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Abstract: In the Australian summer season of 2022, exceptional rainfall events occurred in Southeast 

Queensland and parts of New South Wales, leading to extensive flooding of rural and urban areas. 

Here, we map the extent of flooding in the city of Brisbane and evaluate the change in electricity 

usage as a proxy for flood impact using VIIRS nighttime brightness imagery. Scanning a wide range 

of possible sensors, we used pre-flood and peak-flood PlanetScope imagery to map the inundated 

areas, using a new spectral index we developed, the Normalized Difference Inundation Index 

(NDII), which is based on changes in the NIR reflectance due to sediment-laden flood waters. We 

compared the Capella-Space X-band/HH imaging radar data captured at peak-flood date to the 

PlanetScope-derived mapping of the inundated areas. We found that in the Capella-Space image, 

significant flooded areas identified in PlanetScope imagery were omitted. These omission errors 

may be partly explained by the use of a single-date radar image, by the X-band, which is partly 

scattered by tree canopy, and by the SAR look angle under which flooded streets may be blocked 

from the view of the satellite. Using VIIRS nightly imagery, we were able to identify grid cells where 

electricity usage was impacted due to the floods. These changes in nighttime brightness matched 

both the inundated areas mapped via PlanetScope data as well as areas corresponding with 

decreased electricity loads reported by the regional electricity supplier. Altogether we demonstrate 

that using a variety of optical and radar sensors, as well as nighttime and daytime sensors, enable 

us to overcome data gaps and better understand the impact of flood events. We also emphasize the 

importance of high temporal revisit times (at least twice daily) to more accurately monitor flood 

events. 
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1. Introduction 

Remote sensing is now commonly used to map damages caused by extreme events 

[1,2], either natural disasters such as floods [3], fires [4], earthquakes [5], and volcanic 

eruptions [6], or human-caused disasters such as conflicts and wars [7,8]. Remote sensing 

mapping of flooding can be either directed at mapping inundated areas, most effectively 

using high spatial resolution optical imagery or using imaging radar data; [2,9] or for 

mapping building and property damage from flooding (most effectively using high 

spatial resolution optical imagery; [2]). While imaging radar data are probably most 

suited to map the inundated area given its capabilities to penetrate through cloud cover 

and forested areas [10], the temporal frequency and availability of analysis-ready imaging 

radar satellite data are lower than that available from optical satellites. The International 

Charter Space and Major Disasters was established in 1999 [11] to provide emergency 

response to countries in need from 17 charter members (space agencies and space system 

operators) as of 2022. Out of 765 activations globally, 405 activations were related to flood 
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events, indicating the severity and frequency of floods and their societal impacts 

(https://cgt.disasterscharter.org/en, accessed on 27 July 2022). Nonetheless, Lindersson et 

al. [12] list just two globally available datasets of flood events: the MODIS-NRT-FLOOD, 

which is available at a spatial resolution of 250 m [13], and the UNOSAT Flood Portal, 

which provides vector flood inundation maps for chosen flood events (299 altogether; 

http://floods.unosat.org/geoportal/catalog/search/search.page, accessed on 27 July 2022) 

using various satellites. On Google Earth Engine, the Global Flood Database v1 is 

available, containing maps of 913 large flood events between 2000 and 2018 as mapped by 

the Dartmouth Flood Observatory using MODIS imagery [14]. An additional floodwater 

fraction product based on the VIIRS sensor has recently become available [15,16] at a 

spatial resolution of 375 m, which can be downloaded from 

https://www.ssec.wisc.edu/flood-map-demo/flood-products/ (accessed on 11 September 

2022), with historic datasets (from October 2019 onwards) to be downloaded from 

https://jpssflood.gmu.edu (accessed on 11 September 2022). 

Given the relatively coarse spatial resolution of the MODIS and VIIRS flood products 

and their reliance on optical imagery, their mapping is impacted by cloud cover, and 

mapping of short-term and relatively small urban flood events is therefore not sufficient. 

More recently, the European Union has developed its Copernicus Emergency 

Management Service (CEMS), with one of its main focuses being the mapping of floods. 

