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Abstract: On 19 September 2021, La Palma Cumbre Vieja Volcano started an eruption classified as
Volcanic Explosive Index (VEI) 3. In this study, at least the six months prior to such an event have
been investigated to search for possible lithosphere–atmosphere–ionosphere bottom-up interactions.
The lithosphere has been analysed in terms of seismicity getting advantages from the high-density
local seismic network. Possible atmospheric alterations related to the volcano emissions or release
of gases due to the uplift of the magmatic chamber have been searched in SO2, aerosol, dimethyl
sulphide, and CO. The magnetic field on Earth’s surface has been studied by ground geomagnetic
observatories. The status of the ionosphere has been investigated with two satellite missions: China
Seismo Electromagnetic Satellite (CSES) and European Space Agency Swarm constellation, with
Total Electron Content (TEC) retrieved from global maps. We identified a temporal migration of
the seismicity from November 2020 at a depth of 40 km that seems associable to magma migration,
firstly to a deep chamber at about 15 km depth and in the last 10 days in a shallow magma chamber
at less than 5 km depth. The atmospheric composition, ground geomagnetic field, and ionosphere
showed anomalies from more than three months before the eruption, suggesting a possible influence
from the bottom geo-layers to the upper ones. CSES-01 detected an increase of electron density,
confirmed by TEC data, and alterations of vertical magnetic field on ground Guimar observatory
that are temporal compatible with some volcanic low seismic activity (very likely due to the magma
uplift), suggesting an eventual electromagnetic disturbance from the lithosphere to the ionosphere.
A final increase of carbon monoxide 1.5 months before the eruption with unusually high values of
TEC suggests the last uplifting of the magma before the eruption, confirmed by a very high shallow
seismicity that preceded the eruption by ten days. This work underlines the importance of integrating
several observation platforms from ground and overall space to understand geophysics better, and,
in particular, the natural hazard affecting our planet.
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1. Introduction

Studying the lithosphere, atmosphere, and ionosphere as a whole is a new frontier
of geoscience. In particular, the possible interactions between each geo-layer before an
earthquake or a volcano eruption are predicted by several models, and multiple observa-
tions support their existence, even if a definitive proof is still missing [1–3]. Instead, some
evidence statistically proves such phenomena [4–7]. Limitations are due to the multidisci-
plinary nature of such studies and the rareness of earthquakes and volcano eruptions, as
they are not everyday events. In particular, the recording instrumentation is not always
available close to the natural hazard location. In the last decades, the launch of several
remote sensing satellites in Low Earth Orbits (LEO) permitted global coverage of our
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planet [8]. On the contrary, the satellite flew above the region of interest only for a limited
time. Consequently, some effects could be lost if they are shorter than the revisit time of
the satellite. Geostationary satellites observed the same region for 24 h/24 h, but their
orbit is at about 36,000 km, so their spatial resolution is generally limited [9]. Furthermore,
some observable physical quantities, like the geomagnetic field, require observation at a
maximum altitude of hundreds of km. In fact, the weak magnetic perturbations that the
preparation of the natural hazard are supposed to produce are just a few nT at an altitude
of 400 km~500 km, and reduce as the altitude increases.

Concerning the electromagnetic pre-volcano eruption studies, Uyeda et al. [10] re-
ported several geomagnetic Ultra Low Frequency (ULF) emissions before volcanic and seis-
mic activity in Izu Island (Japan). In particular, they underlined two stages of preparation
for the volcanic eruption with different transient levels that they identified as pre-seismic
and pre-volcano eruptions. They also reported a confirmation as co-event transients.

Several studies on satellite remote sensing multispectral imaging reported the identifi-
cation of thermal infrared atmospheric anomalies as pre-volcano activity [6,11]. Recently,
Marchese et al. [12] successfully found thermal emission anomalies before the 2021 Etna
volcano paroxysm, applying the Robust Satellite Technique (RST), initially developed for
pre-earthquake thermal anomalies.

All of these pre-volcano and earthquake phenomena could be explained by a litho-
sphere atmosphere ionosphere coupling (LAIC) model, such as the one proposed by
Pulinets and Ouzounov [2] or Pulinets and Davidenko [13] that started from radon or
other gas emissions from the faults (for earthquakes) and from faults or directly from the
vent in the case of a volcano. Then, reaching the atmosphere, they could ionise the air.
Consequently, an alteration of the global electric circuit of the atmosphere and ionosphere
could result, as further described by Pulinets and Khachikyan [14].

Parrot [15] proposed that electrical discharge inside the volcanic ash plumes can create
some atmospheric and ionospheric disturbances, providing some shreds of evidence from
the Etna volcano eruption recorded by the DEMETER satellite.

Similar work has been performed by Tramutoli [16] on the occasion of Etna volcano
activity and Sahara dust storm in 2006–2008 using atmospheric and ionospheric data from
DEMETER satellite and other instruments. They investigated the atmospheric chemical
potential and outgoing longwave radiation for the atmosphere. Electron density and
electric field (from DEMETER satellite), together with Total Electron Content (TEC) (from
ground stations), detected some possible interaction phenomena between the lithosphere,
atmosphere, and ionosphere before the Etna eruptions, as well as some independent
ionospheric anomalies more likely due to external sources [16].

Pulinets et al. [17] widely investigated the effect of dust storms from the Sahara desert
over the Atlantic Ocean in 2012 and 2020 on the atmosphere and the ionosphere (TEC).
In the same paper, the authors monitored the impact of eruptions of several volcanoes on
the atmosphere and ionosphere. Still, they concentrated on co-eruption (or dust storm
effects) rather than pre-eruption. On the other hand, those works are also a substantial
base to determine the impact of a desertic dust storm over the ocean and not confuse it as a
“pre-eruption” anomaly.

While the lithosphere–atmosphere–ionosphere bottom-up influence prior to earth-
quakes and volcano eruptions is a more debated topic among the scientific community, the
possibility of predicting volcano eruption by seismic, geodetic, and geochemical measure-
ments is more accepted and has proved to be effective [18].

Recent studies have focused on the incredible explosion of the Hunga Tonga-Hunga
Ha’apai volcano that occurred on 15 January 2022. It was a powerful enough explosion
to bring some water into the troposphere, impacting Earth’s climate [19] and producing a
pressure wave (Lamb wave) that travelled all around the globe. Some studies also found
an upward disturbance from the troposphere to the ionosphere during the propagation of
the pressure wave, for example, analysing ground Total Electron Content TEC in Japan [20],
or by CSES satellite and also TEC from Global Navigation Satellite System (GNSS) de-
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tectors [21]. Despite the Hunga Tonga-Hunga Ha’apai and La Palma volcanoes being
different (the first one is a submarine stratovolcano, while the second one is an emersed
stratovolcano) and the intensity of the explosions being significantly different (VEI = 6
and second one VEI = 3), a similar approach used in [21] is here applied to pre-activity of
“La Palma” volcano eruption, by a comprehensive analysis of the lithosphere atmosphere
and ionosphere geophysical layers.

La Palma is a volcanic island part of “Las Canarias” archipelagos composed of several
islands, all of them of volcanic origin, as visible in Figure 1. Las Canarias archipelagos
are located westward of the African continent at the same latitude as the Sahara Desert,
but jurisdictionally are part of Spain (European Union). In such archipelagos, and in
particular, in La Palma Island, there are several optical telescopes (the National Italian
telescope Galileo [22], and the Cherenkov one, like MAGIC [23]). In fact, due to the low
light pollution present in the place, it deserves special interest as an elected place for the
installation of astrophysical instrumentation. From a tectonic point of view, the Atlantic
Ocean is divided in its middle by the Mid-Atlantic Ridge, which is an accretion plate
boundary with the continuous formation of the new lithosphere. Among the Atlantic
Ocean’s East side, due to the interaction with Eurasian and African plates, several volcano
arcs are present from northern Iceland to the southern Capo Verde archipelagos. In the
middle are the Las Canarias ones, the object of study of this paper.
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Figure 1. Location of La Palma Volcano. (A) Global view showing the position in the North Atlantic
Ocean of Canarias Islands with respect to African and European continents. (B) Details of Las Canarias
archipelagos. (C) La Palma Island. The position of the Cumbre Vieja volcanic edifice responsible
for the eruption on 19 September 2021 is underlined. The figure is an original composition of views
obtained by GoogleEarth Pro software (version 7.3.4.8642, freely provided by Google LLC.).

In the investigated area during the last 40 years, only an eruption of the El Hierro
volcano has been documented, from 10 October 2011 until 5 March 2012 [24,25]. This
eruption was a submarine event associated with pre-seismic, geomagnetic, and gravity
field anomalies that started in July 2011 [26].
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On 19 September 2021, an eruption preceded by high seismic activity started at La
Cumbre Vieja vent of “La Palma” volcano [27]. The eruption lasted until 13 December 2021,
covering lava, an area of about 12.2 km2 located west of the vent toward the sea [25]. The
last previous eruption of “La Palma” volcano was in 1971 at a site called Teneguía [27].

Bottom-Up Lithosphere–Atmosphere–Ionosphere Coupling Interaction Mechanisms

The existence of bottom-up lithosphere–atmosphere–ionosphere effects before volcano
eruptions and earthquakes is a controversial scientific topic. For example, a recent paper
by Schekotov et al. proposed that what was considered a cause–effect interaction between
radon emission and electromagnetic anomalies before Mw9.1 Tohoku (offshore of Oshika
Peninsula, Japan) 2011 earthquake are two independent phenomena; nevertheless, the
authors still support them as separate precursors of the mega-thrust earthquake [28]. In
this paper, we investigated a volcano and not an earthquake. Literature on LAIC and
volcano is less rich than on LAIC and earthquakes, but the volcanos are more known for
their geological features and underground structures.

It is important to point out that the researchers proposed several different models to
explain the possible interactions between lithosphere–atmosphere–ionosphere [29], which
we will briefly illustrate in the following. The differences in the proposed models are based
on the mechanism that could be an electromagnetic interaction based on Maxwell equations
or a mix of mechanic, thermal, chemical, and electromagnetic phenomena. Such ways of
interaction affect the parameters differently with specific propagation times; for example,
an electromagnetic wave propagates at the speed of light in the medium that permits it to
cover 500 km in 1.7 ms (in the air). In comparison, an acoustic wave at the speed of sound
requires about 25 min to cover 500 km (in the air in standard conditions).

