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Abstract: Pantana phyllostachysae Chao (PPC) is one of the deadliest defoliators of Moso bamboo.
Accurately locating and evaluating PPC damage is essential for the management of bamboo forests.
Moso bamboo has a unique biennial growth cycle, consisting of the on-year period (bamboo shoots
are incubated and then produced) and the off-year period (old leaves are dropped and then new
leaves are grown, and no bamboo shoots are produced in the coming year). The similar physiolog-
ical characteristics of off-year bamboo and damaged on-year bamboo create difficulties in monitor-
ing PPC damage using remote sensing data. In this study, we synergistically used Sentinel-1, Senti-
nel-2, and field inventory data to construct machine learning (extreme gradient boosting, XGBoost)
models monitoring PPC damage. The results show that the single-time observation feature-based
model (using images from October) outperformed the double-time observation feature-based
model (using the differences between remote sensing signals from October and February or April)
due to the interference from other disturbance agents (e.g., logging and weeding). The overall ac-
curacy (OA) values of the single-time observation feature-based model were at least 3% and 10%
higher than those for double-time observation feature-based models for on- and off-year samples,
respectively. With the consideration of the on- and off-year phenological differences, OA was im-
proved by over 4%. The model without differentiation of the phenological difference tended to un-
derestimate the damaged area of on-year bamboo and overestimate that of off-year bamboo. We
also found that the responses of optical and SAR (synthetic aperture radar) features to PPC damage
were different. The optical features increased or decreased with increasing damage severity. SAR
features decreased significantly at the initial stage of PPC damage and then changed marginally
with the increase in damage severity. The addition of SAR features to optical features improved the
model performance, mainly for healthy and mildly damaged samples. The methodology developed
in this study provides technical and theoretical support for the pest monitoring of bamboo forests

using remote sensing data.
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1. Introduction

Bamboo is an important ecological and economic forest type that is mainly distrib-
uted in Asia, South America, and Africa [1]. The area of bamboo forests in China is the
largest globally and amounts to 6.41 million ha, of which the area of Moso bamboo (Phy!-
lostachys pubescens) accounts for 72.96% of the total [2]. The harvest period of Moso bam-
boo is short, which ensures that farmers can obtain the benefits from various bamboo
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products every year. Therefore, the bamboo industry’s economy is the main source of fis-
cal revenue in many regions. Bamboo production is also a critical project undertaken by
the Chinese government and is intended to alleviate poverty in many poor mountainous
areas. Additionally, bamboo has a high carbon sequestration capacity and could make a
considerable contribution to the terrestrial carbon sink [3].

However, the biodiversity of bamboo forests is commonly low because of bamboo’s
unique growth pattern (i.e., clonal reproduction and invasive expansion) and anthropo-
genic intervention in the forest structure [4]. Bamboo forests experience various insect dis-
turbance events every year due to the lack of predators in the forests. There are more than
630 species of insects that threaten bamboo forests, of which Pantana phyllostachysae Chao
(PPC) is the most destructive [5]. Its larvae mainly feed on bamboo leaves and are usually
present three times each year, comprising the overwintering generation (from March to
May), the first generation (from June to August), and the second generation (from Sep-
tember to November). After hatching, the larvae move from the trunk to the top of the
canopy and attack leaves. The host’s leaves are consumed quickly when the larval popu-
lation accumulates to an epidemic level. The photosynthetic and nutrient transport effi-
ciencies of the host are seriously weakened, and its resilience to secondary attacks is re-
duced. The host’s physiological functions collapse after successive defoliation events,
eventually leading to death. The shoot production of the host in the following year seri-
ously decreases, and the material and volume of new bamboo in the damaged areas no-
ticeably decline [6].

The topographic conditions of bamboo’s habitat are usually complex, which imposes
challenges in respect of manually monitoring PPC damage [7]. Data collected are usually
not comprehensive and lack timeliness. Irreversible and extensive damage has already
occurred by the time it is found. Therefore, an effective monitoring method is urgently
needed for the better prevention of PPC.