Using the EU’s Sentinel-1 SAR satellites, it can offer flood mapping products at a spatial 

resolution of 20 m (at full resolution; [17,18]). Out of 564 rapid CEMS activations, 199 

activations were for flood events (https://emergency.copernicus.eu/mapping, accessed on 

28 July 2022). Martinis et al. [19] have recently demonstrated that fusing optical and 

imaging radar data can enhance the mapping of seasonal surface reference water masks, 

which is important for improving flood mapping products. However, given that 

frequently, flooded areas (aside from seasonal floodplains) stay inundated for short 

periods ranging from hours to days, the temporal revisit time is critical for mapping 

inundated areas. In Australia, the Water Observation from Space (WOfS) product (based 

on the Landsat image archive) offers annual mapping of the percent frequency of water 

cover [20]. While this is an excellent product, it is not well suited to map areas that were 

inundated for a short period of time, given the relatively low revisit time of Landsat. Wang 

et al. [21] suggested the use of volunteered passenger photos taken from aircraft as an 

additional source for mapping flooded areas; however, this is not an operational option. 

Given the limitations of currently available flood products, our aim was to 

demonstrate the combined use of high-resolution spatial daytime optical imagery and 

nighttime lights imagery to assess the impact of floods within urban areas for recent flood 

events which took place in Southeast Queensland (SEQ) and northern New South Wales 

(NSW), Australia, in February and March 2022. 

2. Materials and Methods 

2.1. Study Area 

Brisbane is the capital city of Queensland and is Australia’s third largest metropolitan 

area, with about 1.2 million residing within the Brisbane City Council area and about 2.6 

million people living within Greater Brisbane (estimates for 2021). Brisbane is located in a 

sub-tropical climate area, with an average annual rainfall of 1148 mm. Located on the 

flood plain of the Brisbane River, many suburbs of Brisbane are found in flood-prone 

areas, with the largest recorded historical floods taking place in 1841, 1893, 1974, and 2011 

[22–24]. 

Previous studies on mapping flood events in Brisbane and Southeast Queensland 

used a variety of approaches: a combination of volunteered geographic photography of 

maximum flood levels and Lidar-generated DEM to generate a digital flood surface over 

central Brisbane for the flood event of January 2011 [25]; a two-dimensional 

hydrodynamic model using bathymetric data for the flood events of January 2011 and 
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January 2013 (achieving an accuracy of 66.9%; [26]); mapping flood events using a fully 

convolutional neural networks classification model from single date Landsat images [27]; 

estimating disaster severity through an analysis of reports on social media [28]; mapping 

flooded areas under vegetation using single SAR image acquisition [29]; flood hazard 

susceptibility modeling using deep learning neural networks [30]. One of the challenges 

in mapping the extent of inundated areas is that flood levels recede relatively fast, and it 

is unlikely that satellite images will be acquired at the time of maximum flood height. 

Therefore, a combination of pre-flood, co-flood, and post-flood data and imagery is 

recommended for mapping inundated areas [31]. 

The flood events studied here are those that took place in SEQ and northern NSW at 

the end of February and beginning of March 2022 [32]. These floods were predicted given 

the consecutive two years of La Niña [33] and resulted in extreme multi-day rain and 

flooding in SEQ and eastern NSW between 22 February and 9 March 2022, with more than 

50 sites in those areas recording more than 1000 mm of rainfall in the week ending 1 March 

2022 [34]. The Brisbane City Gauge recorded 792.9 mm over the six days between 23 and 

28 February 2022, being 78% of the annual average of that site [34]. However, the 

magnitude of the extent and impacts of the floods, primarily in northern NSW, was not 

predicted. 

Within this research, flood gauge analyses were run for all Queensland (QLD) and 

NSW, nighttime lights analyses were run within SEQ and northern NSW, and the 

delineation of inundated areas from satellite images was performed for parts of the area 

of Greater Brisbane (Figure 1). 
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Figure 1. Study area: (a) Bureau of Meteorology river gauge stations in Queensland and New South 

Wales; (b) VIIRS lit grid cells which were analyzed; (c) PlanetScope imagery from peak flood day in 

Brisbane, 28/2/2022; (d) past extent floods in Brisbane and built-up areas (from the global urban 

footprint; Esch et al., 2017) with the Capella SAR image acquired on 28 February 2022 in the 

background. 