The basic source under the volcano is the magma accumulation in its magmatic cham-
bers, and several volcanos have more than one (for example, Changbaishan in China [30]
or La Palma object of this study [31]). The accumulation and uplift of the magma prior
to the eruption can bring at least three effects: firstly, an increase in the temperature of
the lithosphere under the volcano, secondly a demagnetization of the crustal due to the
increase of the temperature above the Curie temperature, and thirdly a direct degassing
from the cone of the volcano due to the rise of underground pressure [32]. The increase
in temperature in the underwater lithosphere can trigger an increase in the growth rate
of algae that are directly responsible for DyMethil Sulphide (CH3SCH3 or DMS) emission
in the atmosphere [33]. Furthermore, DMS can be oxidated in the air, forming sulphur
dioxide [34]. Despite the presence in the atmosphere of SO2 as a result of oxidation of DMS,
we can expect a direct emission from the volcano, as it is among the primary sources of
SO2 in the atmosphere [35]. SO2 can be oxidised, producing sulphate aerosol, so the whole
chemical chain is: DMS oxidised in SO2, which is oxidised in aerosol [36]. Carbon monox-
ide is also directly emitted by volcanoes, even if its amount compared to other natural
sources, like the burning of vegetation and even anthropogenic sources, is negligible for
the global budget [37]. Volcanoes also emit water vapour (H2O), CO2, H2S, HCl, hydrogen
fluoride, hydrogen bromide, CH4, CH3Cl, H2, and heavy metals, as explained by Wallace
and Hobbs [36], but these other substances are not considered in this study. The process
of accumulation of gases in the atmosphere could bring ionization of the air, which is an
important key driver of possible electrical phenomena in the atmosphere and ionosphere,
altering the global electric circuit of Earth [2,38]. The chain of these phenomena has been
graphically resumed in Figure 2A. Another important factor to take into account is the
required time of such phenomena, which could be days or weeks, according to some previ-
ous studies on earthquakes (e.g., [39,40]). Additionally, the persistence in the atmosphere
of the investigated chemical compounds needs to be taken into account—it is 0.7 days for
DMS, some days for SO2, and about two months for CO [36].



Remote Sens. 2022, 14, 5001 5 of 47

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 49 
 

 

altering the global electric circuit of Earth [2,38]. The chain of these phenomena has been 
graphically resumed in Figure 2A. Another important factor to take into account is the 
required time of such phenomena, which could be days or weeks, according to some pre-
vious studies on earthquakes (e.g., [39,40]). Additionally, the persistence in the atmos-
phere of the investigated chemical compounds needs to be taken into account—it is 0.7 
days for DMS, some days for SO2, and about two months for CO [36]. 

 
Figure 2. Possible ways of bottom-up lithosphere–atmosphere–ionosphere effects in the contest of 
La Palma volcano. The drawing is just a sketch of the possible phenomena, and the dimensions are 
not in scale. Grey lines represent the conceptual interactions chain. Two main scenarios are illus-
trated: (A) the first hypothesis based on the temperature increase and corresponding demagnetiza-
tion due to the uplift of magma; (B) the second hypothesis based on the microfractures or rock re-
sistivity changes produced by the uplift of magma. 

Other bottom-up lithosphere–atmosphere–ionosphere effects based on electromag-
netic interactions could be possible, as we represented in the sketch of Figure 2B. For ex-
ample, the uplift of the magma could open several micro-cracks in the rocks that can create 
separation of the electrical charges and the following generation of Ultra-Low-Frequency 
(ULF) electromagnetic waves, as proposed by Molchanow and Hayakawa for earthquakes 
[41,42]. In the case of the volcano, small earthquakes are generated, but they are due to 
volcanic activity and not tectonic activity. In principle, the same ULF electromagnetic 
wave theory from microfractures on the rocks can still be considered. The ULF electro-
magnetic wave can be theoretically recorded both at the Earth’s surface with geomagnetic 
ground observatories (as reported by Hattori et al. [43,44] for Japanese earthquakes) or in 
the ionosphere by satellites (as reported by Ouyang et al. [45,46] before several earth-
quakes). Enomoto [47] proposed that variation of electric resistivity in the lithosphere 
could produce a ring current in the ionosphere for an induction system. His model for 
earthquakes is constructed in a subduction context, the one where the volcanos are gen-
erally localized, in particular on the forearc of the subduction slab. Therefore, this model 
can also be considered for a possible explanation of pre-volcano phenomena in litho-
sphere–atmosphere–ionosphere. Due to the “pure” electromagnetic interaction mecha-
nism of this second scenario, we do not expect a direct effect in the atmosphere, even if, 

Figure 2. Possible ways of bottom-up lithosphere–atmosphere–ionosphere effects in the contest of La
Palma volcano. The drawing is just a sketch of the possible phenomena, and the dimensions are not
in scale. Grey lines represent the conceptual interactions chain. Two main scenarios are illustrated:
(A) the first hypothesis based on the temperature increase and corresponding demagnetization due
to the uplift of magma; (B) the second hypothesis based on the microfractures or rock resistivity
changes produced by the uplift of magma.

Other bottom-up lithosphere–atmosphere–ionosphere effects based on electromagnetic
interactions could be possible, as we represented in the sketch of Figure 2B. For example,
the uplift of the magma could open several micro-cracks in the rocks that can create separa-
tion of the electrical charges and the following generation of Ultra-Low-Frequency (ULF)
electromagnetic waves, as proposed by Molchanow and Hayakawa for earthquakes [41,42].
In the case of the volcano, small earthquakes are generated, but they are due to volcanic
activity and not tectonic activity. In principle, the same ULF electromagnetic wave theory
from microfractures on the rocks can still be considered. The ULF electromagnetic wave
can be theoretically recorded both at the Earth’s surface with geomagnetic ground observa-
tories (as reported by Hattori et al. [43,44] for Japanese earthquakes) or in the ionosphere
by satellites (as reported by Ouyang et al. [45,46] before several earthquakes). Enomoto [47]
proposed that variation of electric resistivity in the lithosphere could produce a ring current
in the ionosphere for an induction system. His model for earthquakes is constructed in
a subduction context, the one where the volcanos are generally localized, in particular
on the forearc of the subduction slab. Therefore, this model can also be considered for a
possible explanation of pre-volcano phenomena in lithosphere–atmosphere–ionosphere.
Due to the “pure” electromagnetic interaction mechanism of this second scenario, we do
not expect a direct effect in the atmosphere, even if, in principle, the currents can facilitate
the accumulation of aerosol (that are easily polarized particles) in clouds.

Other possible bottom-up propagation ways could be based on acoustic gravity waves
as proposed, for example, by Hayakawa [48], but we do not consider them in this paper.

Finally, we would remark that the main two proposed scenarios in Figure 2 are not
exclusive, and they could exist at the same time or in different stages of preparation of the
eruption, for example, in function of the depth of the magma uplifting movements.

Finally, in this paper, multiparametric analysis of lithosphere, atmosphere, and iono-
sphere before the La Palma volcano eruption of 19 September 2021 is provided in order
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to extract anomalies in these three geo-layers, providing a brief description of data and
methods in Section 2 and the results in Section 3. To the authors’ knowledge, this is the first
time a comprehensive analysis has been provided for this volcano, and very few examples
exist in the literature about other volcano eruptions as the papers often investigated only
one or few parameters and not in a multi-layer approach. Our results are discussed in the
view of lithosphere–atmosphere–ionosphere bottom-up interactions in Section 4; even if
this study does not pretend to demonstrate the geo-layers interactions but only support
them by observations and empirical considerations, future studies are vital to address
better this point. We provided our conclusions in Section 5 and some Appendixes and
Supplementary Materials, with additional details of the investigations and validations of
the used datasets.

2. Materials and Methods
2.1. Earthquake Catalogue

In order to study the lithosphere and eventual variations in the crust, the earthquake
catalogue has been acquired and investigated. As the seismicity eventually produced by
volcanic activity is expected to be characterised by low magnitude seismic events, it is
essential to use a catalogue obtained from a dense and sensible seismic network, i.e., with
a low threshold of detectable seismicity. For this purpose, we selected the earthquake
catalogue provided by the Spanish National Institute of Geography, which is the most
complete for the Canarias Islands, to the knowledge of the authors. The data were firstly
investigated by the seismic analysis tool freely provided by ETH (Zurich, Switzerland)
ZMap [49], in particular to search for the completeness magnitude “Mc” of the catalogue
and its variations over the decades. To properly monitor the possible variations of seismic
trend, the Cumulative Benioff Strain “S” [50] was estimated, limited to the event with
magnitude M > Mc:

S(t) = ∑t
t0

√
10(1.5·M+4.8) = ∑N

i=1

√
Ei (1)

where “t” is time that starts from “t0”. The calculus can be performed by summing the
square root of the released energy “Ei” in Joule of the “N” earthquakes that occurred from
“t0” to “t”.

2.2. Atmospheric Data and Methodologies

The atmosphere was investigated with two types of observables: one is the geomag-
netic field, and the other is its composition. The two approaches rely on the different
possible main mechanisms that have been previously illustrated in Figure 2.

The geomagnetic field has been explored with the geomagnetic measurements sampled
at 1 min from Guimar (GUI) at Tenerife Island compared with Tamanrasset (TAM) in the
Algeria–Sahara Desert, a far observatory from the volcano. GUI is located at 28.321◦N,
16.441◦W, 868 m above sea level and TAM at 22.790◦N, 5.530◦E, 1373 m above sea level.
Both observatories are equipped with several instrumentations. Still, in this work, only the
fluxgate three components of the geomagnetic field in the NEC (North-East-Centre) frame
have been investigated.

To investigate the atmospheric composition and, in particular, possible alterations due
to volcano activity and gas emissions, the data from the climatological archive Modern-Era
Retrospective Analysis for Research and Applications, Version 2 (MERRA-2, [51]) released
by NASA and updated monthly were retrieved. The dataset has a spatial resolution
of 0.625◦ in longitude and 0.5◦ in latitude and a time resolution of one hour. For this
study, the value closer to the local midnight has been selected to reduce the possible
influence of day-time variation produced by solar irradiation on the atmosphere. In
particular, solar irradiation increases the Earth’s surface temperature, which can facilitate
some chemical reactions close to the ground, influencing the atmospheric composition,
especially close to the surface, with some of the quantities that we analysed (e.x., CO surface
concentration). This paper investigated sulphur dioxide, Dimethyl Sulfide (DMS), Aerosol



Remote Sens. 2022, 14, 5001 7 of 47

Optical Thickness (AOT), and carbon monoxide. Volcanoes normally emit such substances,
which can be a proxy of the underground activity of magma pressure and movements
before the eruptions.

The values of such parameters in the six months prior to “La Palma” volcano eruption
were investigated using the “MErra-2 ANalysis to search Seismic precursors” (MEANS)
algorithm [52]. For each parameter, the algorithm calculates the mean daily value closer to
the local midnight not to be influenced by solar irradiation inside a square box of 3◦ side
centred on the volcano. Then, it compares the value in the year with the eruption with
the historical mean and standard deviation of the same day of the other available years
from 1980 to 2020 (for example, 23 March 2021 is compared with the mean and standard
deviation of (23 March 1980, 23 March 1981, . . . , 23 March 2020). If one year presents one
or more values above the mean + 10 standard deviations, this is excluded, and the whole
time series is computed again. This is particularly important for volcano regions to exclude
other eruptions that could alter the estimation of the typical value.

In this paper, we also decided to plot the basic time series of the whole available years
from 1980 to the La Palma eruption in 2021. As most of the parameters clearly show a
seasonal modulation, the signals have been decomposed by the wavelet decomposition tool
of Matlab in several frequencies [53]. For this purpose, we decided to use 9 frequency bands
whose limits were selected by the same algorithm based on the spectral energy content in
the original signal (as decomposed by wavelet). The reconstructed signal has excluded the
frequency band containing a one-year period (i.e., the one with an automatically identified
period range from 248 days to 531 days). The detrended (i.e., reconstructed) signal has
been analysed as a time series and by the third and fourth statistical moments that estimate
the symmetricity and tallness of the distribution—Skewness and Kurtosis.

