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Abstract: Quantitative plant species α-diversity of grasslands at multiple spatial and temporal
scales is important for investigating the responses of biodiversity to global change and protecting
biodiversity under global change. Potential plant species α-diversity (i.e., SRp, Shannonp, Simpsonp

and Pieloup: potential species richness, Shannon index, Simpson index and Pielou index, respectively)
were quantified by climate data (i.e., annual temperature, precipitation and radiation) and actual
plant species α-diversity (i.e., SRa, Shannona, Simpsona and Pieloua: actual species richness, Shannon
index, Simpson index and Pielou index, respectively) were quantified by normalized difference
vegetation index and climate data. Six methods (i.e., random forest, generalized boosted regression,
artificial neural network, multiple linear regression, support vector machine and recursive regression
trees) were used in this study. Overall, the constructed random forest models performed the best
among the six algorithms. The simulated plant species α-diversity based on the constructed random
forest models can explain no less than 96% variation of the observed plant species α-diversity. The
RMSE and relative biases between simulated α-diversity based on the constructed random forest
models and observed α-diversity were ≤1.58 and within ±4.49%, respectively. Accordingly, plant
species α-diversity can be quantified from the normalized difference vegetation index and climate
data using random forest models. The random forest models of plant α-diversity build by this study
had enough predicting accuracies, at least for alpine grassland ecosystems, Tibet. The proposed
random forest models of plant α-diversity by this current study can help researchers to save time by
abandoning plant community field surveys, and facilitate researchers to conduct studies on plant
α-diversity over a long-term temporal scale and larger spatial scale under global change.

Keywords: biodiversity; alpine ecosystem; global change; random forest; alpine region; ‘Third Pole’;
Tibetan Plateau

1. Introduction

Plant species α-diversity, as key components of biodiversity and important charac-
teristics of plant community, can always be represented by species richness (i.e., species
numbers), Shannon, Simpson and Pielou [1–4]. Quantitative plant species α-diversity of
grasslands at multiple spatial and temporal scales, as one key aspect of plant diversity-
related studies, is important for assessing the responses of biodiversity to global change
and protecting biodiversity under global change [5–7]. Although there are numerous
studies which are related to plant diversity [8–12], some issues are still not resolved. Firstly,
on the one hand, with the increasing number of responsibilities in the work of scientists,
there are fewer experienced researchers with sufficient knowledge in diagnostics who can
supplement the tests performed in the small area system. On the other hand, at present,
plant diversity data are mainly collected from field plant community surveys at relatively
smaller spatial scales, such as single point scale, vertical transect scale, and horizontal
transect scale, but plant diversity data are lacking at the relatively larger spatial scales,
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such as the whole Tibet scale [1,13–16]. High-precision models of plant α-diversity are
the basis for the plant diversity studies at relatively greater spatial scales. Secondly, com-
pared with vegetation productivity models (e.g., gross/net primary production models
of the Moderate Resolution Imaging Spectroradiometer) [17–19], plant species diversity
models are relatively rare. Thirdly, along with the rapid development of various science
and technology including computer science and 3S technology, data mining technology
has gradually entered the human field of vision and has played key roles in all walks of
life [20–27], which makes it possible for us to quantify massive primary plant α-diversity
data from field plant community surveys. However, there are a variety of data mining
technologies, such as the models of random forest, generalized boosted regression, arti-
ficial neural network, multiple linear regression, support vector machine and recursive
regression trees [20,27]. It is still unclear which technology of data mining can be the best
model to simulate α-diversity of plants. Accordingly, further studies are needed to find the
optimal model of plant α-diversity, and this optimal model can be used to perform studies
associated with plant α-diversity at various spatial and temporal scales (e.g., the spatial
patterns of plant α-diversity and associated driving factors in alpine grassland ecosystems
of the Qinghai-Tibet Plateau).