2.2. Data Sets 

2.2.1. Flood Gauge Data 

The flood height data were downloaded from the Australian Bureau of Meteorology 

from the following URL: 

ftp://ftp.bom.gov.au/anon2/home/ncc/srds/FloodingInEasternAustraliaFebMar2022/ 

(accessed on 13 March 2022). This dataset included river gauge measurements between 13 

February 2022 and 4 March 2022 (19 days) for 2635 stations, 1428 in QLD and 1208 in NSW. 

Data completeness and the frequency of river height measurements varied between and 

within stations. For example, in the St. Lucia Alert station (BoM #540683), there were 2249 

height measurements within this time frame, of which 98.6% were valid data. Overall, the 

median number of measurements per station was 1238 (with 90% of the stations having 

more than 167 measurements), and the median percentage of valid measurements (not 

flagged as void) was 99% (with 90% of the stations having more than 84% of valid 

measurements). For each station, we calculated the average and standard deviation of the 

pre-flood heights (between the dates 4 and 23 February 2022), the maximum and 99th 

percentile of the flood levels, the difference between the maximum height and mean pre-

flood levels, and the date when maximum level height was attained. 

2.2.2. Nighttime Lights Data 

Remote sensing of night lights provides an excellent approach for monitoring human 

activity from space [35] and has also been used to monitor the impact of natural and 

anthropogenic disasters on the supply of electricity [8,36]. To examine the impact of flood 

events on artificial nighttime lights, we used the nightly VIIRS Black Marble product of 

VNP46A1 [37]. This product provides nightly sensor with top-of-atmosphere radiance (in 

units of nW cm−2 sr−1) and a spatial resolution of 15 arc s (~450 m at the equator; 

https://ladsweb.modaps.eosdis.nasa.gov/missions-and-

measurements/products/VNP46A1/; accessed on 11 August 2022). We downloaded all of 

the nightly products of granule h33v11 between calendar days 39 and 86 (8 February 2022 

and 27 March 2022, 48 days). This granule covers all of Queensland (east of longitude 

150°E) and north-eastern NSW (north of latitude 30°S). Within QLD, it covers cities from 

Rockhampton in the north to Brisbane, Ipswich, and the Gold Coast in the south, and 

within NSW, it covers towns from Grafton in the south to Lismore and Tweed Heads in 

the north. For our analysis, we only included cloud-free pixels from each of the nights 

(based on the VNP46A1 cloud mask status). We extracted all of the lit grid cells (grid cells 

where the brightness value in 2016 was greater than 5 nW cm−2 sr−1; n = 11,628) within this 

granule and divided the time frame into three main periods: (1) pre-flood (8–23 February 

2022); (2) peak and post-flood I (1–14 March 2022); and (3) post-flood II (15–27 March 

2022). We ran t-tests to examine whether brightness levels differed between periods 1 and 

2 (areas impacted by floods may record a decrease in nighttime brightness levels) and 

between periods 2 and 3 (areas recovering from floods may record an increase in 

nighttime brightness levels). Given that we analyzed more than 10,000 grid cells, we only 

considered the grid cells to be statistically significant cells where the p-value of the t-test 

was less than 0.01. We also calculated the difference and ratio between the brightness 

levels of periods 1 and 2 and between periods 2 and 3. 

2.2.3. PlanetScope Satellite Imagery 

Given that there were no cloud-free images of Sentinel 2, Landsat 8, or Landsat 9 over 

Brisbane and Ipswich, which corresponded with the dates of peak flooding, we used the 
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PlanetScope images. To represent the peak flood, we used the PlanetScope data acquired 

on 28 February 2022, and we compared it with the pre-flood PlanetScope images acquired 

on 9 February 2022 (which covered Brisbane) and 17 February 2022 (which covered the 

city of Ipswich, south-west of Brisbane). Whereas the mapping of inundated areas from 

optical satellites is often based on a single data image using normalized difference indices 

(e.g., [38]), we preferred an approach that was based on change detection [31]. We 

considered using the Normalized Difference Water Index (NDWI; [39]), which is based on 

the green and NIR bands; however, we found that the NDWI misclassified many built 

areas as inundated areas, as already noted by Xu [40]. We could not apply versions of the 

NDWI, which are using a middle IR (MIR) band [40,41] because the PlanetScope imagery 

does not have an MIR band. Therefore, we took a different approach. Following a flood, 

the NIR reflectance decreases dramatically. We, therefore, developed the following 

spectral index to identify inundated areas (the Normalized Difference Inundation Index), 

based on spectral differences in the NIR band, before the flood and during peak flooding: 