Optical remote sensing, especially moderate-resolution optical remote sensing, pro-
vides an essential data basis for forest insect disturbance monitoring at large scales [8,9].
Spectral variation can be used to determine the damaged area and severity. Normally, the
herbivorous behavior of defoliators results in the destruction of the leaf tissue structure,
and leaf moisture will be lost from damaged edges [10]. When the wounds heal, the tran-
spiration of the residual leaves is greatly weakened due to water deficit [11]. The leaf tis-
sue is burned since there is not enough transpiration to remove the redundant heat. Fur-
thermore, hydropenia and a high temperature accelerate the decomposition of pigments,
resulting in the discoloration of damaged leaves [12]. Therefore, indicators that capture
the canopy’s greenness and humidity are usually used as features which characterize pest
damage [13,14]. Additionally, defoliation is the most visible characterization of a host tree
damaged by herbivorous insects and could be monitored using optical remote sensing
data. However, optical remote sensing is only able to detect spectral changes in the canopy
on a flat surface and fails to sense the vertical characteristics of damaged trees. Recently,
increasing evidence has proved that the backscatter intensity of synthetic aperture radar
(SAR) is sensitive to changes in both vegetation vertical structure and moisture [15,16],
implying that SAR-derived features might be useful to monitor insect damage inducing
the decay of the physiological vitality of the canopy. Therefore, many efforts have ex-
plored the applicability of the combination of optical and SAR data in mapping pest dis-
turbances [14,17].

There are two approaches used to acquire the stress signal of a damaged canopy. The
first involves detecting the remote sensing signal anomalies of the damaged canopy from
single-time images during the pest infestation period. The second involves using signal
variations in the damaged canopy between the pre- and post-disturbance periods. How-
ever, most studies assume that all physiological anomalies were caused by insect disturb-
ances [8]. This assumption is sometimes questionable. Moso bamboo has typical pheno-
logical characteristics of on- and off-year periods within its growth cycle [18] (Figure 1).
Specifically, after the unearthing of new bamboo shoots (approximately from April to
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May), the old leaves of maternal bamboo gradually yellow and shed from autumn. The
new leaves sprout in the following spring and no bamboo shoots are produced that year.
This is called the “off-year” period. The photosynthetic capacity of bamboo is greatly im-
proved with the completion of new leaf expansion [19,20]. Bamboo begins to accumulate
nutrients for shooting in the coming year. The period from the incubation to the produc-
tion of bamboo shoots is called “on-year”. The morphology of off-year bamboo’s canopy
has many similarities (e.g., defoliation and discoloration) with on-year bamboo damaged
by PPC. Previous studies have demonstrated that the physiological condition of off-year
bamboo leaves has significant differences compared to normal on-year bamboo leaves,
which can affect the identification accuracy of PPC damage [21]. Therefore, distinguishing
off-year bamboo is essential for improving PPC damage detection using remote sensing.
However, this hypothesis has not been tested.

Accordingly, we attempted to map the distribution of PPC damage by the combined
use of Sentinel-2 optical and Sentinel-1 SAR images. We investigated the ability of SAR
and optical features to delineate PPC damage and assessed the impact of bamboo phenol-
ogy on the mapping accuracy in respect of pest damage. Specifically, the following ques-
tions were investigated. (1) What are the responses of SAR and optical features to PPC
damage? (2) What are the differences between the abilities of single-time and double-time
observation features to identify PPC damage? (3) How is the identification accuracy of
PPC damage affected by the on- and off-year phenological differences between bamboo
forests?

26.901424° N 117.608057° E 26.928552° N 117.612404° E

6th October 7th October
.S

Figure 1. Comparison of (a) on-year and (b) off-year bamboo.

2. Materials and Methods
2.1. Study Area

The study was conducted in Shunchang county, southeastern China (Figure 2). The
forest coverage rate in the region was close to 80% in 2019. Moso bamboo, broadleaf (e.g.,
Phoebe zhennan, Liquidambar formosana), and coniferous (e.g., Cunninghamia lanceolata, Pi-
nus massoniana) forests are the main forest types in the region. Shunchang county is also
known as one of the “bamboo townships” of China. Various bamboo insect disturbance
events occur here every year. Although the local forestry bureau and foresters have made
enormous efforts in respect of pest control, bamboo pests, especially PPC, still present
intermittent outbreaks.
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Figure 2. Location of Shunchang County, Nanping City, Fujian Province, China.

2.2. Data Used
2.2.1. Field Observations

Field observations were conducted from 28 September to 15 October 2020. We ran-
domly selected observation plots (15 x 15 m) in the bamboo forest area. The central point
coordinate of each plot was recorded using a handheld global positioning system instru-
ment (GPS, UniStrong G120BD). Two technicians visually estimated the defoliation rate
(the percentage of leaf loss in the crown) of each Moso bamboo plant within the plot. The
defoliation rate of each plot was calculated as the average of estimates by two technicians
and was used to determine the damage severity (0-10% denoted healthy, 11-25% denoted
mild damage, 26-50% denoted moderate damage, and >51% denoted severe damage). In
total, 267 bamboo plots were observed, including 126 on-year and 141 off-year bamboo
plots. The 126 on-year plots consisted of 19 severely damaged plots, 18 moderately dam-
aged plots, 40 mildly damaged plots, and 49 healthy plots. The 141 off-year bamboo plots
comprised 21 severely damaged plots, 22 moderately damaged plots, 53 mildly damaged
plots, and 45 healthy plots. In addition, we sampled 27 broadleaf plots and 31 coniferous
plots.

