
 
 

 

 
Remote Sens. 2022, 14, 5011. https://doi.org/10.3390/rs14195011 www.mdpi.com/journal/remotesensing 

Article 

Effect of Vegetation Carryover and Climate Variability on the 
Seasonal Growth of Vegetation in the Upper and Middle 
Reaches of the Yellow River Basin 
Xinru Zhang 1, Qian Cao 2, Hao Chen 1, Quan Quan 3, Changchao Li 1, Junyu Dong 1, Mengjie Chang 1, Shuwan Yan 
1 and Jian Liu 1,* 

1 Environment Research Institute, Shandong University, Qingdao 266237, China 
2 School of Geography and Information Engineering, China University of Geosciences, Wuhan 43007, China 
3 State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, 

Xi’an 710054, China 
* Correspondence: ecology@sdu.edu.cn 

Abstract: Vegetation dynamics are often affected by climate variability, but the past state of vegeta-
tion has a non-negligible impact on current vegetation growth. However, seasonal differences in the 
effects of these drivers on vegetation growth remain unclear, particularly in ecologically fragile ar-
eas. We used the normalized difference vegetation index (NDVI), gross primary productivity (GPP), 
and leaf area index (LAI) to describe the vegetation dynamic in the upper and middle reaches of the 
Yellow River basin (YRB). Three active vegetation growing seasons (early, peak, and late) were de-
fined based on phenological metrics. In light of three vegetation indicators and the climatic data, 
we identified the correlation between the inter-annual variation of vegetation growth in the three 
sub-seasons. Then, we quantified the contributions of climate variability and the vegetation growth 
carryover (VGC) effect on seasonal vegetation greening between 2000–2019. Results showed that 
both the vegetation coverage and productivity in the study area increased over a 20-year period. 
The VGC effect dominated vegetation growth during the three active growing seasons, and the 
effect increased from early to late growing season. Vegetation in drought regions was found to gen-
erally have a stronger vegetation carryover ability, implying that negative disturbances might have 
severer effects on vegetation in these areas. The concurrent seasonal precipitation was another pos-
itive driving factor of vegetation greening. However, sunshine duration, including its immediate 
and lagged impacts, had a negative effect on vegetation growth. In addition, the VGC effect can 
sustain into the second year. The VGC effect showed that initial ecological restoration and sustain-
able conservation would promote vegetation growth and increase vegetation productivity. This 
study provides a comprehensive perspective on understanding the climate–vegetation interactions 
on a seasonal scale, which helps to accurately predict future vegetation dynamics over time in eco-
logically fragile areas. 

Keywords: climate variability; seasonality; vegetation dynamics; vegetation growth carryover; Yel-
low River basin 
 

1. Introduction 
In terrestrial ecosystems, vegetation controls the cycling of water and energy be-

tween the soil and the atmosphere and provides ecosystem services on which humans 
depend [1]. The structure and function of vegetation are influenced by climate factors 
(e.g., temperature, precipitation, and sunshine) and non-climate factors (vegetation itself 
and land use changes) [2–4]. To maintain the health and function of the ecosystem, we 
need to determine what factors affect vegetation growth [5,6]. 
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Many studies have focused on the vegetation dynamics, resulting from climate vari-
ation [7,8]. For instance, temperature controls the high-latitude vegetation growth in the 
northern hemisphere [9]. Vegetation greening is primarily affected by solar radiation in 
tropical rainforest areas [10], while in arid and semiarid areas, the limiting factor of vege-
tation growth is precipitation [11,12]. However, the response of vegetation to climate fac-
tors is complex and delayed [13]. For example, there is about a 3-month lag between tem-
perature change and vegetation activity in China [14]. The lag effect of the same type of 
vegetation to different climate factors is different, and the lag effect of different types of 
vegetation to the same climate factors is also different [15]. In drought areas, the vegeta-
tion dynamic is most sensitive to climate factors in the current and previous month [16]. 
These observations suggest that vegetation dynamics may be influenced not only by the 
current climate conditions but also by earlier climate conditions. Therefore, the time-lag 
effects of climate should be considered when exploring the mechanism of vegetation–cli-
mate interaction. 

Besides climate factors, vegetation dynamics are also influenced by its past states 
[17,18]. The biological cycles of vegetation consist of many successive growth periods that 
are tightly connected to the past and present [19], implying that the present growth state 
of plants will influence subsequent growth. This phenomenon has been defined as vege-
tation growth carryover [17]. For example, vegetation carryover has an important impact 
on the daily net carbon exchange in dry-land ecosystems [20], which allows plants to send 
greening signals by increasing carbon uptake, resulting in more substantial leaves and 
roots [1]. Such structural changes in vegetation may enhance its resistance to external dis-
turbance unless the change in external environmental conditions exceeds the tolerance of 
plant growth [17]. The key question is how substantial the role of the carryover effect is, 
especially when compared with the immediate and lagged impacts of climate factors. Pre-
vious researchers analyzed the VGC effect on vegetation growth at hemispheric or global 
scales [17,18]. However, processes that dominate at large scales are not necessarily domi-
nant at small scales. Another important question to answer is how does the VGC affect 
the vegetation growth in ecologically fragile areas?  