𝑁𝐷𝐼𝐼 =  
𝑁𝐼𝑅𝑝𝑟𝑒−𝑓𝑙𝑜𝑜𝑑−𝑁𝐼𝑅𝑝𝑒𝑎𝑘−𝑓𝑙𝑜𝑜𝑑

𝑁𝐼𝑅𝑝𝑟𝑒−𝑓𝑙𝑜𝑜𝑑+𝑁𝐼𝑅𝑝𝑒𝑎𝑘−𝑓𝑙𝑜𝑜𝑑
  (1) 

We used a threshold of NDII > 0.1 to identify inundated areas based on the histogram 

of the NDII values. Because some areas were affected by clouds and cloud shadows, either 

in the pre-flood or the post-flood images, we manually edited and removed false-positive 

areas, which were misidentified as inundated due to clouds and cloud shadows. An 

additional approach we used to identify and remove false positives was based on the 

LiDAR DEM (areas that were too high to be flooded) and based on the mapping of 

Brisbane City Council of “areas at risk of flooding” (pixels with NDII values greater than 

0.1 outside the areas at risk of flooding were in the vast majority identified as false 

positives). In our mapping of inundated areas, we focused on inundated patches with an 

area larger than 0.1 ha. 

2.2.4. Supporting Datasets 

LiDAR 

We used Australia’s national Digital Elevation Model (DEM derived from LiDAR 5 

m Grid (Geoscience Australia, 2015) to evaluate flood height levels and to validate our 

mapping of inundated areas. 

SAR and Optical Imagery for Validation 

Very few imaging radar data were available for the time of peak flood over Brisbane. 

We examined potential sources from Sentinel 1a and 1b, Capella-Space, Iceye and the 

NovaSAR satellite. Sentinel 1b was not functional at this time; hence we were limited to 

captures by 1a over the study area. We could not locate suitable Sentinel 1a or Iceye data 

and used Capella-Space and NovaSAR data. For north-eastern NSW, the NovaSAR image 

from 5 March 2022 was able to map many flooded areas, and the NovaSAR image from 6 

March 2022 over Brisbane was well after the flood peak. 

Sentinel 1 did not have any overpass over Brisbane during the time of the floods 

(although it did pass over northern NSW to cover the flooded areas there). The Copernicus 

EMS Rapid Mapping activity provided a very localized map of the inundated areas for 

central Brisbane based on a rather cloudy image acquired by GeoEye on 28 February 2022 

(https://emergency.copernicus.eu/mapping/list-of-

components/EMSR567/ALL/EMSR567_AOI03, accessed on 16 August 2022). 

We also had access to Capella X-band imaging radar data [42]. The Capella image 

was acquired on 28 February 2022, covering an area to the south of the Brisbane River at 

a spatial resolution of 0.8 m. The image was slant and ground-range corrected, 

orthorectified, and corrected to normalized radar backscatter coefficient. We resampled 

the Capella image to 3.2 m to fit the spatial resolution of the PlanetScope image. To remove 
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speckle noise, we ran an adaptive box filter [43] on the image three times, using the 

following parameters: a threshold standard deviation of 0.75 within a 7 × 7 moving 

window, replacing invalid pixels with local averages. Following filtering, we applied a 

threshold (<230) to map inundated areas, to serve as a comparison for our mapping of 

inundated areas in Brisbane based on the PlanetScope image. 

Inundated Areas from Past Floods and Hydrography 

Historical flood extents (for the flood events of 1893, 1974, and 2011) and areas at risk 

of flooding (from one or more sources: river, creek, overland flow, and storm tide inside 

the Brisbane City Council local government area) were downloaded from 

https://www.spatial-data.brisbane.qld.gov.au/search?collection=Dataset (accessed on 12 

August 2022). These datasets were downloaded to compare the 2022 flood extent in 

Brisbane with historical flood extents. To show the hydrography of the rivers, we used the 

dataset of Hydrosheds [44]. 