2.2.2. Remote Sensing Data Used

A total of 15 images, including 6 Sentinel-1 Level-1 Ground Range Detected products
and 9 cloudless Sentinel-2 Level-1C products, were downloaded from the Copernicus
Open Access Hub (Table 1).

Sentinel-1 images were pre-processed on the Sentinel Application Platform v7.0 of
the European Space Agency (ESA). The thermal noise of the images was removed to en-
hance the continuities of sub-swaths. The backscattered signals at vertical-horizontal
(VH) and vertical-vertical (VV) polarizations were converted into radar cross-sections (c°)
through radiometric correction. The speckle of the corrected images was reduced using
the refined Lee filter (window size: 7 x 7 pixels). The geometric distortion of the images
was corrected using the range Doppler terrain correction method. The spatial resolution
of the images was resampled to 10 m during this step. Finally, logarithmic transformation
was performed to covert the unitless backscatter coefficient into decibels (dB) [22].

The Sen2Cor plugin provided by the ESA was used to conduct the atmospheric cor-
rection of Sentinel-2 images. All bands were resampled into 10 m using the Sen2Res plugin
[23]. The topographic correction of the Sentinel-2 images was implemented with the SCS
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+ C model and digital elevation model (DEM) data, which were resampled from 12.5 m
DEM data (ALOS-1) acquired from NASA (https://earthdata.nasa.gov) using the nearest-
neighbor method.

According to the observation time for collected data, the pre-processed images were
categorized into three classes and abbreviated as SC2020r.> (images from February),
S5C20204pr (images from April), and SC2020o0« (images from October) for facilitating de-
scription. Additionally, polygons with 2 x 2 pixels centered on the GPS observation of
each plot were sketched to retrieve data used to construct the models.

Table 1. Remote sensing imagery used for PPC damage monitoring.

Sensors Observation Time Tile/Absolute Orbit Numbers
21 February 2020
Sentinel-2 16 April 2020 T50RNQ, T50RNR, T50RPQ
23 October 2020
22 February 2020 031, 364
Sentinel-1 22 April 2020 032, 239
19 October 2020 034, 864

2.3. Mapping the Distribution of Bamboo Forests

With Google Earth images, local forestry inventory data, and the coordinates col-
lected from the field investigation, polygons for different forest types (coniferous, broad-
leaf, on-year bamboo, off-year bamboo) were sketched for training the model. The nor-
malized difference moisture index (NDMI), bamboo index (BI), and normalized difference
vegetation index red-edge (NDVI.) were calculated for mapping bamboo distribution
[24,25]. Extreme gradient boosting (i.e., XGBoost, see Section 2.5.1 for detailed description)
was applied to generate the distribution map of bamboo forests (Figure Al). Assessed
using collected samples, the classification accuracy reached 90.88% (Table Al).

2.4. Feature Selection

Previous studies have demonstrated that PPC infestation induces detectable declines
in the chlorophyll, moisture, and nitrogen contents of host leaves [21]. Therefore, 35 spec-
tral indices [14,26-28] and 5 SAR indicators [15,29,30] that have been demonstrated to be
tightly linked with pigment contents, humidity, and canopy structure were calculated as
candidates for further analysis (Table A2). All variables were uniformly normalized be-
tween 0 and 1.

The recursive feature elimination (RFE) method was applied to select features sensi-
tive to PPC damage [31]. RFE is a greedy optimization algorithm. Its principle is to elimi-
nate features, making a poor contribution to the model through iteration according to the
performance of each variable in the classification process. XGBoost was applied as the
base evaluator of RFE. After traversing the variable space, the variable subset that con-
tributed the most to the classification results was selected as the input features for model
construction.

2.5. Development of Severity Identification Model
2.5.1. Model Establishment and Optimization

The PPC damage identification model was constructed using XGBoost, which is one
of the most representative ensemble algorithms of machine learning [32]. The principle of

XGBoost is to accumulate multiple base learners (e.g., decision trees) and form a strong
classifier through iteration. Several studies have demonstrated that XGBoost performs
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better than the random forest model after appropriate hyper-parameter adjustment
[33,34].

There are 5 main parameters in XGBoost: (D the boosting learning rate (LR), @ the
number of the base learner (NE), @ the maximum tree depth of the base learner (MD), @
the minimum sum of the instance weight needed in a child (MCW), and ® the minimum
value of the loss function required for leaf node branching (GAM). Each hyper-parameter
was calibrated using the grid search method in conjunction with 10-fold cross-validation.