Here, we focus on the Yellow River basin (YRB). The YRB spans the arid, semiarid, 
and semi-humid areas in China [4]. Droughts occur frequently in the YRB with increasing 
duration and intensity [21]. Moreover, problems, such as soil erosion and reduced biodi-
versity, are also prominent in the basin [22], which makes the YRB vulnerable to environ-
mental change [23]. The upper and middle reaches of the YRB account for 91% of the total 
area of the YRB [4]. There are a large number of tributaries flowing into the main stream 
in the upper reaches of the Yellow River, which is the main source of runoff in the basin 
[24]. The loss of the soil and water is serious in the middle reaches, which is the main 
source area of sediment in the basin [25]. Therefore, our research area is the upper and 
middle reaches of the YRB, which is very important to the development of the lower 
reaches and the whole basin. Previous studies on vegetation dynamics in the upper and 
middle reaches of the YRB have focused on the growing season or annual time scale 
[4,6,21]. However, the long-term climate changes often differ between seasons, so the veg-
etation responses to climate also vary significantly between seasons. In recent years, some 
studies have explored the characteristic patterns and driving factors of vegetation growth 
from the perspective of seasonal dynamics. For example, a study has shown that the sea-
sonal change of temperature can regulate the spatial heterogeneity of deciduous broadleaf 
forests greening [26]. A previous study reported that the decrease in vegetation greenness 
in the Northern hemisphere after 1997 was mainly due to the decrease in vegetation cover 
in the early parts of the growing season and the slowdown increase in vegetation cover in 
the peak of the growing season [27]. Since the seasonal dynamics of vegetation in different 
regions and ecosystems are different, it is not accurate to study the seasonal changes of 
vegetation in a certain region by simply using meteorological seasons based on a constant 
calendar (for example, spring is defined as March–May). Therefore, it is more universal to 
define seasonality based on local vegetation phenology information. Analyzing the 
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interseasonal relationship of vegetation growth will help to better understand the climate-
vegetation interaction.  

In this study, we first assessed the vegetation indexes change from three different 
datasets to detect and characterize vegetation growth trends in the upper and middle of 
the YRB from 2000–2019. The satellite-derived NDVI, GPP, and LAI were regarded as in-
dicators to reflect vegetation dynamics and productivity. Secondly, we divided the grow-
ing season into three active seasons based on phenological metrics [17,28]. Then, we as-
sessed the effect of vegetation carryover on vegetation growth across the phenology-based 
season using partial correlation analysis and compared the size of this effect against that 
of the immediate and lagged impacts of climate factors. Temperature (TEM), precipitation 
(PRE), and sunshine duration (SSD) were used to represent the climate conditions. Finally, 
the individual contributions of climate variability and the vegetation carryover on vege-
tation greening were calculated. Our research is expected to increase understanding of 
vegetation–climate interactions at the seasonal scale and provide insight on how to better 
manage vegetation under global climate change in the future. 

2. Materials and Methods 
2.1. Study Area    

The Yellow River is the second-longest river in China. It has a watershed area of 79.5 
km2, 91% of which (72.3 × 104 km2) is considered the upper and middle reaches [4]. Our 
study area covered the upper and middle reaches of the YRB, and its undulating terrain 
varies in elevation between 84 and 6119 m (Figure 1a). The upper and middle reaches of 
the YRB span many climatic zones (Figure 1b). The upper reaches of the YRB are domi-
nated by polar climate (ET and EF). The Ningxia Plain and the western part of Hetao Plain 
have cold desert climate (BWk). The eastern part of Hetao Plain and Ordos Plain have cold 
steppe climate (BSk). The southern part of the study area is dominated by hot, warm-
summer continental climate (Dwa and Dwb) [29]. The main land-cover types (> 104 km) 
are grasslands, croplands, deciduous broadleaf forests, barrens, savannas, urban and 
built-up lands, and mixed forests (Figure 1d and Table 1). The quality of the ecological 
environment in the upper and middle reaches directly determines the environmental con-
ditions in the lower reaches of the YRB, so this area has crucial strategic significance in 
terms of geographical location and ecological protection [4]. 
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Figure 1. Location and altitude (a), stations and climate classification (BWk: cold desert; BSk: cold 
steppe climate; Cwa: dry-winter humid subtropical climate; Dwa: hot-summer continental climate; 
Dwb: warm-summer continental climate; Dwc: boreal climate; ET: tundra climate; EF: ice-cap cli-
mate) (b), main tributaries (c), and land cover types in 2019 (d) of the upper and middle reaches of 
the Yellow River Basin. 

Table 1. The main land cover types (> 104 km) and proportion of the upper and middle reaches of 
the YRB in 2019. 

Land Type. Area (104 km2) Area Proportion (%) 
Grasslands 52.33 67.77 
Croplands 13.71 17.75 

Deciduous Broadleaf Forests 3.60 3.54 
Barrens 2.41 3.12 

Savannas 2.04 2.64 
Mixed Forests  1.35 1.54 

Urban and built-up lands 1.16 1.50 
Note: Land cover types with an area of less than 104 km2 are not listed. 