Electricity Load 

We used the Energex (the company supplying electricity to Southeast Queensland) 

zone substation load data reports for the year 2021–2022 (providing raw load data in MW 

measured in half-hourly intervals), available from https://www.energex.com.au/about-

us/company-information/our-network/zone-substation-load-data-reports (accessed on 28 

August 2022). A point layer of these substations was available from 

https://qldspatial.information.qld.gov.au/catalogue/custom/search.page (accessed on 28 

August 2022). We divided the time frame into two main periods, focusing only on 

weekdays (given that over the weekend power loads are lower): (1) weekdays preceding 

the flood (21–25 February 2022); (2) weekdays during the main flooding period (28 

February–4 March 2022). We ran t-tests to examine whether brightness levels differed 

between periods 1 and 2 (areas impacted by floods may record a decrease in electricity 

loads). Given that we analyzed about 240 stations, we only considered zones statistically 

significant where the p-value of the t-test was less than 0.01. 

3. Results 

The date(s) at which maximum river heights were reached ranged from 24 February 

2022 (for SE QLD) to 4 March 2022 (Figures 2 and 3). However, in most stations along the 

Brisbane River, the dates of maximum river height were either 27 February or 28 (Figures 

2 and 3). Within the Brisbane River, the maximum river height increased upriver, from 

about 3.9 m at the Brisbane Post Office (city center) to 8 m at Corinda, 13 m at Goodna, 

and more than 16m, upstream at Ipswich (Figure 3). 
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Figure 2. Australian Bureau of Meteorology (BoM) river gauge stations: Date of maximum river 

height (a,b), and the difference (m) between maximum river height and the pre-flood height (c,d). 

The temporal changes in river height are shown in Figure 3 for the labeled stations. The station of 

Home Park is located on the Mary River, north of Gympie. The rivers were derived from the global 

Hydrosheds dataset [44]. The extent of the maps in (b,d) is shown by a red line in (a,c). 
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Figure 3. Temporal changes in river height between 22 February 2022 and 4 March 2022 for selected 

river height stations (their locations are shown in Figure 2). The numbers preceding a station’s 

(shortened) name represent its serial number as given by the Australian Bureau of Meteorology 

(BoM). 

The most significant differences in the PlanetScope reflectance data between the pre-

flood and the peak-flood images were found in the NIR band, with flooding leading to a 

significant reduction in reflectance in the NIR for both vegetated areas (e.g., grass) and 

roads (Figure 4). This was the main reason for our choice to construct the Normalized 

Difference Inundation Index (NDII) based on pre-flood and peak-flood NIR bands (Figure 

5). Note that for the Brisbane River, floodwater raised the reflectance in the NIR, given the 

greater sediment load, leading the river to appear to be brighter (Figures 4 and 6a,b). The 

NDII values for flooded vegetation and roads were well above 0.1 (Figure 5), whereas 

areas usually covered by water (such as the Brisbane River) had negative NDII values 

(Figure 5), providing a clear separation between inundated areas and permanent water 

bodies (Figure 6c). However, cloud cover in either the pre-flood image or the peak-flood 

image led to the identification of false positives in our mapping of inundated areas, 

especially where there was a cloud in the pre-flood image or where there were cloud 

shadows in the peak flood image (Figures 5 and 6c). We, therefore, masked out areas of 

clouds and cloud shadows to derive our map of inundated areas (Figure 6d). The 2022 

flood in Brisbane was a bit lower than the 2011 flood; on 13 January 2011, the flood peaked 

in the Brisbane City Alert station at the height of 4.46 m 

(http://www.bom.gov.au/qld/flood/fld_history/brisbane_history.shtml; accessed on 25 

August 2022), whereas on 28 February 2022 the river reached a maximum height of 3.85 

m at the same place (Figure 3). While many areas were flooded in Brisbane (see photos 

from the suburb of St. Lucia, Figure 7), fewer areas were inundated in Brisbane in 2022 in 

comparison with 2011 (Figure 6d). 
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Figure 4. Representative spectra over flooded and unflooded sites, comparing data from the pre-

flood 8-band PlanetScope image (9 February 2022) and the peak-flood 4-band PlanetScope image 

(28 February 2022). 