2.5.2. Design of Model Scenario

To evaluate the importance of differentiating between bamboo phenologies in the
identification of PPC damage, models were established using total samples, on-year sam-
ples, and off-year samples. We also compared the applicability of single-time and double-
time observation features in monitoring PPC damage. According to the PPC damage pe-
riod and field campaign time, single-time observation features were generated using
SC20200. Double-time observation features were calculated according to the differences
in remote sensing signals between post- (i.e., 5C20200c) and pre-disturbance periods (i.e.,
SC2020¢eb or SC20204pr). Finally, a total of 9 scenarios were designed and evaluated (Table
2).

Table 2. The designed experimental scenarios.

Scenario Model Input Model Abbreviation
On-year samples Single-on
Single-time observation (October) Off-year samples Single-off
Total Single-BF
On-year samples Double-onfeb
Double-time observation (October—February) Off-year samples Double-offres
Total Double-BFreb
On-year samples Double-onapr
Double-time observation (October—April) Off-year samples Double-offapr
Total Double-BFapr

2.5.3. Accuracy Evaluation

A total of 70% of the sample data (training set) were randomly selected for training
the model and the remaining 30% of sample data (test set) were used for validating the
model performance. The sample size of each severity group varied greatly, which could
have caused over-fitting problems during the model training process. To tackle this issue,
the sample data were pre-processed using the synthetic minority over-sampling tech-
nique [35]. Its principle is to oversample (i.e., random linear interpolation) the minority
class by using KNN (k-nearest neighbor), thus balancing the sample size of each class
group.

In the training process, after the optimization of the hyper-parameters of each model,
its training effect was assessed using 10-fold cross-validation. The model generality was
further evaluated using the test set. The model performance was assessed by overall ac-
curacy (OA), user accuracy (UA), and producer accuracy (PA).
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3. Results
3.1. Optical and SAR Signals of Bamboo Forests with Different Damage Severities

The statistics of the spectrum and two SAR signals of samples in each damaged group
were calculated (Figure 3). The spectrum of damaged samples presented high reflectivity
in the visible region compared with healthy samples. With the increase in the PPC attack,
the canopy reflectance decreased in the red-edge region, and its magnitude varied more
visibly in longer wavelengths, i.e., red-edge70 and red-edgerss. The spectral differences
among damaged groups were most evident in the near-infrared region. The reflectance
dropped notably in this wavelength with the increase in damage severity. The reflectance
in the shortwave infrared wavelength is normally linked with the moisture content of the
canopy, i.e., a higher moisture content leads to a lower reflectance in this region and vice
versa. However, the observational data showed that there was no distinct spectrum vari-
ation in damaged samples in the two shortwave infrared bands. On- and off-year samples
exhibited a visible spectral difference in each damaged group. The reflectance of off-year
samples was relatively lower than that of on-year samples, except for the moderately dam-
aged group.

As for the backscatter signals (not normalized) of each damaged group, the c°vv and
o°vh of bamboo forests decreased noticeably at the initial stage of PPC damage, especially
for the on-year samples. However, the signals had no visible changes when the damage
severity was further increased. It is noteworthy that the g°vv and o°vh values of damaged
off-year samples were higher than those of on-year samples, which differed from the
changing pattern of the spectrum.
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Figure 3. The spectra and SAR signals of (a) on-year and (b) off-year bamboo forests with different
damage severities. b1~b9 represent the coastal, blue, green, red, red-edges, red-edge7, red-edgerss,
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NIR, NIRrarrow, and water vapor bands of Sentinel-2 imagery, while b11~b12 represent the SWIR-1
and SWIR-2 bands of Sentinel-2 imagery.

3.2. Model Performance
3.2.1. Classification Results

The features that contributed the most to the performance improvement of each
model were selected based on RFE (Figure 4). Table 3 shows the determined hyper-pa-
rameter and OA values of the constructed models. The OA values of the training set (OA
+ standard error) and test set confirm that there is no over-fitting problem in each model.

Table 3. The determined hyper-parameters and classification accuracies of each model.

Model Hyper-Parameters OA (%)
LR NE MD MCW GAM Training Set Test Set
Single-on 0.32 73 6 1 0 89.29 £1.05 88.00
Single-off 0.28 62 6 1 0.3 88.65£1.15 85.80
Single-BF 0.3 183 6 1 0 85.24 +1.30 82.76
Double-onreb 0.3 109 6 2 0 87.22+1.24 84.67
Double-offreb 0.3 61 6 1 0 80.72 +1.97 75.15
Double-BFreb 0.25 207 6 1 0 81.59 +1.46 78.06
Double-onapr 0.3 172 6 1 0 86.90 +1.09 83.33
Double-offapr 0.32 89 6 1 0 78.36 +1.28 76.92
Double-BF apr 0.15 101 6 1 0 79.08 +0.72 75.24
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Figure 4. The contribution ranking of different features in each model.