2.2. Data Sources and Processing 
Normalized difference vegetation index (NDVI) reflects vegetation growth trend and 

is widely used to describe the physiological condition of vegetation [17]. Here, NDVI data 
were provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) 
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products (https://lpdaac.usgs.gov/) at a spatial resolution of 500 m × 500 m and temporal 
resolution of 16 days. The time-series data covers 2000–2019. We selected MOD13A1 
NDVI data of four imagery data sets, including h25v05, h26v04, h26v05, and h27v05. 
NASA’s MRT (MODIS Reprojection Tools) software was used for data processing, includ-
ing image mosaic, projection, format transformation, and resampling. Then, vector 
boundaries of the upper and middle reaches of the YLB were used to extract the study 
area in ArcMap 10.2.2. The synthetic NDVI data may have outliers or missing values. 
Therefore, the MODIS NDVI datasets were smoothed and denoised by the Savitzky–Go-
lay (S-G) filter [30,31]. The basic idea is first to filter the data after reprojection, and then 
the pixels with good quality remain unchanged, while those with poor quality are filtered 
to form a new NDVI sequence. Considering that NDVI is easily saturated in dense vege-
tation areas, we also introduced two data products, leaf area index (LAI) and gross pri-
mary productivity (GPP) to independently verify the robustness of the NDVI results. LAI 
and GPP data (MOD15A2H) are also derived from the MODIS products 
(https://lpdaac.usgs.gov/). The LAI and GPP dataset are available at a spatial resolution 
of 500 m × 500m and 8-day temporal resolution. All pretreatments were the same as for 
NDVI. 

Temperature affects many plant processes, such as photosynthesis, respiration, and 
transpiration [26]. In arid and semi-arid areas, vegetation is very sensitive to precipitation 
[21]. Sunshine is the source of energy for plant growth [32]. Therefore, precipitation, tem-
perature and sunshine duration were selected as meteorological indicators in this study. 
Monthly mean temperature and monthly total precipitation with a spatial resolution of 
0.00833° were obtained from the Institute of Tibetan Plateau Research, Chinese Academy 
of Sciences (https://data.tpdc.ac.cn/). Daily sunshine duration (meteorological station 
data) was acquired from the Chinese National Bureau (https://data.cma.cn/) (Figure 1b). 
The period for time-series meteorological data is 2000–2019. To maintain the same spatial 
resolution, vegetation indexes and shine duration were resampled or interpolated into a 
grid cell with a spatial resolution of 0.00833°. 

We obtained the land cover data (MCD12Q1) from the United States Geological Sur-
vey (USGS) platform (https://lpdaac.usgs.gov/). The MCD12Q1 supplies global maps of 
land cover at annual time steps and 500 m spatial resolution since 2001 and was classified 
according to the International Geosphere-Biosphere Program (IGBP) land use classifica-
tion scheme. The spatial distribution of the altitude (DEM) data was obtained from the 
Resources and Environment Science and Data Center, Chinese Academy of Sciences 
(https://www.resdc.cn/Default.aspx). 

Details of data used in this research are shown in Table 2. 

Table 2. Main data used in this study. 

Data 
Type 

Data 
Sources 

Spatial 
Resolution 

Temporal 
Resolution 

Temporal 
Span 

Acquisition 
Time 

NDVI https://lpdaac.usgs.gov/ 500 m 16-day 2000-2019 2021.10.11 
GPP https://lpdaac.usgs.gov/ 500 m 8-day 2000-2019 2021.10.19 
LAI https://lpdaac.usgs.gov/ 500 m 8-day 2000-2019 2021.10.23 
TEM https://data.tpdc.ac.cn/ 1 km monthly 2000-2019 2021.10.15 
PRE https://data.tpdc.ac.cn/ 1 km monthly 2000-2019 2021.10.05 
SSD https://data.cma.cn/ 2400 stations daily 2000-2019 2021.12.23 
Land 
Cover 

(Type 1) 

https://www.resdc.cn/D
efault.aspx 

500 m yearly 2000-2019 2022.4.3 

2.3. Trend Analysis and Significance Test 
Linear regression analysis was done to simulate the trend of vegetation index varia-

tion on the pixel scale from 2000 to 2019. The formula is as follows: 
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At the same time, the Mann–Kendall test by Equations. (2)–(5) was used to check the 
significance level of the vegetation trend. 

2.4. Identifying Phenology-based Seasons 
The length and period of the growing season for each grid cell are not directly defined 

by a constant calendar-based meteorological season, for example, the growing season is 
April–October [33] or the spring season is April–May [34,35]. Instead, we defined growth 
seasons based on vegetation phenology [17,18,36]. We extracted the start of the growing 
season (SOS) and the end of the growing season (EOS) based on phenological events 
[17,28], and then divided the growing season into three active seasons: early growing sea-
son (EGS), peak growing season (PGS), and late growing season (LGS). The specific ex-
traction process was as follows. The 16-day NDVI time series datasets were input into 
TIMESAT 3.3 software [32] to extract SOS and EOS for determining the length of the grow-
ing season. Dynamic thresholds of vegetation SOS and vegetation EOS were set at 20% 
and 80%, respectively [37]. Since the TIMESAT 3.3 software can only extract phenological 
parameters of n-1 year from n-year data, we obtained 2001–2019 phenological parameters 
based on 20 years of NDVI data. SOS and EOS are the 19-year averages. The two consec-
utive months with the largest NDVI value were defined as PGS (not before April or after 
October). EGS is defined as the intermediate month from the month of SOS to the month 
of PGS, and LGS is defined as the intermediate month from the month of PGS to the month 
of EOS. The preceding-season NDVI for EGS is the NDVI of the last year’s LGS [17]. 