2.3. Ionospheric Data and Methodologies

The ionosphere has been investigated in terms of its plasma electron density and
the magnetic field’s observations from two different satellite missions: China Seismo
Electromagnetic Satellite (CSES) and the European Space Agency ESA Swarm three-identical
satellite constellation. CSES is a multi-payloads satellite mission primarily dedicated to
searching for possible pre- and co-seismic effects of earthquakes in the world [54]. For this
purpose, it is equipped with several instruments to detect possible particle bursts, variations
of electric and magnetic fields, and the plasma property and composition of the ionosphere.
Such a combination of instrumentations is not only precious for studying earthquakes and
other natural hazards like volcano eruptions but also for more general geophysical studies,
like elaborating a model of Earth’s magnetic field (Yang et al. [55]). The Swarm mission is
the “state of the art” for measuring the Earth’s magnetic field and its evolution [56]. The
mission has been in orbit for more than eight years, providing excellent results such as the
detection of oceanic currents [31], understanding of the geomagnetic field, and even its
variation in quasi-real time as an acceleration of movement of geomagnetic poles [57].

2.3.1. CSES Electron Density Data Processing

CSES data were first analysed by constructing a night-time and day-time electron
density (Ne) time series and secondly by checking the latitudinal profiles. The time series
was built by computing the daily median value of all the Ne samples acquired in a circled
area centred on the volcano. Only the tracks acquired during quiet geomagnetic conditions
determined with Dst and ap geomagnetic indexes were considered. The ap index is a
global 3-h index obtained from several geomagnetic observatories placed at different
latitudes and gives an indication of the status of the geomagnetic activity on Earth [58].
Dst index has been selected as it is obtained from 4 geomagnetic observatories close to the
geomagnetic equator, and it is representative of the geomagnetic activity in the equatorial
region where “La Palma” volcano is placed [59]. Dst has recently been proved to be a good
estimator of the ionosphere’s geomagnetic conditions; recent works reproduced the Dst
index from data of Swarm and CSES satellites (the same satellites used in this work) [60,61].
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In particular, we impose that |Dst| ≤ 20 nT and ap ≤ 10 nT for quiet conditions. If
no tracks are available in quiet geomagnetic conditions or for other reasons, the day is
skipped on the time series. Even if the samples are always acquired at the same local
time for the Sun-synchronous orbit of CSES, a seasonal trend is still present in the time
series. Consequently, we fitted a polynomial of 5 degrees for night-time and 7 degrees for
day-time and removed it to construct a final detrended time series. The polynomial grade
was empirically determined in previous studies based on the same CSES Ne time series,
for example, by Akhoondzadeh et al. [62]. On this detrended time series, the median and
interquartile range were calculated in order to define the anomalies as the values that
overpass the median plus 1.5 times the interquartile range. Further details of the CSES
Ne analyses are provided in Appendix A. Since LAIC models predict an enhancement of
electron density [2,63,64], we do not consider eventual negative anomalies, i.e., low electron
density values.

2.3.2. Total Electron Content Data Processing

In order to validate the CSES Ne data and further investigate the ionosphere status
above La Palma volcano, the Global Ionospheric Maps (GIM) map of the vertical Total
Electron Content (vTEC or simply TEC) has been retrieved. The Total Electron Content
is the vertical integral of the electron density Ne. It is measured from Global Navigation
Satellite System (GNSS) stations on the ground receiving two frequency signals from GNSS
satellites in geostationary orbits of one or more constellations (e.g., Global Position System,
GPS; Compass Baidu, Galileo) operated by several space agencies. As the “line of sight” of
the satellite is generally inclined with respect to the vertical (defining the zenithal angle
distance), the measured quantity is the slant–TEC. By a geometrical correction, the vertical
TEC was estimated. In this work, we download the pre-processed GIM-TEC maps that
some researchers like Tornatore et al. [65] compared with other techniques to obtain TEC
in a regional context, founding a general good correlation. Despite this, the absolute TEC
values were generally overestimated in GIM, especially in high solar activity. For the
purpose of this study, the data are used to construct TEC time series, which are irrelevant
to an eventual overestimation of TEC and to validate CSES Ne, verifying that the structures
are compatible. Therefore, this task is not affected by the TEC absolute value.

We retrieved the GIM TEC data from International GNSS Service (igns) from 2000 to
2021 from 23 March until 19 September (6 months for each year). In order to construct a
time series of the typical value of the year, it was fundamental to remove the solar cycle
modulation from the data. As the original data had a 5◦ longitude and 2.5◦ latitude space
resolution and 2 h of time resolution, we interpolate the TEC value above “La Palma”
volcano at 1:44 LT. The chosen local time is the hour of the night-time passages of CSES-01
at La Palma latitude; in this way, the data will be more reciprocally comparable. To spatially
interpolate the data, a two-dimensional cubic interpolation was performed, obtaining the
previous and following data after a linear interpolation was performed to estimate the TEC
at the selected local time.

The yearly mean on the values from 23 March to 19 September of TEC above La Palma
is shown in Figure 3. The modulation of TEC is evident from the 11 year solar cycle. A
sinusoidal fit has been performed, and its period of 11.6 years (2 w) is very close to the
theoretical period of 11 years. We note that in the maximum of 2000–2002, the TEC values
seem higher than in the maximum of 2013–2015, and better future implementation of this
method could include the Sunspot number or another indicator of the solar activity to fit
not only the modulation but also the variations of the intensity of each maximum (and
minimum). Indeed, for the present work, the fit can be more than sufficient, with adjusted-
R2 equal to 0.889. To obtain a time series that is detrended from the solar modulation,
the TEC data were divided for the sinusoidal fit “Sine” which estimated the following
normalized TEC “TECNORM”:

TECNORM(day, year) =
TEC(day, year)

Sine(year)
(2)
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Figure 3. Yearly mean TEC for the period from 2000 to 2021. The error bar is the standard deviation
of the values used to calculate the mean (i.e., the TEC from 23 March to 19 September of each
year). A sinusoidal fit has been performed and shown as a green curve with the fit parameter in the
embedded table.

The historical time series was calculated with the normalized TEC values in analogy
with the atmospheric data investigation. The TEC anomalies have also been defined as the
value of the 2021 TECNORM, which overpassed the two standard deviations of the historical
time series based on the years 2000 to 2020.

2.3.3. Swarm Magnetic Data Processing

Magnetic data of ESA Swarm mission were investigated using the MAgnetic Swarm
anomaly detection by Spline analysis (MASS) algorithm defined and used in several papers
searching for electromagnetic pre-earthquakes signals [4,5,40,66–68]. Basically, MASS
computes a first-order approximation of the derivative of the magnetic signal (X-North,
Y-East, Z-Centre, or F-Scalar) and subtracts a cubic spline fitted on the same derivative
data [66]. What remains is called the residual signal or simply the residual, and it is
analysed by a moving window (of 3◦ latitude in this work) that moves along the track with
a step of 1/5 of window length. If at least one root mean square rms is greater than “kt”
times, the Root Mean Square RMS of the whole track and geomagnetic conditions are quiet
(|Dst| ≤ 20 nT and ap ≤ 10 nT), the centre of the window is inside the research area, and
the track is defined as anomalous. “kt” is the threshold to define an anomaly, i.e., how
many time the residual in the window must be greater than the one in the whole track. For
a normal distribution of residual, it acts on the number of standard deviations.

The cumulative number of the anomalous tracks in the function of the time is rep-
resented to search for possible variation with respect to the mean trend that is expected
to be almost linear with a positive but not null slope, as other phenomena apart from the
one under investigation can also generate magnetic anomalies. On the other hand, an
increase with respect to such a trend could be, in principle, due to the phenomenon under
investigation (in this case, La Palma volcano eruption).

2.3.4. Monitor the Solar Activity

In order to properly discriminate the ionospheric anomalies due to external distur-
bances like solar activity, we provided two representative quantities of the solar conditions
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in Figure 4: the solar wind speed and the Interplanetary Magnetic Field (IMF). We retrieved
these data from two satellite missions in Lagrangian point L1, i.e., about 1.5 million km
from Earth in the line connecting Earth and Sun. Such a place is a special point for the grav-
itational field (i.e., the Earth and Sun gravitational fields are equipotential at this point) [69]
and overall is a point place in the magnetosphere that can record the increase of solar
activity with about one hour before the eventual impact on the Earth ionospheric environ-
ment. Advanced Composition Explorer (ACE [70]) and Deep Space Climate ObserVatoRy
(DSCOVR [71]) are two satellites dedicated to monitoring solar activity. The first one was
launched in 1997, while the second one was launched in 2015 to replace ACE in case of
failures of payloads that are working well beyond the planned mission time of 5 years.
Both satellites are equipped with fluxgates magnetometers and electrical cap instruments to
measure the plasma properties of the solar wind, including the speed we reported here. In
fact, when the solar wind speed and the IMF increase, they indicate a stronger solar activity
with a possible perturbation of the ionospheric environment. Therefore, any anomalies
identified in the hours following such high solar activity are likely to be due to the impact
of the solar wind on the Earth’s magnetic field. In the figures, two thresholds are estimated
as mean ± 2 standard deviations of the same time series, and the solar activity can be
considered higher above the upper threshold.
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3. Results
3.1. Seismicity Investigation

In this section, the seismicity has been investigated from the earthquake catalogue
provided by the Spanish National Institute of Geography extracted in the area around the
Canarias Islands volcanic area, limited by 20◦W ≤ longitude ≤ 12◦W and 26◦N ≤ latitude
≤ S31◦N from 1980 until 19 September 2021. The selected period for the seismicity is the
same as the one available for the atmospheric data. In a period that spans more than four
decades, the seismic network has been significantly improved in terms of the number
of seismic stations and the quality of the same sensors. Such improvements imply that,
nowadays, the network can detect smaller seismicity, permitting better monitoring. In fact,
the seismicity due to volcanic activity and not tectonic activity is generally associated with
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lower magnitude events. Such fractures in the lithosphere can be induced by the uplift
of the magma prior to an eruption and have been proved to be an effective method for
predicting volcanic eruptions [72]. We checked the magnitude of completeness (Mc) by the
free software ZMap [49] using the statistical criteria Mc90, i.e., the minimum magnitude
determined with a 90% probability that all the events with magnitude equal to or greater
than Mc have been properly detected. Figure 5 represents the variation of Mc with time.
Some gaps are due to low or null seismicity detected in the investigated area, as we required
a minimum of 20 seismic events to estimate Mc reasonably. In particular, we can confirm
that Mc improved (become lower) in recent years: between 1980 and 1992 it oscillated
around 2.7 (best estimation always lower than 3.0); from 1995 to 2001 it seems a trend
comprised between 2.2 and 2.5; from 2003 to 2011 it was comprised between 1.4 and
2.0. From 2011 until the present, the Mc shows more oscillation of its value following
particularly strong events, but generally is lower than 2.0 and often around 1.5. The Mc
not only can change in function of the time, but also for geographical reasons. In fact,
for example, sea and oceanic do not permit the installation of seismic stations, typically
reducing the capability of detecting the smaller off-shore seismicity. Despite this, as in
this work, we will investigate an emersed volcano, and we do not expect this aspect to
affect our results significantly. Some other variations of the completeness magnitude could
also be due to natural variations of the seismicity. In fact, after a larger magnitude event,
Mc could increase as the seismic network could not distinguish smaller events inside the
perturbations produced by the larger ones. Modern machine learning techniques partially
addressed this problem, but they are out of the scope of this paper [73]. Furthermore, a
variation of the depth of the seismicity can also affect the Mc, as it tends to increase among
the depth. These could explain some smoothed variation in a short time of a few years like
the ones from 1996 to 2000, probably due only to variation of depth of seismicity.
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Figure 5. The magnitude of completeness (Mc) in the function of the time.