Figure 5 shows the outputs for the test set samples. For on-year samples, the Single-
on model outperformed double-time observation feature-based models, with OA values
higher by at least 3%. The models all had great ability to distinguish healthy, moderately
damaged, and severely damaged samples; however, the Double-onres and Double-onapr
models performed relatively poorly in identifying mildly damaged samples, i.e., their PA
and UA values were below 80%. For off-year samples, the Single-off model performed
better than the double-time observation feature-based models, with an OA value higher
by about 10%. The PA and UA values of the Single-off model were about 90% for healthy
and severely damaged samples. The PA and UA values for mildly damaged samples were
82.76% and 84.21%, respectively. However, this model performed relatively poorly for
moderately damaged samples. When on- and off-year samples were combined, the per-
formances of the double-time observation feature-based models were poorer than that of
the Single-BF model, owing to their failure to properly identify damaged off-year samples.
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Figure 5. The performance (PA and GA) of each model in different damage groups.

The performances of Single-on + Single-off (the Single-on and Single-off models were
used for on- and off-year samples, respectively) and Single-BF were further compared
(Figure 6). The OA value of the former was 4% higher than that of the latter. The accuracy
of Single-on + Single-off in all damaged groups was higher than that of Single-BF, except
for the severely damaged group. Specifically, 16.24% of healthy samples were wrongly
classified into the mildly damaged group by Single-BF. The misclassification rate for the
mildly damaged group was the highest, with 12.62% and 11.65% of this group’s samples
being misclassified into the healthy group and moderately damaged group, respectively.
A total of 11.76% of moderately damaged samples were misclassified into the severely
damaged group. This comparison indicates the importance of differentiating between on-
and off-year samples for detecting different degrees of PPC damage.

Smgle—BF

[ The classified
healthy samples

[0 The classified
mildly damaged
samples

777 The classified
moderately damaged
samples

I The classified
severely damaged
samples

Moderately Severely Healthy Mildly Moderately Severely
damaged damaged damaged

Figure 6. Comparison of Single-on + Single-off and Single-BF models in identifying samples of dif-
ferent damage severities.

3.2.2. Contribution of SAR Features to Classification Model
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To evaluate the contribution of SAR features to PPC damage identification, the re-
sponses of selected features in the Single-on and Single-off models to pest infestation were
analyzed. We trained the model only based on optical features (modelsy, Table A3) to
quantitatively evaluate the role of SAR features in identifying PPC damage by comparing
its performance with that of optical and SAR feature-based models (i.e., Single-on and
Single-off).

Compared with the healthy samples, the optical features of damaged samples gener-
ally exhibited upward or downward trends, and the variation magnitudes increased with
the increase in damage severity (Figure 7). In comparison, the values of SAR features (i.e.,
o°vh in Single-on; ¢°vv and PIR in Single-off) were relatively discrete. The one-way
ANOVA method was used to assess the ability of SAR features to discriminate PPC dam-
age severity. The p-value of the one-way ANOVA indicates the significance of differences
between different health level groups. As shown in Table 4, the differences in SAR features
between various damage groups were not always statistically significant. The differences
between mildly and moderately, mildly and severely, and moderately and severely dam-
aged samples were insignificant.

The performance of modelsy.c was generally poorer than that of the optical and SAR
feature-based model (Figure 8). For on-year samples, in comparison with the Single-on
model, the Single-onse. model had slightly higher OA for the training set, but a 1.33%
lower OA for the test set. The role of SAR features in distinguishing damaged off-year
samples was more evident. The OA values of Single-off were 3.70% and 2.37% higher than
those of Single-offs.. for the training and test sets, respectively. SAR features were mainly
useful for identifying the healthy and mildly damaged samples, especially the latter. For
the mildly damaged samples, the PA and UA of Single-on were 4.44% and 0.85% higher
than those of Single-onsy., respectively. The PA and UA of Single-off were 6.90% and
2.73% higher than those of Single-offy., respectively.

Table 4. Differences in SAR features among different severity groups.

Compared Groups 0°vh/Single-On Lopv/Single-Off PIR/Single-Off
Healthy-Mildly damaged 0.000 ** 0.000 ** 0.001 **
Healthy—Moderately damaged 0.000 ** 0.003 ** 0.302
Healthy—Severely damaged 0.000 ** 0.000 ** 0.007 **
Mildly damaged-Moderately damaged 0.121 0.429 0.242
Mildly damaged-Severely damaged 0.054 0.492 0.998
Moderately damaged-Severely damaged 0.999 0.120 0.648

Note: ** denote the significance at levels of 0.01.
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Figure 8. Differences in the performance of models constructed using optical features and optical
and SAR features. Values shown are the PA and UA of the optical model minus those of the optical
and SAR features model.