2.5. Correlation between the Vegetation Indicators and Their Driving Factors 
Partial correlation analysis was applied to assess the relationship between seasonal 

vegetation growth and productivity (NDVI, GPP, and LAI) and their driving factors be-
tween 2000–2019. We considered the concurrent climate factors (temperature, TEM, pre-
cipitation, PRE, and sunshine duration, SSD) and climate factors (TEMps, PREps, and SSDps) 
and NDVI (NDVIps) of the preceding season as driving factors of seasonal NDVI (GPP and 
LAI) variations.  
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2.6. Contribution of climate variability and the VGC effect on vegetation greening 
We quantified the individual contributions of climate factors (TEM, PRE, and SSD of 

the present and preceding season) and VGC effect (preceding-season NDVI) to the ob-
served NDVI trend of each season during 2000–2019, so as to decompose the linear trend 
of NDVI (dNDVI/dt) for each season over a 20-year period into the additive contribution 
of eight components: 

d ps ps

ps ps ps

ps

ps ps ps ps

p

ps

s

ps

dNDVI dTEMNDVI NDVI NDVI
NDVI TEM PRE

NDVI NDVI NDVI NDVI
SSD TEM PRE SSD
NDVI TEM PRE SSD TEM PRE SSD
NDVI clima

dPRENDVI
dt dt dt dt

dSSD dTEM dPRE dSSD
dt dt dt dt

σ

σ

= + +

∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂ ∂

= Δ + Δ + Δ + Δ + Δ

+

+ Δ + Δ +

= Δ Δ

+ + + +

+ pste climate σ+ Δ +

 (6)

where ΔNDVIps, Δclimateps, ΔTEMps, ΔPREps, ΔSSDps, Δclimate, ΔTEM, ΔPRE, and ΔSSD 
represent the individual contributions to the interannual NDVI changes, respectively. 
Δclimateps (preceding-season climate) is the sum of ΔTEMps, ΔPREps, and ΔSSDps. Δclimate 
is the sum of ΔTEM, ΔPRE, and ΔSSD. Moreover, ∂NDVI/∂NDVIps is equal to the partial 
correlation coefficient between NDVI and NDVIps when removing the disturbances of the 
concurrent and preceding season for temperature, precipitation, and sunshine duration; 
dNDVIps/dt is the inter-annual variation rate (slope) of NDVIps; ΔNDVIps is calculated as 
the product of ∂NDVI/∂NDVIps and dNDVIps/dt. A similar method is also suitable for 
other variables. Before quantification analysis, we detrended all variables to transform the 
time series to Z-score standardized anomalies: 

x xZ
ω
−=  (7)

where⎯x and ω are the mean and standard deviation of study variables in each active 
season, respectively. x is the value of the study variable. 

3. Results 
3.1. Spatiotemporal Variations of Vegetation Growth 

We obtained the vegetation coverage levels of the upper and middle reaches of the 
YRB during the growing season from 2000 to 2019 (Table 3). The medium vegetation cover 
areas were the largest (33.54%), followed by medium-high vegetation cover areas (30.92%, 
Table 3). Overall, the spatial distribution of mean NDVI during the growing season de-
clined trend from southeast to northwest (Figure 2a), which was consistent with the spa-
tial pattern of precipitation (Figure S1a) but opposite to the spatial distribution of sunshine 
duration (Figure S1c). NDVI had no obvious relationship with the spatial pattern of tem-
perature (Figure S1b). The NDVI of the forests and savannas is high, while the grasslands 
have a low NDVI. Although the upper reach is primarily occupied by grasslands (Figure 
1d), rivers are widely distributed (Figure 1c), which is conducive to vegetation growth, 
showing a high NDVI value. Compared with other study areas, the southeast has more 
precipitation and has extensive forests, croplands, and savannas (Figure 1d), so the NDVI 
is relatively high. 
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Figure 2. Spatial distribution of the mean NDVI (a) and inter-annual variation rate (slope) (b) during 
the growing season in the upper and middle reaches of the Yellow River basin from 2000 to 2019. 
Black dots indicate statistically significant correlations at the 95% confidence level. Same below. 

Table 3. Vegetation coverage levels in the upper and middle reaches of the YRB during the growing 
season from 2000–2019. 

Mean NDVI Level Proportion (%) 
< 0.1 Low vegetation cover area 0.88 

0.1 - 0.3 Medium-low vegetation cover area 24.50 
0.3 - 0.5 Medium vegetation cover area 33.54 
0.5 - 0.7 Medium-high vegetation cover area 30.92 

> 0.7 High vegetation cover area 10.16 
From 2000 to 2019, the mean NDVI during the growing season of the upper and mid-