Actually, several earlier studies have been carried out on the plant α-diversity of alpine
grassland ecosystems in Tibet [8,9,11,12,28,29]. These earlier studies can have important
guiding significance for the conservation of biodiversity in alpine grassland ecosystems
of Tibet and even the world. However, some issues are still not resolved. Firstly, when
analyzing the relationships between climate variables and plant species α-diversity, earlier
studies mainly discussed the relationships between temperature and precipitation and
plant species α-diversity, but lacked the discussions on the relationships between radiation
and plant species α-diversity [10,11]. However, some earlier studies have proved that
radiation change had stronger influences on nutrition quality of plant community than
temperature change and precipitation change in alpine grassland ecosystems of Tibet [20,27].
Meanwhile, plant species α-diversity can be closely correlated with nutrition quality and
nutrition production of plant community in alpine grassland ecosystems of Tibet [8,30].
Moreover, plant growth is indeed influenced by radiation, although photoinhibition may
occur under relatively higher magnitude radiation in alpine regions of the Qinghai-Tibet
Plateau [31–33]. These earlier findings imply that radiation can affect plant species α-
diversity. Secondly, the random forest model has been proved to be the optimal model in
predicting some key plant parameters (e.g., plant nutrition quality and nutrition production)
in alpine grassland ecosystems of Tibet by several earlier studies [20,27]. However, it is still
unclear whether or not the performance of the random forest model in simulating plant
α-diversity is better than other models of data mining in the alpine grassland ecosystems
of Tibet. Accordingly, further studies are needed.

Here, plant species α-diversity was quantified from measured normalized difference
vegetation index, temperature, precipitation and radiation using six methods of data
mining (i.e., random forest, generalized boosted regression, artificial neural network,
multiple linear regression, support vector machine and recursive regression trees) in alpine
grassland ecosystems of Tibet. The main objective was to compare the performance of the
six approaches in terms of plant α-diversity.

2. Materials and Methods
2.1. Data

There were 532 and 398 sampling quadrats with a size of 0.50 m × 0.50 m under
the fencing and free-grazing scenes, respectively. The geographic positions of these sam-
pling sites were illustrated in Figure 1. The 532 sampling quadrats under fencing scenes
were investigated in 2011–2020, and the 398 sampling quadrats under grazing scenes
were investigated in 2010, 2012 and 2017–2020. The investigated plant community data
included numbers of species, species coverage and height. Based on the investigated plant
community data, plant α-diversity was calculated for each sampling quadrat [9–12,34,35].
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Considering the nonlinear relationships among different indices of plant α-diversity, four
different indices of plant α-diversity (i.e., SR: species richness, Shannon, Simpson and
Pielou indices) were adopted in this current study. The SR was actually referred to species
number of plant community for each quadrat. The Shannon, Simpson and Pielou indices
were calculated with Equations (1)–(3), respectively:

Shannon = −∑ Pi × lnPi (1)

Simpson = 1 − ∑ P2
i (2)

Pielou =
−∑ Pi × lnPi

lnSR
(3)

where Pi is the relative important value of each plant species within a quadrat. The other
data used in this research included maximum normalized difference vegetation index
during the period from May to September (NDVImax), annual temperature (AT), annual
precipitation (AP) and annual radiation (ARad) in 2000–2020. The normalized difference
vegetation index data were adopted from MODIS product (i.e., MOD13A3). The AT, AP and
ARad data were based on interpolated monthly air temperature, precipitation and radiation,
respectively. The accuracies of interpolated monthly climate data were performed and
validated by earlier studies [36]. Based on previous studies [20,27], the plant α-diversity
data under fencing and free-grazing scenes were treated as the potential and actual plant
α-diversity, respectively. The potential plant α-diversity data were assumed to be only
influenced by climatic change, while the actual plant α-diversity data were assumed to be
simultaneously influenced by anthropogenic activities and climatic change [20,27]. The
potential SR, Shannon, Simpson and Pielou data were labeled as SRp, Shannonp, Simpsonp
and Pieloup, respectively. In contrast, the actual SR, Shannon, Simpson and Pielou data
were labeled as SRa, Shannona, Simpsona and Pieloua, respectively. The SRp, Shannonp,
Simpsonp and Pieloup data were calculated from the AT, AP and ARad based on six diverse
methods (i.e., random forest, generalized boosted regression, artificial neural network,
multiple linear regression, support vector machines and recursive regression trees) (Table 1).
By contrast, the SRa, Shannona, Simpsona and Pieloua data were calculated from the AT,
AP, ARad and NDVImax based on the six diverse methods mentioned above (Table 1). The
reasons on why these six approaches were adopted in the current study were as follows.
Firstly, random forest, generalized boosted regression, artificial neural network, support
vector machines and recursive regression trees are common big data mining tools, while
multiple linear regression is a common statistical regression tool. Secondly, earlier studies
examined and compared the performances of the random forest, multiple linear regression,
support vector machines and recursive regression trees in assessing plant nutrition quality
and production of alpine grasslands in Tibet [20,27]. However, the performances of these
six approaches in quantifying plant α-diversity of alpine grasslands in Tibet is unclear.
Thirdly, optimal plant α-diversity model screening is necessary to predict the change
of plant α-diversity and protection of biodiversity under global change. All the spatial
resolutions of AT, AP, ARad, NDVImax, SRp, Shannonp, Simpsonp, Pieloup, SRa, Shannona,
Simpsona and Pieloua were 1 km × 1 km.
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Figure 1. Sampling points. 