3.3. Distribution of PPC Damage

A distribution map of PPC damage was generated using the best Single-on and Sin-
gle-off models, and the area proportions of bamboo in various damage severity groups
were counted (Figure 9). In the study area, 53.05% of bamboo forests were damaged by
PPC at different severities. The area proportions of bamboo forests with severe, moderate,
and mild PPC damage severities were 16.83%, 14.07%, and 22.15%, respectively. The area
proportion of off-year bamboo damaged by PPC was 55.77% higher than the correspond-
ing value for on-year bamboo (51.25%). Severely damaged areas accounted for 24.12% of
off-year and 12.01% of on-year bamboo forests.
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Figure 9. (a) Spatial distribution of PPC damage severity and (b) area proportions of different se-
verity groups in the study area.

The impact of topographic conditions on PPC infestation was further analyzed (Fig-
ure 10). As for on-year bamboo forests, the occurrence of pest damage had evident vertical
differences. PPC damage occurred mainly in lower-altitude areas, and the severity
changed inversely with elevation. In contrast, the effect of elevation on PPC damage was
not visible for off-year bamboo forests. The moderate and severe PPC damage mainly oc-
curred in areas with slopes ranging from 15° to 20° for on-year bamboo forests and rang-
ing from 20° to 25° for off-year forests. Mildly damaged bamboo forests were concentrated
in the northeast area, while the moderately and severely damaged areas were mostly lo-
cated on the shady slope, i.e., the north side.
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Remote Sens. 2022, 14, 5012

13 of 20

4. Discussion
4.1. Significance of SAR Features to PPC Monitoring

The correlation between backscattering signals and the physiological characteristics
of vegetation implies the application potential of SAR in monitoring insect disturbance
[15,16]. However, SAR is extremely sensitive to topographic conditions. Its active remote
mode for side imaging will cause distortion of backscattering signals over complex terrain
areas, which increases the uncertainty of interpretation results [36]. According to the val-
ues of selected features, the SAR features were more discrete than the optical features, and
their ability to differentiate between the severities of damaged samples was weak. There-
fore, SAR (at least C-band SAR) cannot be independently used to monitor PPC damage.
Although the results indicate the priority of optical features over SAR, this does not imply
that SAR provides no useful information for pest damage identification. The sensitivity of
electromagnetic waves to the dielectric constant and geometric structure of the objective
means that SAR can capture information with regards to canopy defoliation and moisture
decline caused by PPC. The improved performance of the model combining optical and
SAR features confirms the contribution of SAR in identifying healthy and damaged bam-
boo forests.

4.2. Interference Factors during the PPC Damage Identification

For the study area, the imaging time of cloudless optical satellite data is mostly at the
beginning or end of a year. On- and off-year bamboo forests show great characterization
differences during these periods. Off-year bamboo has lower leaf chlorophyll and mois-
ture contents than on-year bamboo [21]; its canopy spectrum is similar to damaged or
more severely damaged on-year bamboos.

The different management of on- and off-year bamboo forests will also affect their
remote sensing signals. To ensure the shoot yield in the coming year, farmers will spray
pesticides once or twice a year in on-year bamboo forests. The first pest prevention pro-
cedure is conducted during the overwintering-generation of PPC, i.e., approximately in
March—April. The second control procedure is normally conducted in the summer, vary-
ing with the degree of the first-generation larvae threatening the bamboo forests. Con-
versely, there is usually no manual pest prevention or control procedure in the off-year
bamboo forests since they do not yield shoots in the following year. Therefore, the area
proportion of PPC damage in the off-year bamboo is notably higher relative to that of the
on-year bamboo. Additionally, farmers normally carry out understory weeding of on-year
bamboo in autumn and winter to facilitate shoot harvesting in the coming year, while
there is no weeding in the off-year region (Figure 11). The observed proportion of bamboo
forest background will increase when the defoliation rate rises, which has a particularly
noticeable impact on SAR. Healthy off-year bamboo forests have lower backscattering co-
efficients than on-year forests. The backscattering coefficient in damaged areas is higher
than that of on-year bamboo forests, owing to the compensation of the bamboo forest’s
background.