dle reaches of the YRB exhibited a significant growth trend with a rate of 0.0056 per year 
(p < 0.001) (Figure 2b). Similarly, the mean GPP and LAI also showed a positive and sig-
nificant trend (p < 0.001) at rates of 0.3718 per year and 0.0231 per year (Figure S2), respec-
tively. The inter-annual variation of these vegetation indicators suggested that the vege-
tation coverage and productivity significantly increased in the study area over the two 
decades. In addition, we calculated the inter-annual variation rates of vegetation NDVI in 
each active season over the study period (Figure S3). The spatial distribution of inter-an-
nual variation rates of NDVI in the early, peak, and late growing season (EGS, PGS, and 
LGS) was similar, with the rates equal to 0.0062 per year (p < 0.001), 0.0059 per year (p < 
0.001), and 0.0046 per year (p < 0.001), respectively. EGS showed the strongest trend of 
vegetation greening, followed by PGS, although PGS showed a higher vegetation degra-
dation trend than the other two sub-seasons (Figure S3b). Only LGS had a lower vegeta-
tion variation trend than the 20-year growing season mean trend (0.0056 per year). For 
climate variables, the precipitation in the growing season in the upper and middle reaches 
of the YRB increased significantly over the 20-year period, at a rate of 2.467 mm/year (p < 
0.05) (Figure S1d). However, the interannual variation rate of sunshine duration de-
creased significantly, by –6.0620 h/year (p < 0.05) (Figure S1f). We found that the temper-
ature increased at a rate of 0.012 ℃/year (p > 0.05), which did not pass the significance test 
(Figure S1e). 

3.2. Inter-seasonal VGC Dominates Seasonal Vegetation Growth 
At the seasonal scale, the relationships among the three vegetation indicators (NDVI, 

GPP, and LAI) and each driving factor were analyzed from 2000–2019. The results showed 
that the preceding-season NDVI significantly (p < 0.05) controls the current season 
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vegetation NDVI in the three active seasons (Figure 3). The VGC effect was also positive 
for seasonal vegetation growth across the majority (91%, 93%, and 95% for EGS, PGS, and 
LGS, respectively) of the upper and middle reaches of the YRB (Figure 4). The partial cor-
relation coefficients between the concurrent seasonal NDVI and the preceding-season 
NDVI in EGS, PGS, and LGS were 0.5168, 0.5743, and 0.6146, respectively (Figure 3), indi-
cating that the strength of the VGC effect on vegetation growth increased from early to 
late growing season. In addition, the positive effect of VGC controlling vegetation growth 
in the three active seasons was also verified by examining the other vegetation growth 
and productivity indicators GPP and LAI (Figures. S4 and S5). The matrix diagram and 
spatial distribution diagram of partial correlation coefficients of NDVI, GPP, and LAI 
showed a strong similarity. The vegetation growth and productivity of the preceding sea-
son were the dominant factors predicting vegetation greenness in each active growing 
season, implying that our results are reliable and the VGC cannot be ignored in the re-
search of vegetation dynamics. 

 
Figure 3. Partial correlation coefficients between 20-year seasonal NDVI time series and concurrent 
climate factors (temperature, TEM, precipitation, PRE, and sunshine duration, SSD), and climate 
factors (TEMps, PREps, and SSDps) and NDVI (NDVIps) of the preceding season. The color block size 
represents the element value size. Squares with black outlines show statistically significant correla-
tions at the 95% confidence level. 
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Figure 4. Spatial distribution of the partial correlations between NDVI of each season and that of 
the preceding season. Correlationpatterns are shown for EGS (a), PGS (b), and LGS (c). 

Compared with the positive effect of the VGC, the intensity and direction of climate 
factors, including the immediate and lagged impacts of climate, determining the interan-
nual variation of seasonal NDVI (GPP and LAI) varied greatly between seasons and across 
regions (Figure 5, Figure 6, and Figures S6–S9). The concurrent precipitation is the pri-
mary climate factor determining the inter-annual variation of EGS and PGS NDVI of the 
upper and middle reaches of the YRB over the 20-year period (partial correlation: 0.3122, 
p < 0.05; 0.2686, p < 0.05, respectively) (Figure 3 and Figure 5d–e). The positive impact of 
concurrent precipitation on vegetation growth in EGS and PGS was also consistent in the 
analyses of other vegetation indicators GPP (Figure S4 and Figure S6 d–e) and LAI (Figure 
S4 and Figure S8 d–e). However, the concurrent precipitation had a much weaker impact 
on LGS vegetation, in comparison to that of EGS and PGS (Figure 3 and Figure 5f). The 
immediate impact of precipitation diminished over the season (Figure 3 and Figure 5d–f), 
contrary to the VGC effect. The precipitation of the preceding season had no obvious pos-
itive effect on vegetation growth in EGS and PGS, yet the positive effect in LGS increased 
(Figure 6d–f, Figure S7d–f, and Figure S9d–f). The temperature of the current and preced-
ing season on vegetation growth was very weak and statistically insignificant during the 
three active seasons. The weak temperature influence may be due to a spatial canceling-
out of the positive effects and the negative effects (Figure 5a–c and Figure 6a–c). Both the 
current- and preceding-season sunshine duration had negative effects on vegetation 
growth (Figure 5–6 and Figure S6–9). The same results were also observed for GPP and 
LAI (Figures S6–S9). 
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Figure 5. Spatial distribution of the partial correlations between NDVI of each season and the con-
current climate factors. Correlation patterns are shown for EGS (a, d, g), PGS (b, e, h), and LGS (c, f, 
i), and for correlation with concurrent TEM (a–c), PRE (d–f), and SSD (g–i). 
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Figure 6. Spatial distribution of the partial correlations between NDVI of each season and climate 
factors of the preceding season. Correlation patterns are shown for EGS (a, d, g), PGS (b, e, h), and 
LGS (c, f, i), and for correlation with TEMps (a–c), PREps (d–f), and SSDps (g–i). 