 

Figure 5. Box plots of the Normalized Difference Inundation Index (NDII) values for the regions of 

interest shown in Figure 4. We used a threshold of 0.1 to distinguish between flooded and unflooded 

areas. Note that pre-flood cloud or post-flood cloud shadows lead to false positives. 
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Figure 6. (a) Pre-flood PlanetScope image, 9 February 2022, showing the area from Brisbane’s CBD 

in the north, through the St. Lucia campus of the University of Queensland, to the flood plain of 

Oxley Creek in the south; (b) Peak-flood PlanetScope image, 28 February 2022; (c) NDII map; (d) 

Comparison between the 2011 flood, and the areas inundated in 2022 (after removal of false-

positives). The approximate locations of photos taken on 28 February 2022 are shown here, the 

photos are presented in Figure 7. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 7. Photos of the flood taken on 28 February 2022 in the suburb of St. Lucia. The locations of 

the photos are shown in Figure 6. (a) The St. Lucia Golf Course; (b) The CityCat ferry station of the 

University of Queensland on the Brisbane River; (c) University of Queensland fields (ovals) no. 6 

and 7; (d) William Dart Park (note the inundated soccer goal); (e) St. Lucia Market on Sir Fred 

Schonell Drive; (f) Heroes Avenue between Jack Cook Memorial Park and Perrin Park. 

The Capella SAR image acquired on 28 February 2022 covered a smaller area than 

the PlanetScope image; however it did cover significant areas of the Oxley Creek flood 

plain to allow comparison between the two mapping approaches of inundated areas. 

Using the Capella image, we identified less inundated areas; however, many inundated 

areas were clearly omitted in the Capella mapping (Figure 8). 

The flooding had a clear impact on electricity loads as reported by Energex for SEQ 

(Figure 9a,b) and on nighttime brightness as measured by VIIRS (Figure 9c,d). Out of 240 

substation zones of Energex, in 133 zones (55%), there was a statistically significant 

decrease in electricity loads on the weekdays between the pre-flood week (21–25 February 

2022) and flood week (28 February–4 March 2022). Out of 11,236 lit grid cells within the 

VIIRS tile which we analyzed, in 953 grid cells (8.5%), there was a statistically significant 

decrease in nighttime brightness between the pre-flood period (8–23 February 2022) and 

the peak and post-flood period (1–14 March 2022). Amongst the 37 local government areas 

(LGAs) included within the VIIRS tile, several LGAs were more severely affected than 

others by the floods. In Lismore (NSW), 60% of all lit grid cells experienced a statistically 

significant decrease in nighttime brightness, and in several other LGAs (Byron, Clarence 

Valley, Gympie, Richmond Valley, and Tweed), between 20 and 28% of all of the lit grid 

cells were impacted. In absolute numbers, the largest number of lit VIIRS grid cells that 

were impacted by the floods was in Brisbane, where in 176 (5%) of the grid cells, there 

was a significant decrease. Zooming in on Brisbane, it is possible to see a good match 

between the inundated areas and the VIIRS lit grid cells where there was a statistically 

significant decrease in nighttime brightness, especially in the Oxley Creek floodplain 

(Figure 9d). The location of Energex substation zones in which electricity loads were 



Remote Sens. 2022, 14, 5009 12 of 20 
 

 

impacted also seemed to fit the inundation map; however, these zones are much coarser 

(Figure 9b). To demonstrate the impact of the floods over the temporal scale, we focus on 

two areas: the Oxley Creek flood plain (Figure 10) and the town of Gympie (Figure 11). In 

both cases, a clear decrease in electricity loads can be observed, which started already on 

February 24th in Gympie, and on 26 February in the Oxley Creek area. VIIRS nighttime 

brightness data were not available (due to cloud cover) during the nights when most of 

the rain fell; however, once the clouds have dispersed, the darkening of both areas is 

clearly observed, as well as the gradual recovery of nighttime brightness in the following 

two weeks after the flood (Figures 10 and 11). In 44% of the grid cells where a statistically 

significant decrease in nighttime brightness was observed between the pre-flood period 

and the peak and post-flood period I, a statistically significant increase in nighttime 

brightness was observed between peak and post-flood period I and post-flood period II. 
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Figure 8. Comparison of inundated areas mapping from PlanetScope (based on change detection) 

and Capella (single image): (a) Capella image (28 February 2022) resampled to 3.2 m; (b) Capella 

image after running an adaptive box filter three times; (c) False color composite PlanetScope image, 

28 February 2022; (d) Inundated areas derived from the PlanetScope and Capella images. 

 

Figure 9. The impact of floods on electricity loads (based on Energex data for substation zones; (a,b)) 

and on nighttime brightness (from VIIRS nightly data; (c,d)), comparing pre-flood period values 
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and during flood period values (periods defined in the Methods). All changes shown indicate a 

decrease in energy use due to the impacts of the floods. In both datasets, only changes where the 

statistical significance of the t-test was below 0.01 are shown. The inset maps zooming on Brisbane 

(b,d) also show the inundated areas based on the PlanetScope image. 