 

Figure 1. Sampling points.

2.2. Statistical Analysis

According to some earlier studies [20,37–39], 30 dataset of observed plant α-diversity,
annual temperature, annual precipitation and annual radiation and/or growing season
maximum normalized difference vegetation index were randomly selected from the 532
and 398 samples under fencing and free-grazing scenes, respectively. The 30 datasets were
used to validate the predicting accuracies (i.e., linear slope, R2: determination coefficient,
RMSE: root-mean-square error and relative bias) of all the models used in this study [20].
Random forest, generalized boosted regression, artificial neural network, multiple linear
regression, support vector machines and recursive regression trees were performed by
the randomForest, gbm, rminer, stats, e1071 and rpart packages of the R.4.1.2 software,
respectively [40–42]. The R.4.1.2 was also used to perform all the other statistical analyses,
including the linear regression between potential and actual plant α-diversity.
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Table 1. The parameters for random forest, generalized boosted regression, artificial neural network, multiple linear regression, support vector machines and
recursive regression trees of potential and actual species richness, Shannon, Simpson and Pielou, respectively.

Diversity Scenes

Random Forest Generalized Boosted
Regression

Artificial Neural
Network Multiple Linear Regression Support Vector Machines

Recursive
Regression

Trees

R2 Mean Square
Errors ntree mtry Trees

Mean
train
Error

Mean
cv

Error
Error Size Intercept Temperature Precipitation Radiation NDVI R2 Mean

residuals

Mean
Decision
Values

gamma rho
Support
Vector

Nos
R2

SR Potential 0.73 1.94 134 3 987 2.70 3.49 286.74 0 5.26 0.00 0.01 0.00 0.25 0.10 −0.04 0.33 0 441 0.57
Actual 0.62 3.03 124 4 953 3.21 4.57 263.34 0 −2.96 0.23 0.01 0.00 0.00 0.19 0.23 −0.08 0.25 0 335 0.43

Shannon Potential 0.72 0.06 117 2 993 0.09 0.11 50.37 0 −1.45 0.04 0.00 0.00 0.09 −0.03 0.07 0.33 1 432 0.45
Actual 0.61 0.09 118 1 969 0.10 0.12 43.30 8 −0.99 0.06 0.00 0.00 0.00 0.10 −0.01 0.03 0.25 1 323 0.53

Simpson Potential 0.72 0.01 196 1 991 0.01 0.02 17.96 0 −0.82 0.02 0.00 0.00 0.17 −0.03 0.18 0.33 1 420 0.45
Actual 0.62 0.01 163 3 942 0.01 0.01 13.58 8 −0.41 0.02 0.00 0.00 0.00 0.13 −0.02 0.14 0.25 0 311 0.52

Pielou Potential 0.71 0.01 448 1 969 0.01 0.01 13.10 0 −0.82 0.02 0.00 0.00 0.37 −0.02 0.13 0.33 1 378 0.67
Actual 0.73 0.01 210 3 912 0.01 0.01 12.35 0 −0.38 0.02 0.00 0.00 0.00 0.39 −0.02 0.10 0.25 0 287 0.70
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3. Results
3.1. Model Construction