3.3. The Persistence of the Vegetation Carryover into the Next Year 
At the annual scale, we performed a partial correlation analysis between the current-

year NDVI and the NDVI of the lag years. For a time lag of one year, 90.7% of study areas 
showed positive lagged correlations (Figure 7a). Among them, 52.5% passed the signifi-
cance test (p < 0.05). The positive inter-annual vegetation carryover was most significant 
in eastern areas, particularly over the Shaanxi and Shanxi provinces. By contrast, only a 
few areas, including the upper reaches of the YRB and the northern desert, had a negative 
but generally insignificant (p > 0.05) vegetation carryover effect. This positive inter-annual 
VGC effect indicates that the vegetation productivity of the current year can carry over to 
the next year. If time lags are two years, 80.5% of study areas showed a positive relation-
ship between the current-year NDVI and the NDVI of two years earlier (Figure 7b), but 
only 30.0% of the areas passed the significance test (p < 0.05). Compared to a one-year time 
lag, the area of positive correlation passing the significance test is significantly reduced 
(22.5%). If time lags are three and four years, the positive lagged correlation areas are 
73.4% and 67.6%, respectively (Figure 7c–d), among which 29.5% and 23.1% passed the 
significance test (p < 0.05), respectively. From the third year of time lags, the positive VGC 
effect areas that passed the significance test remained at about 30%, indicating that the 
VGC effect can be carried over to the subsequent year yet weakly to years after that. 
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Figure 7. Spatial distribution of the partial correlations between NDVI of each year and that of the 
lag time, after controlling for the climate variable of both years. (a) Lag time is one year. (b) Lag time 
is two years. (c) Lag time is three years. (d) Lag time is four years. 

3.4. The Individual Contributions of Climate Effects and the VGC Effect 
For each active season, we further quantified the individual contributions of the VGC 

effect, climate effects of the concurrent season, and climate effects of the preceding season 
on the 20-year vegetation growth (Figure 8). We combined the impacts of temperature, 
precipitation, and sunshine duration into the single variable of climate effects. The results 
showed that the greening trends in the three active growing seasons were predominantly 
attributed to the VGC (the contributions are 50%, 67%, and 58%, respectively) (Figure 8), 
confirming the positive carryover effect of vegetation seasonal growth. It is interesting to 
note that the VGC effect had the strongest correlation with NDVI during the LGS (Figure 
3) but the VGC effect contributed the most to vegetation growth in PGS (Figure 8). We 
also found that PGS was the season whose inter-annual variation trend (slope) of vegeta-
tion growth was most similar to that of the growing-season mean (gray dashed line, Fig-
ure 8). Concurrent seasonal climate factors also played a positive role in the three active 
growing seasons of vegetation growth (the contributions are 14.24% (EGS), 19.38% (PGS), 
and 13.80% (LGS), Figure 8). In comparison, the climate of the preceding season played a 
much smaller role in the vegetation greening for the three active growing seasons (the 
contributions are 0.64% (EGS), 5.58% (PGS), and 10.03% (LGS), Figure 8). Residuals is the 
contributions of other driving factors, including human activities and natural disturb-
ances, that could influence vegetation growth but were not analyzed in our research. 
However, the residuals had a positive impact on vegetation greening, especially in the 
EGS (Figure 8). From Figure 3, VGC- and humid-induced vegetation greening from the 
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early growth season sustained to the late growing season (ignoring residuals), which was 
the primary factor dominating vegetation growth in the upper and middle reaches of the 
Yellow River in the 20 years period. 

 
Figure 8. Individual contributions of the vegetation growth carryover (VGC) and the immediate 
(climate) and lagged (climateps) climate effects to seasonal NDVI trends over a 20-year period (2000–
2019). The gray dashed line indicates the 20-year growing-season mean NDVI trend. The black solid 
lines indicate the observed NDVI trends of each season. 

4. Discussion 
4.1. The Effects of Climate Variability on Vegetation Growth 

Regarding climate variability, vegetation growth in dry-land ecosystems is more sen-
sitive to external precipitation changes (Figure 3 and Figure 5–6). The concurrent seasonal 
precipitation in the EGS and PGS had a significant positive effect on vegetation growth in 
the upper and middle reaches of the YRB, which was consistent with prior work [38]. The 
main reason for this sensitivity to precipitation may be that our study area is dominated 
by arid and semiarid areas [39]. Another possible explanation involves the widely distrib-
uted grasslands in the area (Figure 1d). Because herbs absorb the water from the upper 
part of the soil, they respond quickly to changes in precipitation [40]. Compared with the 
EGS and PGS seasons, the effect of concurrent precipitation on vegetation growth was 
weak in the LGS season. This phenomenon may be attributed to vegetation growth need-
ing more moisture during green-up and maturity (EGS and PGS) than in senescence (LGS) 
[41]. The preceding-season precipitation in EGS and PGS had a weak effect on concurrent 
vegetation seasonal growth, indicating that the lagged effect of precipitation is not signif-
icant in the area with grassland as the main vegetation type [21]. This result is reasonable 
because the xylem in the stem of herbaceous plants is underdeveloped, so their water 
storage capacity is low [42]. In addition, the root system of plants matures in the late grow-
ing season, and the roots deeper in the soil dry out more slowly, so the precipitation of 
the preceding season has a positive effect on vegetation growth in LGS [21]. The sensitivity 
of precipitation clearly states that water availability is very important for vegetation 
growth in water-controlled ecosystems [43]. The immediate and lagged impacts of tem-
perature had strong spatial heterogeneity and did not exhibit significant temporal effects 
on vegetation growth, which may be because the positive and negative effects cancel each 
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other out. Especially in the EGS, the concurrent season temperature had a positive effect 
on vegetation growth in the western and northern parts of the study area, while it had a 
negative effect on vegetation growth in the central part of the study area (Figure 5a). This 
stemmed from the melting of snow and ice in early spring in the western alpine region, 
which promoted vegetation growth and improved vegetation productivity [44]. The up-
per and middle reaches of the YRB have plenty of sunshine, with an average annual sun-
shine duration of 2605 h in the past 30 years [4]. The sunshine duration, including the 
immediate and lagged impacts, was negatively correlated with seasonal vegetation 
growth. This may be because high sunshine duration increases evapotranspiration and 
thus drought, further inhibiting vegetation growth [41].  

