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Abstract: Land use and land cover (LULC) mapping is a powerful tool for monitoring large areas. For 
the Amazon rainforest, automated mapping is of critical importance, as land cover is changing rapidly 
due to forest degradation and deforestation. Several research groups have addressed this challenge by 
conducting local surveys and producing maps using freely available remote sensing data. However, 
automating the process of large-scale land cover mapping remains one of the biggest challenges in the 
remote sensing community. One issue when using supervised learning is the scarcity of labeled training 
data. One way to address this problem is to make use of already available maps produced with (semi-) 
automated classifiers. This is also known as weakly supervised learning. The present study aims to de-
velop novel methods for automated LULC classification in the cloud-prone Amazon basin (Brazil) 
based on the labels from the MapBiomas project, which include twelve classes. We investigate different 
fusion techniques for multi-spectral Sentinel-2 data and synthetic aperture radar Sentinel-1 time-series 
from 2018. The newly designed deep learning architectures—DeepForest-1 and DeepForest-2—utilize 
spatiotemporal characteristics, as well as multi-scale representations of the data. In several data scenar-
ios, the models are compared to state-of-the-art (SotA) models, such as U-Net and DeepLab. The pro-
posed networks reach an overall accuracy of up to 75.0%, similar to the SotA models. However, the 
novel approaches outperform the SotA models with respect to underrepresented classes. Forest, sa-
vanna and crop were mapped best, with F1 scores up to 85.0% when combining multi-modal data, 
compared to 81.6% reached by DeepLab. Furthermore, in a qualitative analysis, we highlight that the 
classifiers sometimes outperform the inaccurate labels. 
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1. Introduction 
Large rainforests significantly influence Earth and atmosphere dynamics, not only 

by regulating the water cycle but also by balancing the carbon dioxide budget [1]. Rain-
forests store approximately two billion tons of CO2 per year and produce about 20% of 
the Earth’s oxygen [2]. Thus, deforestation is regarded as a critical accelerator of carbon 
release into the atmosphere. This led to 9% of annual global emissions between 2004 and 
2013 [3,4]. Additionally, the biodiversity in the Amazon basin, amounting to a third of 
the world’s species [5,6], is endangered by ongoing deforestation and land cover change. 
Several factors, including socioeconomic reasons and political decisions, contribute to the 
conversion of Amazon forest to non-forest areas. Monitoring changes is critically im-
portant to assess damage and provide continuous data for political decision-making and 
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climate and biomass modeling, as well as estimations of age and land cover history. Since 
1988, the deforestation-monitoring program PRODES [7] has been conducting annual 
deforestation mapping for Amazon forest management. This initiative contributed to a 
record low deforestation rate of 4500 km2 per year in 2012 [3,7]. Since then, this number 
has been constantly rising, with 13,235 km2 in 2021 [7]. 

Over the last few decades, passive and active remote sensing have been investigated 
for large-scale monitoring. The use of passive remote sensing data for land use and land 
cover (LULC) classification dates back to 1940, when [8] described the aerial photography 
mapping of the United States. Landsat was launched in 1972 with multispectral scanners, 
opening up new possibilities, such as multi-modal data fusion and multi-temporal land 
cover mapping [9]. Data from the Landsat mission are used, for instance, in the PRODES 
project [7]. Since 2015, multispectral Sentinel-2 data with higher spatial, spectral and 
temporal resolutions, compared to Landsat, have been freely available from the Coper-
nicus program. The Copernicus program also freely provides synthetic aperture radar 
(SAR) data from the Sentinel-1 mission. Therefore, such unprecedented sources of data 
might prove advantageous and provide promising synergies for land cover mapping, 
particularly in tropical areas where continuous spectral time-series are rarely available 
due to cloud cover. 

SAR data, as well as multi-spectral data, are used extensively for LULC mapping, 
forest applications and crop identification. In [10], for example, the authors describe an 
approach to map forest structural changes using multi-temporal Sentinel-1 images 
(C-band) with dual polarization over a Scottish forest. In another recent article, [2] de-
scribed a new, large-scale land-cover mapping methodology in Rondonia. The authors 
extended the technique already presented in [11] by combining multi-temporal 
backscatter and interferometric information from repeat-pass short time-series. This re-
sulted in an overall accuracy (OA) of 91.85% using a benchmark land cover map product 
from 2012 as ground-truth reference. In another study, [12] achieved an OA of 91.5% 
using random forest (RF) [13] with Sentinel-2 and Sentinel-1 data for 13 different land 
cover classes in a tropical area. They obtained the best results by combining data from 
one Sentinel-2 image and eight Sentinel-1 scenes. 