 

 

Figure 10. Top: Box plot of nighttime brightness for 40 VIIRS grid cells in the Oxley Creek floodplain 

where there was a statistically significant difference in nighttime brightness between period 1 and 

period 2. Bottom: Substation electricity loads (half-hourly data from Energex) for three substation 

zones corresponding with the Oxley Creek floodplain. The boxplot only includes cloud-free data. 
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Figure 11. Top: Box plot of nighttime brightness for 16 VIIRS grid cells in Gympie where there was 

a statistically significant difference in nighttime brightness between period 1 and period 2. Bottom: 

Substation electricity loads (half-hourly data from Energex) for three substation zones covering 

Gympie. The boxplot only includes cloud-free data. 

4. Discussion 

Mapping water bodies is a complex operation in coastal, inland–tidal, and inland 

water bodies if it is performed correctly, and a number of well-established and tested 
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approaches have been developed both at global and local scales (e.g., [45]) for mapping 

the shoreline to differentiate between land and water (e.g., [46,47]). Generally, water 

bodies absorb almost all of the solar energy in the near-infrared and absorb all of it in the 

short-wave infrared; hence they are quite separable from land features. However, 

mapping flood events within urban areas (in contrast with flood events in rural areas, 

which often cover huge areas; [48]) in subtropical climates introduces several challenges 

in comparison with mapping year-round deep-water bodies. (1) River water in flood 

events is sediment-laden, and hence, they are brighter than usual ([49]). (2) Flood events 

within urban areas are usually brief, and waters often recede within a few days; hence a 

high temporal revisit of the sensor is crucial for successful mapping of the inundated areas 

[50]. (3) During flood events, cloud cover is common, especially in sub-tropical regions, 

and hence SAR is often a better choice than optical sensors for mapping flood events, 

given its cloud penetration capabilities [9]. 

In our case study of mapping inundated areas in SEQ, very few imaging radar data 

were available at the time of the peak flood event, and hence we used PlanetScope images, 

which offer a daily revisit time, given the size of this constellation of satellites [51]. 

However, a daily revisit time is often not enough, and while parts of the image were 

affected by cloud cover, we were fortunate that most of the urban areas of Brisbane were 

cloud-free. To map the inundated areas, we developed a new spectral index, the 

normalized difference inundation index (NDII), which is based on a normalized 

difference between the pre-flood image and the peak-flood image. Spectral indices, which 

are based on change detection, are commonly used in mapping burn severity, e.g., by 

calculating the difference in the values of a spectral index between a pre-fire and a post-

fire image [52]. Whereas for mapping burnt areas, a post-fire image can be used (given 

that in most cases, it takes time for vegetation to recover following a fire event), to map 

areas that were inundated for a short time of just a few days, a post-flood image often will 

not suffice, because vegetation will not be much affected (compare with the impact of 

more severe flooding on crops: [53]). Hence, our index required an image representing the 

flood when it was near its peak. Inundated areas are now mapped using complex decision 

trees (e.g., [15]) or using deep learning and machine learning techniques [54]; however, 

one of the advantages of the index we developed is the simplicity of its calculation. In 

addition, because of the spectral changes in NIR reflectance following a flood event, both 

on land and for river water, the NDII clearly distinguishes between flooded areas (positive 

NDII values) and permanent water bodies through which sediment-laden flood waters 

are flowing (negative NDII values). Comparing our mapping of inundated areas from the 