4.2. The Effects of Vegetation Growth Carryover on Vegetation Growth 
Most people believe that vegetation growth depends mainly on external climate fac-

tors and human activity [1,45,46]. Our findings suggest that vegetation carryover has a 
significant positive impact on vegetation growth (Figure 3 and Figure 4). That is to say, 
the VGC effect is the primary positive factor controlling the seasonal vegetation growth, 
also shown by others [17,18]. The positive effect of VGC in the three active growth seasons 
makes it easier to carry over the vegetation state in each season, and then affects vegeta-
tion growth in subsequent seasons. For instance, although sunshine duration had a nega-
tive effect on seasonal vegetation growth by increasing evapotranspiration [41,47], the 
positive and strong VGC effect can override this adverse effect. The same phenomenon 
was observed previously for high temperature [17,18]. In addition, the VGC effect in the 
central and northern part of our study area was stronger than in other regions, confirming 
that vegetation in drought regions may have a stronger VGC effect [10,18]. This strong 
vegetation carryover effect in drought regions implies that disturbances might have 
severer effects on vegetation in these areas. Initial ecological restoration and sustainable 
conservation would promote vegetation growth and increase vegetation productivity, 
which is of great significance to arid areas. Our results also exhibited that the persistence 
of the vegetation carryover can be sustained to the next year. So, a year with better vege-
tation growth is often followed by another year with better vegetation growth. Prior work 
has reported that drought legacies mostly last for one year, with significantly fewer lega-
cies in the second and third years [48], as did our study of the VGC effect (Figure 7). Cor-
respondingly, if vegetation does not overcome the influence of negative disturbances (e.g., 
wildfires, insect pests, and extreme climate) in time, the vegetation will slow growth in 
the coming years [18]. All the above evidence confirms the importance of the VGC effect 
on seasonal vegetation growth. Vegetation carryover is a critical pathway that should not 
be ignored. 

4.3. Contributions of Climate Variability and Vegetation Carryover to Vegetation Greening 
This study revealed that the strong observed greening trend of vegetation in each 

active season was mainly contributed by the VGC effect (Figure 8). Although the VGC 
effect was weaker during the early growing season, it increased from early to late growing 
season. High-quality vegetation growth in the early growing season determines vegeta-
tion growth in the subsequent seasons. The current-season climate factor, especially pre-
cipitation, is another important contributor, followed by the climate of the preceding sea-
son. Concerning the effect of current-season precipitation, vegetation was more sensitive 
in the early growing season. These phenomena may be attributed to the characteristics of 
vegetation—a low tolerance for lack of water during the early growth stage [18,49]. From 
this perspective, it is most effective to intervene in the vegetation to promote vegetation 
growth in spring through implementing ecological conservation and improving water 
conditions. There is still a proportion of unexplained variance (residuals) in vegetation 
growth in the three active seasons. These unexplained variances reflected the contribu-
tions of other drivers of vegetation growth, such as carbon dioxide fertilization and nitro-
gen deposition [1,50,51], human activities, [24,52,53], natural disturbances [7,15,54], and 
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precipitation pattern shift [55]. The higher growth rate (black solid line) observed in the 
early parts of the growing season was primarily inherited from the vegetation carryover 
and residuals. However, this study focused on the impacts of climate factors and VGC 
effects at a seasonal scale and, therefore, did not quantitatively analyze other factors. As 
climate change is a continuous process, it may accumulate over time and then affect veg-
etation growth. Studies have shown that vegetation is significantly correlated with 2–6 
months of cumulative precipitation [7], and precipitation on the Loess Plateau has a pos-
itive cumulative effect, especially in April and May [52]. This means that early spring pre-
cipitation may affect vegetation greening. Thus, the residuals in EGS may be contributed 
by the cumulative effect of precipitation. In addition, the melting of alpine snow and ice 
in early spring also provides moisture for vegetation growth in EGS [52]. The large-scale 
ecological restoration project, Grain to Green Project (GTGP), which was implemented to 
improve the ecological environment and maintain the ecological balance in the study area, 
has reduced arable land and increased forest and grassland. A prior study demonstrated 
that vegetation restoration is faster for lands converted to woodlands and grasslands than 
land with no conversion under similar dry conditions [38]. This is also the reason why the 
VGC effect in the study area is stronger than other factors. In the PGS, it showed a higher 
contribution of vegetation growth carryover effect, which is primarily inherited from the 
preceding-season vegetation greening (67%) rather than from the contributions of the cli-
mate factors (19%). Without considering the vegetation growth carryover effect, numer-
ous studies suggested that climate factors and human activities are the driving factors for 
vegetation greening [4,21,45]. Yet, our study shows that the VGC effect contributes much 
more to vegetation greening than other factors. Though the positive VGC effect of vege-
tation growth can override negative climate impacts under the present climate and carry 
over into the subsequent year, it is still an open question whether this positive vegetation 
carryover will continue with future climate change.  