There are notable differences in canopy characteristics and understory vegetation
conditions between on- and off-year bamboo forests. Remote sensing signals for healthy
off-year samples are close to those of damaged on-year samples, which will affect the ac-
curacy of PPC damage classification. When the on- and off-year samples are combined,
the damaged area will be underestimated in on-year bamboo forests and overestimated
in off-year regions (Figure 12).
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Figure 11. Understory vegetation of (a) on-year bamboo forests and (b) off-year bamboo forests.
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Figure 12. (a) The area proportions of bamboo forests with different damage severities output by
Single-BF. A comparison of Single-on + Single-off and Single-BF in (b) on-year and (c) off-year areas.

Pests are not the only disturbance factors in forest ecosystems [8]. As fast-growing
economic forests, the magnitude and frequency of selective logging events in bamboo for-
ests are intensive every year. Generally, to maximize the management benefits of bamboo
forests, the logging events are mostly conducted in the off-year areas [36,37]. However,
the price of bamboo products is the main driver affecting the logging enthusiasm of farm-
ers. Logging events will also be conducted in on-year bamboo forests when the price of
bamboo products is attractive. Logging events will drastically change the characteristics
(e.g., reflectance and structure) of the canopies of bamboo forests, which could cause the
overestimation of areas damaged by PPC (Figure 13). This is the reason why the double-
time observation feature-based model performed poorly in identifying PPC damage, es-
pecially for the off-year bamboo forests.
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Figure 13. Distribution of PPC damage detected using (a) Single-on + Single-off, (b) Double-onees +
Double-offrer, and (c) Double-onapr + Double-offapr in a typical area (selectively logged). The area
proportions of bamboo forests with different damage severities output by (d) Double-onse + Double-
offreb and (e) Double-onapr+Double-offapr.

Compared with the Single-on + Single-off model, the double-time observation fea-
ture-based model outputs a lower severely damaged area and a higher mildly damaged
area. This may be caused by overwintering-generation pest damage and spatial heteroge-
neity in the leaf change rate. For instance, the nutrient contents of on-year bamboo leaves
were at a low status early in the year. By October, the bamboo leaves had matured. How-
ever, the pest damage reduced the nutrient content of bamboo leaves. Therefore, the phys-
iological difference in the damaged area between October and the pre-disturbance period
of PPC was theoretically smaller than in the healthy area. It is noteworthy that the over-
wintering-generation larvae are active in April; thus, many forestry areas have been at-
tacked. The vitality of the damaged canopy will be recovered when the overwintering-
generation larvae are cocooned. However, if the area is attacked by PPC again, the differ-
ence in remote sensing signals from those in April will be greater than those in the area
that is not damaged by the overwintering generation of PPC. In February, Moso bamboo
has not yet completed leaf changing [38]. Since the climate and stand conditions change
with elevation and latitudes, the leaf changing rates of the bamboo forests are spatially
heterogeneous, inducing uncertainty in PPC damage detection. Therefore, for Moso bam-
boo forests with intensive disturbance frequency, the single-time observation feature-
based model is the optimal choice for PPC monitoring.

4.3. Limitations and Research Prospects

Summer is theoretically the key period for PPC damage identification, since the first-
generation larvae of PPC pose the greatest threat to bamboo forests. However, the defi-
ciencies in spaceborne optical images for this period constrain the construction of pest-
monitoring models. Additionally, the management pattern of bamboo forests varies spa-
tially. Farmers who adopt extensive management rarely weed the understory vegetation
of on-year bamboo forests, while manual intervention in intensive management areas is
more regular. Therefore, under the same damage severity of PPC, remote sensing signals
in extensive and intensive regions might exhibit a great difference.
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The unmanned aerial vehicle (UAV) technique provides a novel and flexible selection
for monitoring forestry insect disturbance [39,40]. Hyperspectral and light detection and
ranging (LIDAR) data at spatial resolutions of several centimeters acquired by UAV can
be used to detect subtle structural and spectral changes in the host’s canopy and to elimi-
nate the interference from logging and background, which is valuable for the selection of
various disturbance endmembers, the development of methods detecting PPC damage,
and the validation of damage severity detected using satellite data. The combined appli-
cation of satellite and UAV data in PPC damage detection is worthy of investigation.

5. Conclusions

We combined Sentinel-1 and Sentinel-2 data to monitor PPC damage at a 10 m reso-
lution. It was found that bamboo phenology (i.e., on- and off-year) can notably affect PPC
damage identification. With the differentiation between on-year and off-year bamboo, the
OA value was improved by 4%. The single-time observation feature-based model was
more suitable for PPC monitoring than the double-time observation feature-based model.
Its OA values were at least 3% and 10% higher than the latter for on- and off-year samples,
respectively. Manual interference (e.g., logging and weeding) was the main reason for the
poor performance of the double-time observation feature-based model. The selected opti-
cal and SAR features exhibited different responses to PPC damage, of which the optical
features presented regular reduction or increasing trends with the increase in damage se-
verity. SAR data alone were not suitable for identifying different degrees of damage se-
verity. The difference in SAR signals between healthy and damaged samples was signifi-
cant. The addition of SAR data to optical features could improve the model performance,
mainly for healthy and mildly damaged samples.
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Appendix A

Table A1l. Confusion matrix for bamboo forest extraction results.