The model parameters for the random forest, generalized boosted regression, artifi-
cial neural network, multiple linear regression, support vector machines and recursive
regression trees of plant α-diversity are shown in Table 1, respectively. The values and
numbers of model parameters varied among the six approaches (Table 1). Random forest,
multiple linear regression and recursive regression trees directly provided R2 values, and
generalized boosted regression, artificial neural network and support vector machines did
not directly provide R2 values (Table 1). Generally, the R2 values of constructed random
forest models were the greatest, and the R2 values of constructed multiple linear regression
models were the lowest (Table 1). Random forest, generalized boosted regression and
support vector machine provided numbers of trees or vector machines, and the other
three approaches did not provide numbers of trees or vector machines (Table 1). Differ-
ent indices of plant α-diversity adopted different numbers of trees or vector machines
(Table 1). Moreover, some approaches directly provided internal error evaluation parame-
ters (Table 1). Random forest models directly provided mean square errors, as the internal
error evaluation and generalized boosted regression directly provided mean train errors
and mean cross-validation errors as the internal error evaluation, and vector machines
models directly provided mean residuals as the internal error evaluation (Table 1).

3.2. Model Accuracies

The simulated plant α-diversity was significantly and linearly correlated with the
observed plant α-diversity (Figures 2–5). The relative bias and RMSE values between the
simulated plant α-diversity and observed plant α-diversity are shown in Table 2. The linear
slopes, R2 values, relative bias and RMSE values between the simulated plant α-diversity
and observed plant α-diversity varied among the six approaches, respectively (Figures 2–5,
Table 2). The linear slopes and R2 values between simulated plant α-diversity and observed
plant α-diversity were no less than 0.88 (Table 2). The relative bias and RMSE values
between simulated plant α-diversity and observed plant α-diversity were within a range
from −6.53% to 9.14% and from 0.05 to 2.37, respectively (Figures 2–5).

Table 2. The relative bias (%) and RMSE values between observed and simulated potential and actual
α-diversity of the plant community (n = 30).

Models
Potential α-Diversity Actual α-Diversity

Species
Richness Shannon Simpson Pielou Species

Richness Shannon Simpson Pielou

Relative
bias Random forest −1.00 −1.09 −1.81 0.70 4.39 −4.49 −0.59 1.17

Generalized boosted
regression −1.40 −2.80 −1.40 −0.90 4.61 −2.54 −0.15 0.94

Artificial neural network −1.23 −1.07 −0.03 −1.71 0.49 9.14 4.37 0.09
Multiple linear regression −1.23 −1.07 −0.03 −1.71 0.49 6.53 0.88 0.09
Support vector machines −6.53 −0.19 2.01 0.79 −3.92 −0.28 5.69 2.88
Recursive regression trees 0.01 −1.32 −4.02 −0.47 4.85 −4.13 1.55 0.30