The seismicity recorded one year before 19 September 2021 (excluded) in a box around
the volcano island (17.1◦E ≤ longitude 18.1◦E and 28.4◦N ≤ latitude 28.9◦N) was extracted,
and their map and time series are represented in Figure 6. Such events are used in the
following to compute the Cumulative Benioff Strain.

To better investigate the seismicity of the area, we plotted the earthquake hypocentres
in the three-dimensional graph in Figure 7. The colour represents the time of occurrence
of the recorded seismic events. The magnitude of these events is comprised in the range
between −0.5 and 3.5, as also shown in the magnitude distribution in Figure 7B. The
magnitude histogram distribution confirms the previous analysis shown in Figure 5, which
estimated a completeness magnitude of about 1.5 at the end of the time series that coincides
with the year analysed in Figures 6 and 7.
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Figure 6. Earthquakes map and time series with magnitude and depth of the seismicity
(M ≥Mc) recorded around La Palma island from one year before “La Palma” volcano eruption
of 19 September 2021.
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Figure 7. (A) Earthquakes 3D distribution from 19 September 2020 until 18 September 2021 (the day
before the eruption). The colour represents the time the seismic event occurred. (B) Distribution
of magnitude of the represented earthquakes. (C) Graph of the cumulative Benioff Strain of the
earthquake that occurred only in La Palma Island. Earthquakes are represented as circles. The
indication of a specific date highlights particular increases in seismicity.

In some cases, it is possible to note that at a certain time, the seismicity is recorded
mainly at a particular depth. This can affect and modulate the Mc trends depicted in
Figure 5. In fact, Mc is intrinsically higher for the deeper seismicity, as the instrumentation
is installed on the surface. Furthermore, it is outstanding to consider that the seismicity
under La Palma volcano migrated from deeper locations of about 40 km 9 months before
the eruption to 30 km, from 30 km to 20 km 7.5 months before and finally from 20 km
until the wide under-surface seismicity observed from 10 days before the eruption. In
addition, we depicted two gaps in the column of seismicity under La Palma volcano, a
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deeper gap located between 13 km and 20 km depth and a shallower gap at less than
5 km depth. Such gaps could be two magmatic chambers under the volcano. In fact,
inside a magmatic chamber, it is impossible that an earthquake could happen as the rock
is melted. The shallow magmatic chamber is also known in the literature, for example,
by De Luca et al. [27]. We can infer that firstly the magma migrated from the mantle in a
deeper magmatic chamber at ~15 km depth 9–7 months before the eruption, and then in
the shallower magmatic chamber from about ten days before the volcanic eruption. The
presence of a deep magmatic chamber was also documented by Klügel et al. [74].

For comparison, it is possible to see that some seismicity has been recorded under the
other volcanos during this year. Still, there is not a temporal order related to the depth like
for “La Palma” volcano, confirming that the seismicity recorded under La Palma is very
likely a proxy of the magma uplift.

The Cumulative Benioff strain of the events already selected in Figure 6 with
M ≥ 1.5 (i.e., greater or equal to the completeness magnitude) in La Palma Island
(18.1◦W ≤ longitude ≤ 17.5◦W and 28.4◦N ≤ latitude ≤ 28.9◦N) have been calculated
using the Equation (1) and finally plotted in Figure 7C.

3.2. Atmospheric Investigation

In this section, we analysed the ground geomagnetic field and four atmospheric
parameters (SO2, DMS, Aerosol, and CO) in the six months before the volcanic eruption,
and later we overlooked the whole time series from 1980 (the start of availability of the
select dataset) until the event.

3.2.1. Ground Geomagnetic Field

In this section, we present the investigation of ground geomagnetic field data retrieved
from an observatory station relatively close to the volcano, Guimar (GUI), at Tenerife Island
compared with the far observatory of Tamanrasset (TAM). The goal is to search for possible
variations of the magnetic field induced by the volcano that could likely have reached the
close geomagnetic observatory of GUI, as its distance is about 140 km inside the same
volcano system group of Las Canarias. The comparison observatory was more than 2400 km
away, so it is unlikely to be influenced by the volcano. Instead, a common signal to both the
observatories located in the same North hemisphere and quite comparable geomagnetic
latitude (GUI: 33.17◦N TAM: 24.37◦N) can be considered a global or external disturbance.

The original data were cleaned from the non-available samples (i.e., the samples equal
to −9999), and the data were interpolated at 1 min sampling by a Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP, [75]) to avoid the data gap that is fundamental for the
data filtering, requiring uniformly distributed data.

The available band is from a period of 2 min for the Nyquist theorem [76]; it has been
divided into five frequency bands by applying five digital filters. They are selected as a
pass-high with a period of 1 h, a pass-band between 1 h and 6 h periods, a pass-band filter
between 6 h and 1 day periods, a pass-band filter between 1 day and 1 week periods, and a
pass-low filter at 1 week period. The selected period considers some natural phenomena
like the tidal modulation over a period of 6 h or the SQ current, a daily (24 h) typical current
that influences the magnetic field [77].

Figures 8 and 9, and Figure S1 (in Supplementary Materials File S1) report the geomag-
netic data filtered in the five frequency bands from GUI (blue curves) and TAM (orange
curves) observatories for X (North), Y (East), and Z (Centre) geomagnetic components,
respectively. It is possible to note that the two observatories are generally in agreement,
and this is their response to the global perturbation. In particular, the X-North component
shows very similar behaviour in all the investigated bands. This could be due to the
main orientation of the geomagnetic field that horizontally is very close to this component,
so a small local perturbation cannot significantly affect the X component but could be
visible in the Y, which has an absolute value of about ten times lower. In fact, Y and Z
(Figures 8 and 9) show some slight differences between the two observatories. When the
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TAM observatory shows some higher signal, this could also be due to local perturbations
like the Sahara dust storm, but it is out of the scope of this work. With red circles and
arrows, some differences when GUI shows some different (more) signal than TAM have
been pointed out. Such signals are likely to be local in the Canarias archipelago, and they
could be due to the preparation of “La Palma” volcano eruption on 19 September 2021.
Furthermore, the Z, vertical component at GUI observatory, shows a trend of decreasing its
intensity as shown in Figure 9 by the superposed linear fit (dashed blue line) and its slope
equal to −0.067 nT/day. On the other observatory of TAM, the same linear fit show a slight
increase of 0.033 nT/day vertical magnetic field. Such a local decrease of the magnetic field
in the vertical component could be produced by the demagnetization of the rocks induced
by the warming caused by the uplift of the magma in the analogy of what Kanda et al. [32]
found for the Kuchi-erabu-jima volcano in Japan.
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In order to validate by an objective criterium the identified anomalies in GUI obser-
vatory by visual inspection, a correlation coefficient has been computed inside a moving
window. The window length has been selected according to the band of the signal as
two times longer than the higher cut-off period or 35 days for a more extended period
(so they are: 2 h, 12 h, 2 days, 14 days, and 35 days). The window has been shifted of
1/5 of its length at any movement to be able to retrieve any possible anomalous signal.
Only the window with more than 90% of good original samples has been considered.
Furthermore, the correlation coefficient has been computed only for the samples acquired
in quiet geomagnetic conditions (|Dst| ≤ 20 nT and ap ≤ 10 nT). If the window has less
than 10 samples obtained in quiet geomagnetic conditions, it is rejected. The estimated
correlation coefficient in function of the time is represented in Figure S2 (in Supplementary
Materials File S1). When it is equal to 1, it indicates that the two stations observe a per-
fect identical trend inside the window; when zero, it means the signals are uncorrelated,
and when it is −1, it means they are anti-correlated (so an opposite trend). As we want
to search for differences in the two observatories, we further selected the uncorrelated
windows defined with |r| < 3, and their cumulation over time is shown in Figure S3 (in



Remote Sens. 2022, 14, 5001 15 of 47

Supplementary Materials File S1). This approach is similar to what Marchetti et al. [78]
applied to two geomagnetic observatories in Italy to study the preparation phase of the
Central Italy seismic sequence 2016–2017. Here the approach has been improved, including
several bands to investigate the signal from the geomagnetic station.
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From the cumulative graphs shown in Figure S3, the most interesting plots are the
ones with a lower period of less than 1 h for X and Y, which shows a similar acceleration in
the central period between –120 days to –55 days. In addition, the Y signal in the period
band between 1 day and 1 week also shows anomalies between –150 days and –70 days.
The other trends are almost linear, or without anomalies, so they are not interesting from
this point of view.

3.2.2. Atmospheric Composition Investigation (SO2, DMS, Aerosol and CO)

Figure 10 represents the time series of SO2 from 23 March until 19 September (included).
The red dashed line represents its value in 2021, i.e., the year of the eruption, while the
colour bands indicate 1.0, 1.5, and 2.0 standard deviations of typical historical values (blue
line). It is possible to note that only two days (circled by red oval) exceed the two standard
deviations: 15 and 16 August 2021, which are a little more than one month before the
eruption and are better investigated in the following.

Figure 11 shows the maps of distributions of the two most anomalous days (i.e.,
15 and 16 August 2021) in the SO2 time series. From the map, it is possible to depict that
the maximum concentration of SO2 not only coincides with La Palma island, but also with
the same pixel where Cumbre Vieja vent is located (i.e., the Southern-West side of the
island La Palma), even if the resolution of the atmospheric data is too low to confirm that
the emission was from this volcano vent. On the other side, on 16 August 2021, a small
presence of a western plume of SO2 was likely emitted by the volcano. Despite this, the
Atlantic Ocean between Canarias islands and the North African coast experienced a wide
cloud of SO2 that could have partially influenced the time series. Contrarily, the maximum
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SO2 value of 15 August 2021 was about double that of 16 August 2021. This could mean
that the Cumbre Vieja volcano’s emission was much more intense, supporting its possible
volcanic source.
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at 23 UT. The years 1982 and 1991 have been automatically excluded from the analysis due to the
presence of outliers.
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Figure 11. Distribution maps of the SO2 most anomalous days around La Palma volcano (represented
by a white star). The values are extracted at 23 UT.