From a methodological perspective, machine learning (ML) techniques have been 
widely used for LULC applications [12,14,15]. Support vector machine (SVM) and RF 
represent the most popular non-parametric supervised classifiers and outperform pre-
viously used classifiers, such as maximum likelihood classification (MLC), k-nearest 
neighbors (kNN) and classification and regression tree (CART) [9]. RF is popular for its 
simplicity and its capability to produce robust models and is employed for different ap-
plications, such as land cover classification [15]. Many traditional workflows employing 
ML include extensive feature engineering prior to classification. For instance, the nor-
malized difference vegetation index (NDVI) and other indices are popular feature engi-
neering approaches prior to supervised classification [16–18]. Spectral mixture analysis 
(SMA) can also be employed for feature extraction from multispectral data. For example, 
[19] used imagery of the Brazilian Amazon captured by the Landsat Thematic Mapper 
(TM) and Enhanced Thematic Mapper (ETM+) and applied a knowledge-based decision 
tree to classify forest cover change based on four end members (EMs) extracted from 
SMA. 

In recent years, deep learning (DL) has become very popular for complex classifica-
tion problems with large datasets. Due to their multilayered structure with nonlinear ac-
tivation functions, DL models are able to extract hierarchical features from raw data. 
Each layer learns a more complex and abstract representation from the prior layer [9]. 
Convolutional neural networks (CNNs) were introduced by [20] and are especially suited 
for image classification and segmentation problems in computer vision as they can learn 
spatial features in images. Recently, these methods have become very popular in the 
remote sensing community [21,22]. In [23] a comprehensive overview is provided with a 
current review about semantic segmentation using deep learning methods. In [24], seven 
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off-the-shelf deep learning models, such as ResNet50 and InceptionResNetV2, were in-
vestigated for a complex land cover classification using RapidEye data with a focus on 
wetlands in Canada. All deep learning models performed significantly better with re-
spect to OA compared to RF and SVM models trained on the same data. InceptionRes-
NetV2 showed the best performance with an OA of 96.17%. 

The inherent challenge of ground-truth data continues to hamper advancements in 
LULC applications. Recently, [25] presented a weakly supervised approach for investi-
gating state-of-the-art (SotA) methods, such as RF, U-Net and DeepLab, with a fused 
dataset (SEN12MS) [26]. This dataset combines dual-polarimetric Sentinel-1 and Senti-
nel-2 imagery. MODIS data with a spatial resolution of 500 m were used as weak refer-
ence data (coarse resolution). Ten different land cover classes were identified worldwide, 
following the simplified International Geosphere–Biosphere Programme (IGBP) classifi-
cation scheme [27]. The experimental results show that U-Net gives the best results with 
this particular dataset, with an OA of 48.1%. Such findings pave the way for future re-
search into the capabilities of deep learning approaches. 

However, the automatic detection of land use classes after deforestation in the 
Amazon basin remains challenging. Most of the existing studies in the area are based on 
mono-temporal satellite data [28] where the data lack the spatiotemporal information 
that might enable the detection of subtly changing patterns of land cover. This paper 
aims to investigate the performance of SotA DL algorithms and proposes novel archi-
tectures with time-series Sentinel-1 and Sentinel-2 data from the Amazon basin. The 
proposed novel architectures are tailored to the unique characteristics of the spatiotem-
poral information of satellite data. We propose various data fusion approaches and in-
vestigate the effect of limiting the time-series to only critical periods in terms of vegeta-
tion change. We demonstrate the effect of multi-modal data fusion, as well as the poten-
tial and drawbacks of weakly supervised learning approaches, in a series of experiments. 

2. Materials and Methods 
The overall workflow of our study is shown in Figure 1. After extensive 

pre-processing of Sentinel-1 and Sentinel-2 data (described in Section 3.2), we investi-
gated different SotA architectures and propose new models for our data. The models 
were implemented in Tensorflow in combination with Keras and additionally integrated 
into a graphical user-interface in ArcGIS Pro. 
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Figure 1. The global workflow of the LULC classification process with the tools and technologies 
used at each step. 