RMSE Random forest 1.10 0.17 0.09 0.05 1.58 0.32 0.10 0.09
Generalized boosted

regression 1.14 0.20 0.09 0.06 1.60 0.34 0.11 0.09

Artificial neural network 1.93 0.41 0.15 0.07 2.37 0.52 0.14 0.14
Multiple linear regression 1.93 0.41 0.15 0.07 2.37 0.50 0.12 0.14
Support vector machines 1.89 0.31 0.13 0.07 1.88 0.40 0.12 0.11
Recursive regression trees 1.70 0.23 0.08 0.07 1.80 0.37 0.12 0.10
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Figure 2. Correlations between the simulated and observed species richness of the plant community 
under fencing (a,c,e,g,i,k) and grazing (b,d,f,h,j,l) scenes, for random forest (a,b), generalized 
Figure 2. Correlations between the simulated and observed species richness of the plant community
under fencing (a,c,e,g,i,k) and grazing (b,d,f,h,j,l) scenes, for random forest (a,b), generalized boosted
regression (c,d), artificial neural network (e,f), multiple linear regression (g,h), support vector ma-
chines (i,j) and recursive regression trees (k,l). The solid lines indicate the linear fitted lines between
the simulated and observed species richness. SRp: potential species richness; SRa: actual species
richness. All the regressions were significant at p < 0.001.
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boosted regression (c,d), artificial neural network (e,f), multiple linear regression (g,h), support vec-
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Figure 3. Correlations between the simulated and observed Shannon of the plant community under 
fencing (a,c,e,g,i,k) and grazing (b,d,f,h,j,l) scenes, for random forest (a,b), generalized boosted re-
Figure 3. Correlations between the simulated and observed Shannon of the plant community under
fencing (a,c,e,g,i,k) and grazing (b,d,f,h,j,l) scenes, for random forest (a,b), generalized boosted re-
gression (c,d), artificial neural network (e,f), multiple linear regression (g,h), support vector machines
(i,j) and recursive regression trees (k,l). The solid lines indicate the linear fitted lines between the
simulated and observed Shannon. Shannonp: potential Shannon; Shannona: actual Shannon. All the
regressions were significant at p < 0.001.
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chines (i,j) and recursive regression trees (k,l). The solid lines indicate the linear fitted lines between 
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Figure 4. Correlations between the simulated and observed Simpson of the plant community under 
fencing (a,c,e,g,i,k) and grazing (b,d,f,h,j,l) scenes, for random forest (a,b), generalized boosted re-
Figure 4. Correlations between the simulated and observed Simpson of the plant community under
fencing (a,c,e,g,i,k) and grazing (b,d,f,h,j,l) scenes, for random forest (a,b), generalized boosted re-
gression (c,d), artificial neural network (e,f), multiple linear regression (g,h), support vector machines
(i,j) and recursive regression trees (k,l). The solid lines indicate the linear fitted lines between the
simulated and observed Simpson. Simpsonp: potential Simpson; Simpsona: actual Simpson. All the
regressions were significant at p < 0.001.
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Figure 5. Correlations between the simulated and observed Pielou of the plant community under 
fencing (a,c,e,g,i,k) and grazing (b,d,f,h,j,l) scenes, for random forest (a,b), generalized boosted re-
Figure 5. Correlations between the simulated and observed Pielou of the plant community under
fencing (a,c,e,g,i,k) and grazing (b,d,f,h,j,l) scenes, for random forest (a,b), generalized boosted re-
gression (c,d), artificial neural network (e,f), multiple linear regression (g,h), support vector machines
(i,j) and recursive regression trees (k,l). The solid lines indicate the linear fitted lines between the
simulated and observed Pielou. Pieloup: potential Pielou; Pieloua: actual Pielou. All the regressions
were significant at p < 0.001.
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4. Discussion

Similar with earlier studies, not all models can directly provide the R2 values [20,38].
In fact, only three (i.e., random forest, multiple linear regression and recursive regression
trees) of the six methods can directly provide R2 values (Table 1). Among the three methods
mentioned above, the AT, AP, ARad and/or NDVImax based on constructed random forest
models can explain the highest variations of plant α-diversity, and the AT, AP, ARad
and/or NDVImax based on constructed multiple linear regression models can explain the
lowest variations of plant α-diversity. This consequence was similar to an earlier paper,
which showed that the AT, AP, ARad and/or NDVImax based on constructed random forest
models can explain the greater variations of plant nutritional quality and production than
the constructed recursive regression trees and multiple linear regression models in alpine
grassland ecosystems of Tibet [20]. Accordingly, the R2 values of the constructed models
can preliminarily evaluate the quality of the models, at least for plant nutrition production
and α-diversity in the alpine grassland ecosystem of Tibet.

Different models/methods can generally have different calculation thought and pa-
rameters, and only three (i.e., random forest, generalized boosted regression and support
vector machine) of the six methods can provide the numbers of trees or vector machines
(Table 1). Compared to the constructed generalized boosted regression and support vector
machine models, the tree numbers of constructed random forest models were lower for
most cases. Lower tree numbers implied that lower model complexity and higher compu-
tational speed. Accordingly, the constructed random forest models in this study had the
highest computational speed and lowest model complexity, but the constructed generalized
boosted regression models in this study had the lowest computational speed and highest
model complexity, at least for plant α-diversity in alpine grassland ecosystems of Tibet.
However, this consequence seemed to be completely opposite with an earlier paper, which
demonstrated that the tree numbers of constructed random forest models were greater
than the constructed vector machines numbers of support vector machines models [20].
Accordingly, relying only on the number of trees/vector-machines evaluation model may
not be universal.