The time series of DMS is illustrated in Figure 12, and it shows a large number of
anomalous days grouped in three periods circled with red ovals: (1) from 17 to 23 May 2021,
(2) from 8 to 12 June 2021, and (3) from 15 to 19 August 2021. On all other days, the curve
is inside two standard deviations, so we consider it a normal oscillation of the value for
this area. It is a pity to note that the distribution maps of some of these anomalous days
in Figure 13 seem to exclude that DMS was emitted straight from the volcano. In fact, all
the maps show higher concentrations in the sea, suggesting more of a direct emission from
the oceanic sea water as proposed, for example, by Andrae and Raemdonck [79]. Despite
this, we cannot exclude some indirect processes, like an increase in the temperature of the
ocean floor due to the uplift of magma that could increase the algae in the seawater that are
associated with high concentrations of dimethyl sulphide [34].
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Figure 13. Distribution maps of the DMS for one of each of the three groups of anomalous days
depicted by the time series around La Palma volcano (represented by a white star). The values are
extracted at 23 UT.

Aerosol Optical Thickness (AOT) time series investigation in the six months before
“La Palma” volcano eruption is provided in Figure 14. Several days show a significant
anomalous positive increase of aerosol above La Palma volcano, but it is important to check
the parameter more deeply, as it could be affected by other factors like sandstorms from
the Sahara desert [80]. For this purpose, we have produced the map of all anomalous days,
and in Figure 15, we reported some of them. In particular, Figure 15C (9 June 2021) and
Figure 15F (15 August 2021) show a very high aerosol concentration from the Southeast,
i.e., close to the Sahara Desert, and they are likely due to sandstorms. On the other hand,
Figure 15A (25 March 2021) and Figure 15B (18 May 2021) show high concentrations in the
Canarias volcano caldera, even if the La Palma volcano does not seem to observe particu-
larly high concentrations. The aerosol distribution reported in Figure 15D,E (12 July 2021
at 13 and 23 UT) suggest that around the volcano, the aerosol was lower, and it is difficult
to think that it is produced by the volcanic activity, even if it cannot be excluded some
indirect phenomena.

Figure 16 shows the carbon monoxide time series in the six months preceding “La
Palma” volcano eruption. CO presents several anomalous values, and maps of some of
them are represented in Figure 17. It is also interesting to note that from the end of July,
the CO trend seems to increase with respect to the typical historical value, as we marked
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with the black dot bold arrow in Figure 16. Investigating the maps, it is possible to exclude
a volcano source for the 19 April and 2 August anomalies, while the other days could be
related to the volcanic activity but still not directly emitted from the volcano. In particular,
the values of 25 March and 14 September 2021 are spatially closer to the volcano and
Canarias caldera.
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Figure 15. Distribution maps of the aerosol for some representative days of the various groups
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(C) 9 June 2021, 23 UT, (D) 12 July 2021, 13 UT, (E) 12 July 2021, 23 UT, and (F) 15 August 2021,
23 UT.
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Figure 17. Distribution maps of the CO for some representative days of the various groups of
anomalies depicted by the time series. The values are extracted at 23 UT.

On the day of the eruption, only SO2, CO, and aerosol presented particularly high
values, as shown in Figure 18 and Figure S4 (in Supplementary Materials File S1), while
DMS showed normal values above la Palma. In Figure 18A, we identified the start of the
emission of SO2 around 9 UT, even if in the hours before there was an almost-continuous
emission but with a lower intensity. The start of emission of carbon monoxide seems
later at about 11 UT, as shown in Figure 18C. Both the parameters reached the maximum
concentrations at 17 UT, as depicted in Figure 18B,D. It is possible to note that the maximum
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value is about ten times higher than previous maps, i.e., the typical value. This high
concentration is very likely due to the volcano’s eruption, and we expect it to be much
more intense than possible pre-eruption emissions.
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Figure 18. Distribution maps of SO2 and CO on the day of the eruption: 19 September 2021.

Figure 19 represents the daily mean value of SO2, dimethyl sulphide (DMS), aerosol,
and CO inside a 3 degrees side square box centred on the volcano. A linear fit has been
computed to estimate an eventual trend of “global warming”, although the obtained slopes
are almost null for all parameters. This is probably because the selected parameters are not
substantially affected by this phenomenon, like the temperature or the greenhouse gases
such as methane and carbon dioxide, which instead show such a trend, as we found in
previous works [52,81–83].

SO2 showed a very high peak in 1991, and the aerosol baseline is higher in the same
period, but without such a high peak. We dedicated the specific paragraph 4.1 of the
discussion to investigating the source of this signal. All the parameters show modulation of
their values for a period of one year, that is, the seasonal trend. We removed this trend by a
wavelet decomposition of the signal, reconstructed the decomposed component without
such modulation, and analysed the final signal in Figures 20 and S5–S7 (in Supplementary
Materials File S1).
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Figure 20. CO long time series investigation, after removing seasonal trend, from 1980 until La Palma
2021 volcano eruption.

In particular, Figure 20 and Figures S5–S7 (in Supplementary Materials File S1)
represent the detrended signals of SO2, DMS, AOT, and CO from 1 January 1980 un-
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til 19 September 2021. We reported two thresholds as two red lines, calculated on the same
time series representing the median plus or minus 1.5 times the interquartile range. In
principle, the value outside such thresholds could be considered anomalous, but this is
true only for a normal distribution. We have calculated the Skewness and Kurtosis (i.e., the
third and fourth moments of the distribution) of such time series using a moving window
of 100 days, i.e., 100 samples. It is possible to note that, in particular, the Skewness is often
greater than 0, so the distributions are usually not Gaussian. Despite this, some values
clearly presented high anomalous values, both in terms of their symmetry (Skewness) and
the tailedness (Kurtosis) of their sample distributions. For such abnormal days, we reported
a tip with an indication of the day and value for further discussion. In the case of CO, it
is outstanding to note that there was no particular anomaly before 2010 (i.e., for about
30 years), and in the last 11 years, there have been several anomalous values. A specific
discussion is provided in Section 4.3.

3.3. Ionospheric Investigation

Electron density of CSES has been monitored in the volcanic area of the Canarias
Islands system, considering a circle centred on La Palma volcano with a radius of 420 km.
Considering that the ionosphere status is very different at night- and day-time for the
influence of solar irradiation that induced, for example, the classic fountain effect around
the magnetic equator [84], we separated their analyses. Figure 21 reports the night-time
detrended values measured by CSES at about 2 AM, and Figure 22 reports those of day-
time, acquired at about 2 PM. For each day in quiet geomagnetic time (|Dst| ≤ 20 nT and
ap ≤ 10 nT), the median of the Ne samples in the circular area is computed and represented
after detrending, as explained in Appendix A. The figures report the indications of the
anomalous positive days with the indication of how many days before the La Palma
volcano eruption were recorded and the amount of anomaly. We noted that both analyses
identified an increase in electron density about four months before the eruption (−128 days
for day-time and −121 days for night-time).
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Figure 21. Time series of median daily values of CSES-01 Ne measured in night-time inside the
circled area of 420 km radius centred on La Palma volcano. A detrend of the time series has been
applied, as explained in Appendix A. Time series median plus or minus 1.5 times the interquartile
range are overplotted as thresholds to define the anomalous days in terms of night-time Ne.
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Considering that the CSES satellite every five days passes in exactly the same orbit, 
here we analysed the orbit more closely to La Palma volcano for night-time measurements 

Figure 22. Time series of median daily values of CSES-01 Ne measured in day-time inside circled
area of 420 km radius centred on La Palma volcano. A detrend of the time series has been applied,
as explained in Appendix A. Time series median plus or minus 1.5 times the interquartile range are
overplotted as thresholds to define the anomalous days in terms of day-time Ne.

Considering that the CSES satellite every five days passes in exactly the same orbit,
here we analysed the orbit more closely to La Palma volcano for night-time measurements
that are less affected by variation of solar activity. All such Ne latitudinal profiles are
superposed in Figure 23. Every 1◦ latitude, the interquartile and eventual outliers were
computed and denoted by red crosses. It is evident that two passes show a very high value
of night-time electron density just southward of the La Palma volcano latitude (denoted by a
vertical black line). They were acquired on 22 July 2021 and 1 August 2021. On 22 July 2021,
the Auroral Electrojet (AE) index showed a very high geomagnetic activity at poles with a
value that even overpassed 1000 nT. Despite this, the passage of CSES-01 above La Palma
volcano was before the AE values reached such a high value, even if not completely calm.
Despite this, from the comparison provided in Appendix C with the TEC map of the same
day, the anomaly depicted by CSES-01 is confirmed with TEC from GNSS stations, but
it seems to be a global phenomenon. Consequently, it is less probable that the source of
the anomaly was the volcano. A completely different scenario was for 1 August 2021; in
fact, the AE index presented low values for the whole day. Furthermore, the TEC map
shown in Appendix C of the following day identifies a local anomaly above the region of
La Palma volcano; this provides more chances that the Ne increase depicted by CSES-01 on
1 August was a local phenomenon that may be linked to the preparation of the volcano
eruption. It is noteworthy that the Swarm satellite on 26 July and 2 August 2021 detected
some magnetic anomalies, as reported in Supplementary Materials File S2. This further
confirms the reliability of CSES-01 data and underlines the ionosphere’s perturbed status
in such time. Outliers close to La Palma volcano latitude were also observed on 2 July 2021.
Even if less intense than the previous track, the latitude of the peak is the closest to the
volcano among all the anomalous tracks, so we consider it a strong indication of possible
relation with the volcano activity. Another peak was recorded on 10 September 2021, but
its distance (more than 10◦) seems quite unrealistic to be due to the pre-eruption volcano
processes. The same is for 26 August 2021, which showed a high anomalous value at 45◦

North, which is too far and probably due to some auroral activity, even if geomagnetic
conditions were quiet.
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Figure 23. (A) Ne latitudinal profiles measured by CSES-01 on the same orbit shown in (B) revisited
every 5 days. Only the tracks acquired during quiet geomagnetic conditions (|Dst| ≤ 20 nT and
ap ≤ 10 nT) are plotted. The interquartile range is a box, extreme values are dotted grey, and outliers
are plotted as red crosses and calculated every 1◦ latitude.

Appendix C compares the CSES-01 Ne with TEC data for the tracks that show some
outliers around the La Palma volcano in Figure 23. The first key point is that the CSES-01
Ne ionospheric structures are in agreement with the one depicted by TEC obtained from
the GNSS ground station. This confirms the scientific reliability and good quality of CSES-
01 Ne data. In Figure 24, we provided an analysis based only on TEC data, processed
and normalized, as explained in Section 2.3.2. In particular, the normalized TEC from
23 March 2021 until 19 September 2021 was compared with historical values, searching if
it overpasses the two standard deviations threshold. The disturbed days (|Dst| > 20 nT
and/or ap > 10 nT) were depicted by transparent red boxes, and the geomagnetic indexes
time series are also reported in panel B. The geomagnetic index trend and disturbed
times are in agreement with the high solar activity identified in Figure 4. Finally, the
anomalous values occurred during 21–26 July 2021, 27 August 2021 (even if before and
after geomagnetic conditions were perturbed), and 12 and 15 September, i.e., a few days
before the volcano eruption. These days coincide with the CO anomalies and could be
another indication of the alterations of the geo-layers in preparation for the eruption, even
if future studies are necessary to demonstrate the bottom-up propagation effects proposed
here as a possible reading of the identified anomalies.