2.1. Study Area 
The Amazon basin is a world natural treasure representing the largest continuous 

tropical rainforest in the world, spanning an area of more than 4 million km² [19]. It 
spreads across nine countries, with 63% of it located in northern Brazil [29]. Amazonia 
and Mato Grosso are among the states most affected by deforestation. In 2018, they had 
total forest losses of 1045 km2 and 1490 km2, respectively [7], and, therefore, significant 
land cover change. Mato Grosso is situated in the central west of the country and has a 
well-defined wet season controlled by the South American monsoon system (SAMS), 
which lasts from September/November to April/May [30]. The annual rainfall in the 
Amazon can exceed 365 cm/year [31] and occurs mainly during the rainy season. The 
highest precipitation rates occur in the northwest of the basin and they decrease towards 
southern regions. As we used multi-spectral satellite data, regions in Mato Grosso were 
mostly included due to the favorable climate conditions (cf. Figure 2). Mato Grosso is the 
third largest state in Brazil with three million inhabitants and the main national agricul-
tural producer [32]. The state has very dynamic land cover as it has been suffering from 
forest degradation and deforestation caused by urbanization and agricultural production 
[33]. The main crops are soybeans, cotton, corn (maize), sugarcane and sunflower. 
Therefore, inclusion of time-series data can help differentiate crop classes from other land 
cover types. Due to the high spatial dynamicity in the area and the confounding vegeta-
tion types, visually annotated labels are logistically not feasible in satellite imagery. We 
adopted the LULC classification scheme used within the MapBiomas project [16]. Over-
all, the study area comprises 13 different land cover classes, such as forest, pasture, water, 
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urban and crop-related classes. Considering the dominance of forested areas in the area 
of interest, there are strong imbalances in the representation of the LULC classes (e.g., 
crops, urban), which was a major challenge in this study. However, such a diverse eco-
system is a good real-world opportunity to investigate the performance of DL models 
with satellite data  

 
Figure 2. Sentinel-2 scenes (green bounding boxes) and the areas of interest (AOIs) for the com-
bined Sentinel-1 time-series + Sentinel-2 data (red bounding box) used in this study. 

2.2. Data and Pre-Processing 
We used 48 Sentinel-2 scenes and 24 Sentinel-1 scenes (representing two time-series) 

across Amazonia and Mato Grosso, with their locations shown in Figure 2. Only Senti-
nel-2 images with a total cloud cover of less than 10% were acquired and most of the 
scenes were downloaded as Bottom-Of-Atmosphere (BOA) Level-2A products. The re-
maining scenes were only available as Top-Of-Atmosphere (TOA) Level-1C products and 
atmospherically corrected to BOA reflectance using the Sen2Cor toolbox in SNAP. To 
obtain the best configuration for generating the L2A product, we used auxiliary data 
from the surfaces of the Climate Change Initiative (CCI) Land Cover data from 2015 
provided by the European Space Agency (ESA). 

Sentinel-2 consists of 13 spectral bands ranging from the visible (443 nm) to infrared 
(2190 nm), with spatial resolutions of 10, 20 or 60 m. The three 60 m bands for atmos-
pheric applications were omitted in this study. The six 20 m bands were then resampled 
to 10 m using the nearest neighbor method. 

Sentinel-2 data are well-suited for LULC classification due to the improved spectral 
resolution compared to, for example, the Landsat missions. However, for tropical re-
gions, it is hard to obtain cloud-free data and, therefore, multi-temporal classification for 
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large areas using only this data is not feasible. To overcome this limitation, we included 
Sentinel-1 SAR time-series from 2018. The time-series contain one scene per month with 
two polarizations, resulting in 24 scenes. All scenes were acquired as Level-1 GRD 
products, captured as dual-polarized interferometric wide swath (IW) images (VH + VV). 
Further pre-processing was conducted using ESA’s SNAP application. The processing 
workflow comprised orbit correction, thermal noise removal, calibration, filtering of the 
speckle effect using a Lee filter and conversion of the values to a dB scale (cf. Figure 3). 

 
Figure 3. Pre-processing chain for Sentinel-1 data performed in SNAP. 