PlanetScope image with mapping of the inundated areas from a Capella imaging radar 

data set, we found that the PlanetScope image enabled us to map much larger areas and 

that many of the inundated areas delineated using PlanetScope, were omitted in the 

imaging radar mapping (Figure 8). While the imaging radar data had a higher spatial 

resolution, we did not have at our disposal a comparable pre-flood imaging radar data 

set, which might have aided in this mapping. In addition, given the slant angle in which 

imaging radar data are acquired, within urban areas, the view of the ground is likely 

obstructed by buildings and trees (Capella’s look angle range is between 25° and 40°; [55]), 

which may also hamper the mapping of inundated areas. Furthermore, the X-band of 

Capella likely interacts with tree canopies, whereas longer wavelength SAR bands (such 

as Sentinel 1’s C band) may be better at penetrating through trees [56]. While Capella 

promises to be the first operational constellation of commercial SAR satellites, and one of 

its development motivations is to enable real-time mapping of flood events [56], it has not 

reached its full promised constellation of 36 satellites, which will enable a one-hour revisit 

time. Optical sensors, which offer a closer to nadir geometry, have some advantages for 

mapping inundation within urban areas, especially where buildings are higher and streets 

narrower. Using images acquired during the flood (whether optical or imaging radar) 

resembles the use of active fire hotspots for monitoring wildfires from space; however, in 
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both cases, the key requirement is that there will be an overpass of a satellite at the time 

of the event. 

Given that the flood waters receded in less than a week for most areas in Brisbane, 

there were not many visible impacts on vegetated areas in the parks and riparian areas 

(other than trees that stood close to the river and were under direct impact). While 

mapping inundated areas usually requires that the overpass of a sensor will coincide with 

the time of the flood, some impacts of the flood can be mapped from space days later. 

Here, we refer to flood impacts on infrastructure and especially to the impacts on 

electricity usage. Changes in observed nighttime lights have been suggested as a means 

to estimate the impacts of natural disasters, including floods, and their effectiveness 

depends on the availability of cloud-free images and on whether the area under study is 

a lit area [57]. Analyzing the time series of the cloud-free grid cells from the VIIRS 

VNP46A1 nightly product [37], we were able to identify grid cells that were darkened 

following the floods, even without taking into account variability in the view angles of the 

VIIRS [58]. Although the cloud-free data were often not available for some of the days 

(with or without rainfall), there were enough data to identify the grid cells that were 

impacted and thus to map impacted areas based on the temporal signature of their 

nighttime brightness. The impacted areas were also verified using official electricity loads 

available from the regional electricity provider, Energex. While electricity load data 

provide official and highly reliable information at a high temporal frequency, such data 

are not available across all countries, and the spatial units in which it was available were 

quite coarse. Using the VIIRS nighttime brightness enables us to disaggregate such spatial 

units [59,60], Energex substation zones in our case, and to identify the exact locations 

where the supply and use of electricity were impacted. Using VIIRS nighttime brightness, 

the magnitude of the impact of a natural disaster, as well as the recovery from it, can be 

quantified [36]. 

Whereas wildfires can spread widely wherever fuel is available for burning, given 

an ignition event and appropriate meteorological conditions [61], areas at risk of 

inundation are spatially constrained to riparian and floodplain areas. Another key 

difference between wildfires and flood events is related to their temporal properties. Once 

a forest has burnt, it will often take the vegetation at least several years before there will 

be enough fuel for another fire. However, the same area may be flooded again and again, 

and in fact, within a single rain season, previous flooding only enhances the likelihood of 

a subsequent flood event if the soil is still saturated [24]. With climate change, the 

likelihood of flood events will change, although predictions are difficult to be made, given 

the complexity of this phenomenon and the uncertainty in the key drivers of extreme 

rainfall [62]. However, one thing is certain: remote sensing will remain key to monitoring 

floods and understanding their extent, duration, and impacts. 

5. Conclusions 

Floods represent a recurring and significant hazard globally and in Australia. 

Monitoring inundation in urban areas is associated with specific challenges, given the 

more limited duration and area of flood events, requiring high temporal revisit times of 

sensors (at least twice daily), either optical or imaging radar. Using a spectral index that 

is based on changes in the NIR reflectance, the NDII, we were able to map inundated areas 

in Brisbane using pre-flood and peak-flood PlanetScope images. While emerging imaging 

radar constellations may provide an operational mapping of floods in the future, we show 

that already the impacts of floods on the electricity supply for the population can be 

mapped using VIIRS nighttime brightness images. We believe that a multi-sensor 

approach is highly useful when tackling complex natural disaster events, where different 

sensors assist in validating each other and in tracking different aspects of rolling events. 
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