The accuracy and robustness of the constructed random forest models of plant α-
diversity were greater than the other five approaches, which was supported by the facts
mentioned above and succeeding facts. Firstly, from the scatter plots between simulated
plant α-diversity and observed plant α-diversity, there were too many points where multi-
ple observed values correspond to only one simulated value, especially for the constructed
artificial neural network and recursive regression trees models (Figures 2–5). Secondly,
the reasonable range of Simpson and Pielou values are generally within a range from
zero to one. However, the simulated potential plant Pielou values (e.g., 1.01) were not
all within the reasonable range for the constructed models of multiple linear regression
and artificial neural network (Figures 2–5). Thirdly, there were some situations where the
absolute values of the relative bias between the simulated plant α-diversity and observed
plant α-diversity were greater than 4.80% for four of the six methods (i.e., artificial neural
network, multiple linear regression, support vector machines and recursive regression
trees) (Table 2). The largest value for the absolute value of the relative bias between the
simulated plant α-diversity based on random forest and observed plant α-diversity was
about 4.49%, but that between the simulated plant α-diversity based on generalized boosted
regression and observed plant α-diversity was about 4.61% (Table 2). Fourthly, the linear
slopes between simulated plant α-diversity from the constructed random forest models
and observed plant α-diversity were the closest to 1 among the six methods for more than
half cases, but the linear slopes between simulated plant α-diversity from the constructed
generalized boosted regression and observed plant α-diversity were the closest to 1 among
the six methods for only a quarter situation (Figures 2–5). Fifthly, for most cases, the
constructed random forest models had the lowest RMSE values and the largest R2 values
between simulated plant α-diversity and observed plant α-diversity among the six methods
(Table 2, Figures 2–5). Moreover, AT, AP, ARad and/or NDVImax explained about 71–73%
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and 61–73% variations of plant potential and actual α-diversity based on the constructed
random forest, respectively (Table 1). The linear slopes, R2 values, relative bias and RMSE
values between simulated potential and actual plant α-diversity from random forest and
observed potential and actual plant α-diversity were 0.97–1.00 and 0.91–1.00, 0.97–1.00 and
0.96–0.99, −1.81–0.70 and −4.49–4.39 and 0.05–1.10 and 0.09–1.58, respectively (Table 2,
Figures 2–5). Accordingly, plant species potential α-diversity can be quantified from the
AT, AP and ARad using the constructed random forest models, and plant species actual
α-diversity can be quantified from the AT, AP, ARad and NDVImax using the constructed
random forest models, at least for the alpine grassland ecosystems of Tibet. However, on
the basis of data only from Tibet, which is a hotspot of unique vegetation, it is difficult to
generalize the presented results to other areas. Thus, future studies should focus on areas
outside Tibet, and their findings can be compared with the results of this current study.

5. Conclusions

Here, to our best knowledge, this research was the first study to quantify the potential
(i.e., only affected by climate change) and actual (i.e., simultaneously affected by climate
change and human activities) plant α-diversity (i.e., species richness, Shannon, Simpson
and Pielou) based on six models (i.e., random forest, generalized boosted regression, arti-
ficial neural network, multiple linear regression, support vector machines and recursive
regression trees) using climate data (i.e., AT: annual temperature; AP: annual precipitation;
ARad: annual radiation) and growing-season maximum normalized difference vegetation
index (NDVImax) in the alpine grassland ecosystem of the Tibetan Plateau under the back-
ground of the rapid development of global big data mining technologies. The predicting
accuracies of the six approaches in plant α-diversity were compared in the current research
by analyzing the linear slopes, R2, bias and RMSE values between simulated and observed
plant α-diversity. The constructed random forest models of plant α-diversity had the better
performance than the other five methods. Accordingly, the proposed tool by this current
study will help in proposing solutions to urgent environmental problems. For example, the
constructed random forest models of plant α-diversity can be used to quantify the spatial
and temporal patterns of the potential and actual plant α-diversity, and predict the changes
of potential and actual plant α-diversity, at least for alpine grassland ecosystems of Tibet
under future global change.
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