Swarm magnetic data were systematically analysed considering a circular area contain-
ing the whole volcanic area of the Canarias Islands with a radius of 420 km. Some details
of the data processing are provided in Appendix B. The cumulative number of anomalous
tracks in the function of time is shown in Figure 25. In Supplementary Materials File S2, all
the tracks that present one or more anomalies are shown. All three geomagnetic field com-
ponents show some increase of anomalies (see Figure 25), i.e., an acceleration of the trend at
about three months before the eruption (−90 days). Despite this, the Y-East component is
more evident; in fact, no other similar behaviours are depicted in such a period as the rest of
the trend is quite linear, as also pointed out by the very close to 1 R2 coefficient of determina-
tion. For example, such a characteristic is confirmed by looking at the single-track residuals
in Figure 26. In fact, the peak–peak maximum perturbation of the Y-East component is
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about 4 nT/s while the X-North component is about 1.3 nT/s and the Z-Centre component
is about 2 nT/s. The four scalar magnetic field anomalous tracks of Swarm Bravo 80 days
before the eruption (i.e., 1 July 2021) are due to an issue on the mission pointed out by ESA
in the operational mission news (https://earth.esa.int/eogateway/news/swarm-bravo-
scalar-magnetic-field-data-unavailable-from-1-to-4-july-2021, accessed on 26 July 2022) of
the mission. Therefore, they need to be disregarded for this study as they are not due to a
geophysical phenomenon but due to post-processing of the satellite data.
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Figure 24. (A) Normalized TEC time series in the year of “La Palma” volcano eruption (2021)
compared with mean and standard deviation computed on historical values from 2000 to 2020. The
geomagnetically disturbed time has been marked with transparent red bars and has been defined on
Dst and ap, whose trend is shown in the lower panel (B).
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Figure 25. The cumulative number of Swarm magnetic anomalies was extracted with a threshold
of kt = 2.5 within a radius of 380 km from the volcano. Subpanels (A–C) represent the analysis
of X-North, Y-East, and Z-Centre (vertical) components of the geomagnetic field. The analysis of
the total intensity of the geomagnetic field is shown in (D), even if only five tracks are extracted
as anomalous.
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a yellow circle. The brown line is the satellite orbit projection over the ground map provided in (E). 
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mosphere. Still, there are no reports of eruptions or emissions in this area for that year. To 
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tribution maps of SO2 in Figure 27. Here we reported only six representative days, but in 
online Supplementary Materials, it is possible to reproduce an animated gif with all the 
days from 1st June until 31 July 1991. We clearly immediately noted that the whole equa-
torial region is affected by the SO2 plume covering the entire Earth’s circumference at the 
equator. Backtracking the origin of such a large emission of SO2 in the atmosphere, we 
found that it was due to a vast and violent explosion one month prior of the Pinatubo 
volcano. In fact, on 11 June 1991, the distribution of SO2 can be considered “standard” 
with a maximum value of about 1.4 10−4 kg/m2 (as seen from the maximum of the colour 
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and human sources. On the day after, i.e., 12 June 1991, the maximum value increased by 
about one order of magnitude, reaching 10−3 kg/m2. This is clearly above the Pinatubo vol-
cano, which had an eruption estimated of Volcano Explosive Index VEI = 6 in June 1991 
[85,86]. In the following weeks, the SO2 plume was transported by the winds and slowly 
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animated gif in Supplementary Materials. Our findings are in agreement with the global 
effects induced by the Pinatubo 1991 explosion reported by Bluth et al. [87]. 

Figure 26. Swarm Bravo track 25 with magnetic anomaly that was recorded on 18 June 2021 above La
Palma volcano at 18:50:29 UT (17:37:02 LT). Geomagnetic indices were Dst = −10 nT and ap = 5 nT.
Subpanels (A–C) represent the residuals of X-North, Y-East, and Z-Centre (vertical) components of
the geomagnetic field. The residual of the total intensity of the geomagnetic field is shown in (D),
The research area with a radius of 380 km centred on the volcano (the green star) is represented by a
yellow circle. The brown line is the satellite orbit projection over the ground map provided in (E).

4. Discussion
4.1. Source of the High Amount of SO2 Detected in 1991

It is surprising to note that in 1991 the value of SO2 showed a clear peak more intense
than all the other 40 years, as is visible in Figure 19. The first interpretation of this behaviour
would be an emission from La Palma or other Canarias-volcano systems in the atmosphere.
Still, there are no reports of eruptions or emissions in this area for that year. To search for
the source of this particularly high peak of SO2, we plotted the worldwide distribution
maps of SO2 in Figure 27. Here we reported only six representative days, but in online
Supplementary Materials, it is possible to reproduce an animated gif with all the days
from 1st June until 31 July 1991. We clearly immediately noted that the whole equatorial
region is affected by the SO2 plume covering the entire Earth’s circumference at the equator.
Backtracking the origin of such a large emission of SO2 in the atmosphere, we found that it
was due to a vast and violent explosion one month prior of the Pinatubo volcano. In fact, on
11 June 1991, the distribution of SO2 can be considered “standard” with a maximum value
of about 1.4 10−4 kg/m2 (as seen from the maximum of the colour bar). The distribution
is also above several regions of the world, probably due to natural and human sources.
On the day after, i.e., 12 June 1991, the maximum value increased by about one order of
magnitude, reaching 10−3 kg/m2. This is clearly above the Pinatubo volcano, which had
an eruption estimated of Volcano Explosive Index VEI = 6 in June 1991 [85,86]. In the
following weeks, the SO2 plume was transported by the winds and slowly diluted in all
the equatorial regions, as visible from the picture in Figure 27 and in the animated gif in
Supplementary Materials. Our findings are in agreement with the global effects induced by
the Pinatubo 1991 explosion reported by Bluth et al. [87].
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regions with lower concentrations but larger than standard distribution, and around 12 July 1991 it 
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alies are related to the La Palma volcanic activity, we excluded the anomalies in this sec-
tion that are unlikely to be related to such an event. However, we still kept the one with a 
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Figure 27. World SO2 map distributions for 6 selected days of June and July 1991 at 23 UT. For
11 July 1991, the distribution was a typical one, while from 12 June 1991 the Pinatubo volcano emitted
a large amount of SO2 into the atmosphere, and the maximum concentration in these analyses was
found on 17 June 1991. In the following weeks, the large SO2 plume was distributed in all equatorial
regions with lower concentrations but larger than standard distribution, and around 12 July 1991 it
reached the La Palma location, recording the highest ever value measured from 1980 to 2021 for this
area. An animated gif with the daily evolution of SO2 map distributions in June and July is available
in the online Supplementary Materials.

4.2. Lithosphere, Atmosphere, and Ionosphere Bottom-Up Interactions in the Six Months Preceding
the 19 September 2021 La Palma Volcano Eruption

In the following Figure 28, we provided a common view of the identified anomalies in
the lithosphere, atmosphere, and ionosphere during the six months before the eruption of
“La Palma” volcano on 19 September 2021. Considering that not all the identified anomalies
are related to the La Palma volcanic activity, we excluded the anomalies in this section that
are unlikely to be related to such an event. However, we still kept the one with a doubt
source. For this purpose, we resumed all the identified anomalous days in Table 1, also
providing the amount of exceedance of the threshold in terms of sigma and a comment for
each group of anomalies based mainly on the visual investigation of the corresponding
parameter maps.
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Figure 28. Cumulative trends in the lithosphere, atmosphere, and ionosphere of the anomalies or 
events. The lithosphere layer is represented by the seismic events (cross) and their cumulative Ben-
ioff strain. The atmosphere is represented by the cumulative amount in terms of sigmas of the 
ground magnetic uncorrelated windows (one band for each component) and the confirmed SO2, 
DMS, AOT, and CO anomalies. The ionosphere shows the cumulative number of anomalies identi-
fied by CSES (Ne), Swarm (Y-East magnetic field component), and TEC. The ionospheric trend 
started at about −130 days because no anomalies had been identified before. 

Figure 28. Cumulative trends in the lithosphere, atmosphere, and ionosphere of the anomalies or
events. The lithosphere layer is represented by the seismic events (cross) and their cumulative Benioff
strain. The atmosphere is represented by the cumulative amount in terms of sigmas of the ground
magnetic uncorrelated windows (one band for each component) and the confirmed SO2, DMS, AOT,
and CO anomalies. The ionosphere shows the cumulative number of anomalies identified by CSES
(Ne), Swarm (Y-East magnetic field component), and TEC. The ionospheric trend started at about
−130 days because no anomalies had been identified before.

Table 1. List of the anomalous atmospheric days. For each day, the evaluation of the amount of
exceedance of atmospheric parameters in terms of standard deviations is provided. A comment
based on the map of the specific day or group of days is also inserted.

Parameter Anomalous Day [2021] Amount of the Anomaly 1 Visual Check of the Anomaly

SO2
15 August 50.00% They seem emitted by the volcano (anomaly

clearly above volcano)16 August 120.55%

DMS

17 May 79.76%

Not emitted by the volcano.
It could be a secondary effect.

18 May 20.81%
19 May 97.22%
20 May 95.44%
21 May 484.99%
22 May 400.04%
23 May 130.18%

8 June 66.11%

Not emitted by the volcano, but value closer
to the island. It could be a secondary effect.

9 June 484.08%
10 June 417.27%
11 June 270.24%
12 June 246.10%

15 August 80.31%

Not emitted by the volcano.
It could be a secondary effect.

16 August 190.41%
17 August 291.80%
18 August 231.11%
19 August 174.06%
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Table 1. Cont.

Parameter Anomalous Day [2021] Amount of the Anomaly 1 Visual Check of the Anomaly

Aerosol

25 March 103.88% Spatially coincide with the caldera of the
Canarias volcano system27 March 19.38%

17 May 19.38% Spatially coincide with the caldera of the
Canarias volcano system18 May 325.26%

21 May 38.09%

8 June 346.98%

It seems to be a sandstorm from the
Sahara desert.

9 June 834.43%
10 June 180.31%
11 June 285.23%
12 June 4.29%

12 July 164.26% It is not centred on the volcano, but an
indirect effect cannot be totally excluded.13 July 86.10%

15 August 105.87%
It seems not related to the volcano16 August 76.08%

CO

24 March 16.85%
Emission close to the volcano25 March 84.75%

19 April 16.61% It seems to be due to another source and
later transported over the research area

15 May 3.59%
Not clear as there is another phenomenon

but also emission potentially related to
the volcano

1 August 7.30% The emission seems to come from
the volcano.

2 August 30.76% Not related to the volcano.
9 August 93.07%

It could be related to the volcano.10 August 13.09%

19 August 2.88%
It does not seem to be related to the volcano20 August 24.88%

26 August 38.37% Spatially not localised above the volcano.

4 September 32.02% It could be related to other volcanoes in
the area.

7 September 143.52%
It could be related to the volcano even if it is

a very wide anomaly
8 September 100.41%
9 September 85.10%
10 September 29.40%

13 September 91.86%

Some days are spatially well related to
the volcano.