Coniferous Broadleaf Off-Year Bamboo  On-Year Bamboo PA (%) UA (%) OA (%)

Coniferous

Broadleaf

Off-year bam-
boo
On-year bam-
boo

191

17

28 2 2 85.65 90.09

187 5 5 87.38 85.39
90.88

1 203 10 93.12 95.31

3 3 216 97.30 92.70
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Table A2. Candidate variables used for PPC damage identification.

Index Formula
Enhanced Vegetation Index EVI= 2.5%(b8-b4)
b8+6xb4-7.5xb2+1
Green Ratio Vegetation Index GRVI=b8/b3
2
Modified Non-Linear Index MNLIZM
SR
Modified Red-Edge N lized Diff Vegetation Ind -
odified Re ge Normalized Difference Vegetation Index MRENDVI NN R
b8/b4 -1
Modified Simple Ratio R=

Modified Triangular Vegetation Index (Improved)

Non-Linear Index

Normalized Burn Ratio

Optimized Soil-Adjusted Vegetation Index
Plant Senescence Reflectance Index
Renormalized Difference Vegetation Index
Simple Ratio

Structure Insensitive Pigment Index
Visible Atmospherically Resistant Index
Atmospherically Resistant Vegetation Index

Green Normalized Difference Vegetation

- /b8/bd+1

MTVII= 1.5%[1.2x(b6-b3)-2.5%(b4-b3)]

(2xb6+1)*-(6xb6-5xv/b4)-0.5

OSAVI= e a0 16
PSRI=(b4-b2)/b6
b8-b4

Vb8+b4
SR=b8a/b4

RDVI=

_ b8-(2xbd-b2)
~ b8+(2xb4-b2)

GNDVI= b7-b3
 b7+b3
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Inverted Red-Edge Chlorophyll Index

Modified Chlorophyll Absorption Ratio Index

Meris Terrestrial Chlorophyll Index
Normalized Difference Index
Normalized Difference Vegetation Index
Normalized Difference Moisture Index

Normalized Difference Water Index
Pigment Specific Simple Ratio algorithm
Red-Edge Inflection Point Index

Ratio Vegetation Index
Moisture Stress Index

Normalized Difference Red-Edge

Normalized Multi-band Drought Index

Simple Ratio Water Index
Green Chlorophyll Index
Red-Edge Chlorophyll Index

Global Vegetation Moisture Index

Normalized Difference Vegetation Index Red-Edge

Moisture Adjusted Vegetation Index

Dual Polarization SAR Vegetation Index

Polarization Intensity Ratio

Radar Vegetation Index

Backscattering at Cross-polarization (VH) and Co-polarization (VV)

DPSVI=

IRECI= b7-b4
b5/b6

MCARI=[(b5-b4)-0.2x(b5-b3)]x(b5/b4 )
MTCI=20 P
 b5-b4
_ b5-b4

PSSRA=b7/b4
REIP_705s 25X (04+07)/2:05 ]
b6-b5
RVI=b8/b4
MSI=b12/b8

NDRE- b6-b5
" b6+b5

b8a-(b11-b12)
NMDI= b8a-(b11+b12)
SRWI=b12/b8a
CIgreen= b7/b3'1
CIred—edge=b7/b5'1
(b8+0.1)-(b12+0.02)

(b8+0.1)+(b12+0.02)
_ b8-b5

GVMI=

M AV S bab12
(0’ VU max-0 V0)+0" VI 0 vv+o R
X
V2 0"vv
PIR=0"vh/0c"vv
4xg’vh
o’vu+o’vh
o’vh, ¢’vv

xg'vh

RVIS AR~

Note: bl~b8a and bl1l~b12 represent the coastal, blue, green, red, red-edges, red-edgerso, red-

edgerss, NIR, NIRnarrow, SWIR-1 and SWIR-2 bands of Sentinel-2 imagery.

Table A3. Constructed models that are only based on spectral features.

Hyper-Parameters

Model Features
LR NE MD MCW GAM
EVI, MRENDVI, MSR, NLI, NDVI, NDM],
Single-onspec 0.24 83 6 1 0
NDWI, PSSRA, NDRE, NMDI, SRWI, MAVI
GRVI, NLI, NBR, SIPI, GNDVI, IRECI, NDVI,
Single-offspec 0.35 70 6 1 0
NDMI, NDWI, PSSRA, NDRE, GVMI, MAVI
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