graph-based model, CHeGCN, to infer land
use from land cover. Unlike prior work that builds graphs solely on images, we introduce
land cover data to better estimate the topological relations among geo-objects. With the
assistance of land cover information, CHeGCN achieves approximately 2.5% IoU improve-
ments over CHoGCN in two datasets. The mechanism behind this is that the ability of
graph reasoning is enhanced by adaptively adjusting the edge weights of labeled nodes. In
addition, our CHeGCN produces more accurate segmentation results. CHeGCN performs
nearly 3.5% and 5% better than current methods, namely CNNs and GCNs, respectively.
Meanwhile, we comprehensively analyze the underlying mechanisms. In conclusion,
CHeGCN is capable of processing heterogeneous data, which greatly improves land use
segmentation results. Inspired by the image pyramid, we believe the multi-scale architec-
ture of graphs will be beneficial for building topological relationships. In future work, the
multi-scale structure will be explored to better exploit pretrained deep CNN features and
GCN features at different segmentation scales.
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