14 September 174.76%
15 September 232.07%
16 September 50.25%
18 September 33.58%

19 September 2 15.27% “Co-eruption” emission.
1 The value is expressed on how many sigmas the parameter exceeded two standard deviations. 2 This is the day
of the La Palma eruption.

A common vision of the three geo-layers, as presented in Figure 28, is essential to
search for possible interactions between them. In this work, we search for possible ef-
fects from the lithosphere to the ionosphere (bottom-up effects) even if the opposite effect
(top-down) is also possible, for example, in the case of the impact of solar pulsation on
Earth’s environment like Pi2 [88]. Still, they are out of the scope of this paper. We noted
that the atmospheric anomalies identified between −130 and −120 of CO, AOT, and DMS
correspond to two anomalous days in terms of high electron density observed by CSES in
the ionosphere. Furthermore, the significant increase in the atmospheric trend (dominated
by DMS anomalies) at −100 days is followed at about −90 days by a particular magnetic
activity detected by Swarm satellite in the ionosphere, with concomitance anomalies from
GUI ground geomagnetic observatory that could correspond to the migration of the distur-
bance from the atmosphere to the ionosphere. A delay of one week is in agreement with
previous studies. It can be explainable only by a mix of mechanical and chemical processes
in the atmosphere that slowly migrates to the ionosphere, such as the model proposed by
Pulinets and Ouzounov [2] or the one illustrated in Figure 2A.

Another possible fluctuation of the ionosphere with simultaneous variations in the
atmosphere was detected by an increase in night- and day-time of CSES-01 electron density
compatible with the TEC map, between −80 and −40 days with respect to the eruption,
together with high values of aerosol and CO in the atmosphere.
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It is outstanding to note that from about 40 days before the eruption, there are several
recordings of seismic events and anomalies of CO and DMS in the atmosphere and even
TEC in the ionosphere. In this case, we suppose that the uplift of magma could have
produced some degassing depicted by the atmospheric anomalies. Finally, the last uplift
produced significant cracks in the upper crust, highlighted by the very high seismicity in the
last days before the eruption, a clear pre-eruption process. Despite this, other explanations
of atmospheric and ionospheric anomalies are still possible. For example, they could be
due to atmospheric weather perturbations or external solar disturbances, even if the solar
condition has been checked and reported quiet. Therefore, the bottom-up lithosphere–
atmosphere–ionosphere propagation effect of the identified anomalies is one of the possible
interpretations of the phenomena. Future studies need to demonstrate the interaction
mechanism between the geo-layers, excluding other possible explanations and sources.

4.3. Comparison with Other Works and Longer Term Preparation Effects of the Eruption of
19 September 2021

Torres-Gonzales et al. [89] identified an increase of seismicity and degassing some
years before this eruption, i.e., in October 2017 and February 2018, revealing that the
preparation for the eruption of September 2021 had a long preparation even some years
before. For this purpose, we investigated the atmospheric time series from 1980 until the
“La Palma” eruption in 2021. Among the several parameters, the most interesting seems to
be the CO that is represented in Figure 20; in fact, it shows in half of 2010 (first peak on
25 June 2010), particularly anomalies never seen in the 30 years before, which continued
to sparsely appear until the first months of 2020. Additionally, the other atmospheric
parameters show some anomalous activity in these 11 years, but it is not unique, as they
also showed some previous activity. The CO could be linked to the magma flow in the
mantle [90], i.e., the anomalous CO emission in 2010, 2012–2013, 2016, and 2020 could
suggest some activity in the mantle that brought toward the eruption. Parts of this anomaly
could be due to the El Hierro volcano eruption of 10 October 2011, a very close volcano
in the same archipelagos. Despite this, a previous study about El Hierro 2011 volcano
eruption by Lópes et al. [26] identified the unrest of such a volcano starting in July 2011.
Therefore, the start of the CO anomalies we depicted in this paper is still before, but we
cannot discriminate which volcano eventually could be related to such phenomena. They
could likely be considered a proxy of the whole volcanic archipelagos instead of a specific
volcano. Finally, the 2010 CO anomalies, together with the soil deformation and deep
(~25 km) seismicity reported by Fernández et al. [91], could be further evidence of the
unrest of the magma in 2009–2010, which they claimed.

From this paper, the acceleration of the seismicity started 10 days before the 2021
eruption (see Figure 7C), is very evident, and underlines the magma uplift before the
same eruption. Furthermore, it is compatible with GNSS measurements on the ground
and deformation estimated from radar satellite by DInSAR (Differential Interferometric
Synthetic Aperture Radar) technique by De Luca et al. [27], as they reported in their
Figure 3I–L.

Our temporal result suggests a process that started from a depth of about 40 km, i.e.,
mantle depth, in November 2020 that gradually filled a deeper chamber at about 30 km,
also identified by Klügel [74]. Then, only in the last days did the magma raise toward
“La Cumbre Vieja” vent, in agreement with the geochemical investigation of the erupted
magma conducted by Pankhurst et al. [92] that identified the erupted magma as originating
from the melting of the mantle.
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4.4. Investigation of the Possible Direction of Propagation of the Electromagnetic Waves by
Calculating the Pointing Vector

In order to confirm whether the detected ionospheric anomalies were produced by
an electromagnetic wave propagating from bottom to top in the hypothesis of an electro-
magnetic propagation mechanism (Figure 2B), the pointing vector can help to provide an
answer. The details of how the vector has been estimated are provided in Appendix E.

In Figures 29 and 30, two examples applied to Swarm tracks above La Palma volcano
are provided. The first one is selected in the period that has statistically been identified as
an acceleration in the cumulative trend of the magnetic Y-East anomalies (see Figure 25),
while the second one is more than one month after. In particular, the Swarm Alpha track,
10–17 June 2021 (Figure 29), identified a decrease of centre component relatively close to “La
Palma” volcano, suggesting an outgoing (upward) electromagnetic wave as visible from
the 3D reconstruction with a dominant upward direction. On the other hand, in the Swarm
Bravo track 6, acquired on 26 July 2021, shown in Figure 30, there is not a clear indication of
upward or downward direction. This could be due to a different physical mechanism that
produced such an anomaly, for example, a plasma bubble, as simulated by Kuo et al. [64].
In fact, electron density on 26 July 2021 presented particular anomalous values as reported
in Figure 23, even if a “contamination” from the high auroral activity recorded on this
day cannot be totally excluded. Finally, these examples confirmed the statistical results
about the increase of anomalies in June 2021, 3 months before the eruption, supporting
the hypothesis that perhaps some of the magnetic anomalies in this period could have
been produced by the preparation of “La Palma” volcano eruption of 19 September 2021.
Further analyses of ion drift and pointing vectors in future studies are required to improve
the anomaly detection, investigation of the source, and discrimination between the several
physical mechanisms that ionospheric disturbances could originate from.
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Figure 29. Pointing vector of Swarm Alpha data acquired on 17 June 2021, track 10. The three
components in the North, East, and Centre reference frame are represented in (A–C), respectively. A
3D reconstruction of the vector is provided in panel (D), together with the green star with the position
of the “La Palma” volcano, and the dashed grey line is the ground projection of the satellite track.
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5. Conclusions

This paper analysed the lithosphere, atmosphere, and ionosphere, and their possible
interactions before the La Palma Cumbre Vieja 19 September 2021 VEI = 3 volcano eruption.

We identified a migration of the seismicity from the deepest sources at about 40 km
to superficial seismicity, which follows a temporal order, strongly suggesting a magma
migration from about October 2020 that gradually fills a probable deep magma reservoir
identified by a gap of seismicity between 13 km and 20 km depth that could coincide with
the one already identified by Torres-Gonzáles [89], which was completely filled in February
2021. In the 10 days before the eruption on 19 September 2021, the magma uplifted in the
magmatic volcano chamber was located at less than 5 km depth, which can be seen as
another seismicity gap already described by Fernández et al. [91].

We identified several atmospheric and ionospheric anomalies from CSES-01 and Swarm
satellites from 130 days to 90 days before the eruption, suggesting a bottom-up interaction
between the two layers, even if other explanations are possible or the disturbances could
be even independent. About two months before the eruption, electron density profiles
depicted an anomalous electron density peak close to the volcano (confirmed by TEC maps).
At a similar time, minor seismicity was recorded.

A final increase of carbon monoxide started about 1.5 months before the eruption
suggesting CO as a strong proxy of the magma’s uplifting, i.e., the explosion’s preparation.
In particular, CO mean value was always above the historical mean in the last month, and
a final strong acceleration of seismicity in the last 10 days clearly preceded the event. At
the same time, the TEC also shows anomalies from 2 months before the eruption with
synchronicity with the release of CO and the seismicity acceleration. This could suggest an
interaction between the geo-layers even if it cannot demonstrate that the synchronicity was
a cause–effect relationship, or that it occurred only by chance.

This research not only confirmed previous investigations of pre-eruptive activity of
La Palma volcano that investigated seismicity, CO2 and helium, and land deformation
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from radar satellites [89,91], but it is also complementary in terms of other investigated
parameters and new lithospheric activity discovered from this study helping to understand
the complex possible mantle–lithosphere–atmosphere–ionosphere interactions. Future
studies need to provide more substantial proof of such interactions between lithosphere
atmosphere and ionosphere as in the present study; the interactions are proposed as our
best interpretation of the results. Still, we cannot exclude other interpretations or sources of
the identified anomalies.

Such a study underlines how crucial global monitoring of geophysical hazards such
as volcano and earthquakes is, with a wide network of sensors on the ground and satellites.
Their integration not only permits better understanding of the nature of our planet, but
also could potentially help in the future to predict dangerous events, contributing to saving
human life and reducing economic losses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14195001/s1, Supplementary Materials File S1with additional
figures (Figure S1: Geomagnetic ground observatory X—North component; Figure S2: Correlation
coefficients of Geomagnetic ground observatories; Figure S3: Cumulative graphs for geomagnetic
ground observatories; Figure S4: DMS and aerosol maps on the day of the eruption; Figure S5: SO2
long time series after removing seasonal trend; Figure S6: DMS long time series after removing
seasonal trend; Figure S7: Aerosol long time series after removing seasonal trend). Supplementary
Materials File S2 with the Swarm magnetic residuals for all the identified anomalies reported in
Figure 25 is also provided. Animated GIF of the SO2 propagation from Pinatubo 1991 volcano
explosion all over the equatorial places composed by daily worldwide pictures of SO2 at 23 UT in
June and July 1991.
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Appendix A. Detailed Description of CSES Electron Density Data Processing

In this appendix, we describe the CSES electron density data analysis in detail. The first
step is the extraction of all the data acquired by the CSES-01 satellite in quiet geomagnetic
conditions (|Dst| ≤ 20 nT and ap ≤ 10 nT) inside a circle centred on the volcano and with
a radius of 420 km (see Figure A1). Such a radius has been selected, taking into account
the extension of La Canarias caldera volcano system, and also that a too-small area is not
appropriate due to the altitude of the satellite (about 510 km above sea level).
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Figure A1. CSES-01 track projection (brown lines) in day-time and night-time. The position of
“La Palma” volcano is represented by a black star. The investigated area is limited by the red circle.