4.4. Limitations and Implications 
Although we studied the responses of vegetation dynamics to various drivers on the 

phenology-based seasonal scale, due to the complex driving factors, there are still some 
limitations and uncertainties in our study. Firstly, due to differences in sensor perfor-
mance and soil background color, satellite-based NDVI data have inherent limitations 
[18]. Secondly, other factors, such as natural disturbance and human activities have a non-
negligible impact on vegetation growth [1,50n51]. Taking all these factors into account is 
the most likely to yield more comprehensive and accurate outcomes. Finally, we noticed 
that climate factors have both a time delay effect and a cumulative effect on global vege-
tation growth. Our research only focused on the immediate and lagged impacts of climate. 
Therefore, in future work, we should discuss the influence of other variables in detail. 

5. Conclusions 
Based on the phenological seasonal scale, we exhibit vegetation dynamics in the up-

per and middle reaches of the Yellow River basin from 2000 to 2019, as well as immediate 
and lagged impacts of climate and vegetation growth carryover effects. The following 
conclusions are drawn: (1) From 2000 to 2019, the spatial distribution of mean NDVI, GPP, 
and LAI in the growing season exhibited a declining trend from southeast to northwest in 
the upper and middle reaches of the YRB. The vegetation coverage and productivity ex-
perienced a significant increase throughout the study area. (2) Significant positive corre-
lations in the statistical analyses suggest that the vegetation carryover effect dominated 
the vegetation greening during the three active growing seasons, and this effect increased 
from early to late growing season. The concurrent season climate factors, especially pre-
cipitation, are also important drivers, followed by the climate of the preceding season. 
Sunshine duration, including its immediate and lagged impacts, always played a negative 
effect on vegetation growth. (3) As expected, the strongly observed greening trends of the 
three growing seasons were predominately attributed to the vegetation growth state of 
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the preceding season. In addition, the vegetation growth carryover can be carried over to 
the subsequent year. 

This carryover in seasonal vegetation growth is conducive to the next stage of vege-
tation growth. Although the vegetation growth carryover effect can counteract the nega-
tive effects of climate factors, whether this growth carryover effect will still exist under 
future climate change still needs to be addressed in future research. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/rs14195011/s1, Figure S1: Spatial distribution (a-c) and inter-
annual variation rates (slope) (d-f) of mean precipitation (PRE), mean temperature (TEM), and mean 
sunshine duration (SSD) in growing season in the upper and middle reaches of the YRB over a 20-
year period (2000-2019); Figure S2: The inter-annual variation rates (slope) of GPP (a) and LAI (b) 
in the growing season in the middle and upper of the YRB over a 20-year period (2000-2019). Black 
dots indicate statistically significant correlations at the 95% confidence level. Same below; Figure 
S3: The inter-annual variation rates (slope) of NDVI in three active seasons in the upper and middle 
reaches of the YRB over a 20-year period (2000-2019). The slopes patterns are shown for EGS (a), 
PGS (b) and LGS (c); Figure S4: Partial correlations between vegetation growth and that of its driving 
factors. This is same as Figure 3, except that vegetation growth is here based on GPP (a) and LAI 
(b); Figure S5: Spatial distribution of the partial correlations between GPP (a-c) or LAI (d-f) of each 
season and that of the preceding season. Correlation patterns are shown for EGS (a, d), PGS (b, e), 
and LGS (c, f); Figure S6: Spatial distribution of the partial correlations between GPP of each season 
and the concurrent climate factors. Correlation patterns are shown for EGS (a, d, g), PGS (b, e, h) 
and LGS (c, f, i), and for correlation with concurrent temperature (TEM) (a-c), precipitation (PRE) 
(d-f) and sunshine duration (SSD) (g-i); Figure S7: Spatial distribution of the partial correlations 
between GPP of each season and climate factors of the preceding season. Correlation patterns are 
shown for EGS (a, d, g), PGS (b, e, h) and LGS (c, f, i), and for correlation with preceding season 
temperature (TEM) (a-c), precipitation (PRE) (d-f), and sunshine duration (SSD) (g-i); Figure S8: 
Spatial distribution of the partial correlations between LAI of each season and the concurrent cli-
mate factors. Correlation patterns are shown for EGS (a, d, g), PGS (b, e, h) and LGS (c, f, i), and for 
correlation with concurrent temperature (TEM) (a-c), precipitation (PRE) (d-f), and sunshine dura-
tion (SSD) (g-i); Figure S9: Spatial distribution of the partial correlations between LAI of each season 
and climate factors of the preceding season. Correlation patterns are shown for EGS (a, d, g), PGS 
(b, e, h), and LGS (c, f, i), and for correlation with preceding season temperature (TEM) (a-c), pre-
cipitation (PRE) (d-f) and sunshine duration (SSD) (g-i). 
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