A first time-series of CSES Ne was obtained with the daily median of the data collected
inside the research area for day-time or night-time, which was analysed separately. The
median has been selected instead of the mean, as it is less affected by eventual spikes in
the original data. Figure A2 shows such time series for night-time, as well as Figure A3
for day-time. Due to the standard seasonal variation of the ionosphere, the obtained time
series are affected by seasonal trends [93]. In order to detrend the time series from the
seasonal trend, a polynomial curve has been fitted to the data. The order of the polynomial
has been selected as 5 for night-time and 7 for day-time. The reason for a different selection
is due to the more complex structure of the ionosphere during day-time for the direct input
of the solar irradiance that, for example, creates the “fountain” effect of the electron charges
that move upward at the geomagnetic equator and downflows Southern and Northern, but
only when the Solar irradiation is present (or in the following hours for the inertia of the
phenomenon [94]).

The final time series is obtained after polynomial detrending, and it is presented in
the result section of the paper. The median and interquartile range are computed on such
time-series, defining the threshold to detect eventual anomalies as the median plus 1.5
times the interquartile range corresponds to two standard deviations in case the residuals
follow a Gaussian distribution.
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Appendix B. Detailed Description of Swarm Magnetic Data Analysis

In this appendix, we describe the Swarm magnetic data analysis and processing
in detail. The same procedure is applied to each component of the magnetic field in
NEC (North-East-Centre) frame and to the scalar intensity (F) of the Earth Magnetic Field
measured by three Swarm satellites (Alpha, Bravo, and Charlie). The raw data used for
this analysis is the LR (Low resolution) data from ESA and we show an example of the
step-by-step processing in Figure A4 of track 25 of Swarm Bravo acquired on 18 June 2021.
This is the one shown in the main text in Figure 26. The figure shows the example of Y-East
component of the magnetic field. The algorithm used to process the data is called MASS and
was used for the first time to analyse the M7.8 Nepal 2015 earthquake by De Santis et al. [66].
Following that, it has been widely applied to study several earthquakes in the world with a
magnitude between 5.5 and 8.3 [4,5,40,67,68,95]. The operation made by the algorithm on
the magnetic signal B(t) consists of the following:
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1. Estimation of the numerical first order derivative of the original data B′(t). This step
is done by calculating the differences sample by sample (S) and dividing the result by
the time “t” (i.e., the time difference between the two consecutive data):

dB
dt
∼=

BS − BS−1

tS − tS−1
= B′(t)

2. In order to remove the further trend from the data, a cubic spline S(t) was fitted on
B′(t), setting the knock points every 20 samples:

residual (t) = B′(t)− S(t)

3. The geomagnetic latitude of each sample was computed considering the position of
the magnetic pole provided by the IGRF-13 geomagnetic model [96], and the samples
outside the range [−50, +50] of geomagnetic latitude were rejected.

4. The Root Mean Square “RMS” of the whole track is calculated and compared with
the root mean square “rms” of a moving window with a length for this work of 2.0◦

latitude. If
rms > kt·RMS

the window is defined as anomalous. “kt” is a threshold to define the anomalies and,
in this work, has been set to 2.5.

5. A track is classified as anomalous if it contains at least one anomalous window whose
centre falls inside the research area (a circle of 420 km of radius), and geomagnetic
conditions were quiet (|Dst| ≤ 20 nT and ap ≤ 10 nT).

6. The cumulative curve of all the identified anomalous tracks was computed for each
component of the geomagnetic field, combining the three satellites together.

In order to establish if the cumulative trend is anomalous, a deviation from a linear
increase is searched. In fact, this algorithm identifies anomalous signals in the ionosphere
during quiet geomagnetic time and a background of anomalies is also expected without
the geophysical event as for example simulated in [67]. On the other hand, a deviation in
terms of acceleration from the linear trend can indicate that a critical process, such as an
earthquake or volcano eruption, is approaching [97,98].
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18 June 2021 from the original signal (A) that has been derived (B), a cubic spline was further removed
(C) and analysed the root mean square by a moving window (D).

Appendix C. Global Distributions of TEC and Electron Density from CSES-01 Satellite

In this section, we present the global distributions of TEC obtained from GIM data.
Instead of showing the TEC at a defined UT (the original data), we preferred to interpolate
the data at 2:00 AM local time for all the longitudes of the world. Not all the values are
interpolated if the data at 2 LT is available for the specific longitude. Otherwise, it is linearly
interpolated from the previous and following GIM map, including the last value of the day
before (22 UT) and first value (0 UT) for the following day.

The reason to choose 2 LT is that CSES-01 satellite has this time at the equator fixed
for all of the world at night-time, so the obtained TEC map will be easily comparable
with the CSES-01 data. Furthermore, the global distribution of TEC and Ne permits
discrimination if the identified anomaly is a global phenomenon or local, with more
chances to be produced by the volcano activity even if other proof is needed to demonstrate
such a geophysical source.

In the following figures, we show the days that are depicted with an outlier in electron
density by satellite CSES-01 in Figure 23, and we resume the days represented and some
notes in the following Table A1.

Table A1. List of the maps of Ne and TEC that are compared in this appendix.

Figure Day [2021] Parameter Notes

Figure A5 2 July TEC TEC and CSES Ne are well in agreement.
The high value of Ne over La Palma seems more a global disturbance.Figure A6 Ne (CSES-01)

Figure A7 7 July TEC Global distribution of TEC and Ne from CSES present the same
structures. The disturbance seems global.Figure A8 Ne (CSES-01)

Figure A9 22 July TEC The structures in TEC and CSES Ne are compatible, even if the
localizations of maximum are differentFigure A10 Ne (CSES-01)

Figure A11

1 and 2 August
TEC The distributions of TEC and CSES Ne are well in agreement. The

enhancement above “La Palma” volcano seems a local anomaly.
Figure A12
Figure A13 Ne (CSES-01)Figure A14

Figure A15 26 August TEC Ionospheric structures are more complex and they are well depicted by
both TEC and CSES Ne satellite. Disturbance seems global phenomenonFigure A16 Ne (CSES-01)

In conclusion, by the comparison of TEC data from GIM with in situ Ne observa-
tion made by CSES-01, a well and overall agreement was identified detecting the same
ionosphere structures, including a peak in the Southern hemisphere between Australia
and New Zealand on 26 August which was an unusual structure with respect to the other
presented day. This confirms the scientific reliability of CSES Ne data, and furthermore,
CSES provided very important measurements as it is made in situ and on the topside.

In fact, the difference sometimes underlined by the comparison of TEC and CSES Ne in
the localization of the maximum could reflect a different vertical stratification of Ne, as the
measure of CSES is punctual (in-situ) observation at about 510 km of altitude, while TEC is
more representative of a lower altitude, as the maximum concentration of electron density
is located between 250 km and 400 km depending on the season, longitude, geomagnetic
activity, and local time (here fixed), and it is known as hmF2 [99].
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Appendix D. Comparison of Carbon Monoxide Measured from Ground Station IZO
and the Value Obtained from the MERRA-2 Archive

In order to validate the data used in this paper, we performed a comparison of the
CO available from the station IZO (Izana, Tenerife), located on the close island of Tenerife
at an elevation of 2372.9 m above sea level (28.309◦N, 16.499◦W). The measurements at
the observatories were collected between 8:42 UT (7:36 LT) and 10:30 UT (9:24 LT), and we
reported this in Figure A17. The CO data from the MERRA2 archive are the same as shown
in the main text, but here the standard deviation of the values used to calculate the mean in
the area (square box of 3◦ side) is added.

Even if not all values are in agreement (i.e., some of them differ for more than one
standard deviation), we noted a general concordance overall in the trend that was mostly
the same. The value at the IZO station is typically higher, and we attribute this to a couple
of factors: the most important is that the observatory is placed on land while the value
from MERRA-2 archive is partially (and mostly) over the oceanic surface and the land can
experience higher concentrations of CO due to anthropogenic sources, and secondly for the
different local time of the two measurements.

Finally, taking into account spatial different factors, we can consider the data from
the MERRA-2 archive highly reliable for scientific purposes, with the advantages of global
coverage and uniform sampling in time and space, even if a measurement from a station is
surely more accurate for the local situation, but is not always available.
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Appendix E. Calculus of the Point Vector with Swarm Data

Swarm satellite was equipped with an instrument, the Thermal Ion Imager (TII), that
was able to measure the ion drift speed along the track of the satellite perpendicular
and almost vertical directions [100]. The instrument is composed of two perpendicular
detectors—one vertical and the second horizontal—which produce a distribution of the
low-Energy ions in terms of angle and energy recorded by a Charged Coupled Device
(CCD) [100]. ESA from the ion velocity and magnetic field measurement provided an
estimation of the electric field along the track (Ex), perpendicular to the satellite direction
speed (Ey) and almost vertical (Ez) in the advanced data products of Swarm, plasma
Section 2 Hz TII. The speed vector (SN, SE, SC) for each sample in NEC (North-East-Centre)
frame is also provided and has been used in this work to rotate the electric field in the NEC
frame, i.e., the same as the magnetic field:∣∣∣∣∣∣

EN
EE
EC

∣∣∣∣∣∣ =
∣∣∣∣∣∣

cos(ϕ) 0 sin(ϕ)
0 1 0

− sin(ϕ) 0 cos(ϕ)

∣∣∣∣∣∣·
∣∣∣∣∣∣

cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

∣∣∣∣∣∣·
∣∣∣∣∣∣
Ex
Ey
Ez

∣∣∣∣∣∣
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where θ is the horizontal rotation angle, therefore cos(θ) = SN
l , l =

√
SN2 + SE2 and ϕ is the

vertical one, therefore cos(ϕ) = l
v where v is the speed intensity (, v =

√
SN2 + SE2 + SC

2).
Substituting the above quantities, the two rotation matrixes are simplified as:∣∣∣∣∣∣

EN
EE
EC

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

l
v 0 SC

v
0 1 0
− SC

v 0 l
v

∣∣∣∣∣∣∣·
∣∣∣∣∣∣∣

SN
l

SE
l 0

− SE
l

SN
l 0

0 0 1

∣∣∣∣∣∣∣·
∣∣∣∣∣∣
Ex
Ey
Ez

∣∣∣∣∣∣
After the rotation of the electric field, the pointing vector “S” was calculated using the

residual value of the magnetic field (BN, BE, BC; shown for each track in Supplementary
pdf file) by its definition with the vectorial product of electrical and magnetic vector fields:

S =

→
E ×

→
B

µ0
=

1
µ0
·

∣∣∣∣∣∣
EE·BC − EC·BE
EC·BN − EN ·BC
EN ·BE − EE·BN

∣∣∣∣∣∣
Before applying the above multiplication, the magnetic field was interpolated with

PCHIP [75] technique at the same point of the electric field by the comparison of their latitude.
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