After pre-processing, the Sentinel-1 time-series and the Sentinel-2 spectral data were 
stacked into a single image cube with 34 bands for the selected areas of interest (marked 
red in Figure 2). Three datasets were exported as labeled image tiles from ArcGIS Pro and 
were each split into a training and a test dataset: one dataset contained all 34 bands 
(S1TsS2_12). The second (S1TsS2_7) contained the 10 multispectral bands but only 14 
SAR bands corresponding to a time-series of 7 months (June–December), as this time 
frame showed a slightly better class distinction from a separate analysis on the 
backscatter signal. The third dataset covered a larger area but only with the Sentinel-2 
bands (S2). The datasets are summarized in Table 1. Due to computational limitations, 
the Sentinel-1 time-series could not be processed at the same spatial extent as Sentinel-2 
data (see Figure 2 for details). 

Table 1. The different subsets built from the S2 and S1TsS2 datasets. 

Dataset 
Number of Tiles 

Number of Bands Tile Size [px] 
Training Test 

S2 35000 8750 10 256 × 256 
S1TsS2_12 18074 4517 34 256 × 256 
S1TsS2_7 18074 4517 24 256 × 256 

As labels, we used data from the MapBiomas Project [16]. The project provides six 
sets of annual maps generated with different techniques, ranging from empirical decision 
trees to RF classifiers, all based on Landsat imagery. We used their classification map 
data (collection 4) from 2018, as this was the most current iteration at the start of our 
project. The global accuracies for the land cover classes in the MapBiomas project range 
from 70% to 94%, varying across regions [34]. Thus, the labels used were noisy and can-
not be considered real ground-truth. In addition, they were derived from a coarser spatial 
resolution than the Sentinel-2 and Sentinel-1 sensors and did not, therefore, exactly line 
up with respect to our data. These challenges match with the latter two of the three types 
of weak supervision described by [35]: incomplete (missing labels), inexact (coarser res-
olution), and inaccurate (noisy labels). They suggest still making use of inaccurate and 
inexact labels to produce good models and investigate techniques to overcome these 
problems. 

Another challenge of our data was class imbalance: in the large study area (S2), there 
were 3 dominant classes among the 13 total classes: forest formation (FF), pasture and 
savanna, which had pixel distributions of 42.7%, 20.6% and 15.8%, respectively. Four 
other classes had pixel percentages ranging between 4% and 9%. All remaining classes 
were underrepresented and added up to approximately 1%. In the smaller S1TsS2 da-
taset, there were five dominant classes: savanna, pasture, FF, annual and perennial crop 
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(A&C crop) and grassland, with pixel coverage percentages of 30%, 23%, 16%, 11% and 
10%, respectively. The remaining classes’ coverage percentages were up to 5%. 

2.3. Deep-Learning Approaches and Experiments 
As described in the previous section, there were challenges with respect to our data 

and labels. Therefore, we conducted several experiments with the goal of investigating 
potential SotA architectures used in computer vision, as well as new approaches applied 
to multi-temporal data. The experiments tackling the different challenges can be sum-
marized as follows: 
1. Investigation of the performance of SotA architectures with Sentinel-2 and SAR 

Sentinel-1 data regarding LULC classification. We trained and tested U-Net and 
DeepLab on both the multispectral data and the fused datasets; 

2. Furthermore, we propose new approaches including spatial-temporal dependencies 
and different fusion strategies to take the multi-temporal nature of the data into 
consideration; 

3. Finally, we compared the results obtained from different data combinations used in 
all experiments. 
All models were implemented in Tensorflow in combination with Keras. All training 

was performed on two virtual machines at the Leibniz-Rechenzentrum (LRZ) and at 
Amazon Elastic Cloud (EC2). The machine configurations are summarized in Table 2. 
The trained models were then integrated into a GUI in ArcGIS Pro to provide an easy 
interface for inference with new datasets. 

Table 2. Technical details about the developing and testing environments. 

 LRZ EC2 
GPU (Memory) NVIDIA V100 (16 GB) NVIDIA T4 (16 GB) 
RAM (GB) 500 200 
Operating System Linux Windows 
DL Framework Tensorflow 1.15.2 + Keras 

The data were randomly split into training, validation (20% of the training set) and 
test sets. Additionally, to prevent overfitting, we used data augmentation (horizontal 
flipping and rotation of 2000 tiles) and early stopping. Initially, the model training pro-
cess was fixed to 10 epochs. With the control of the validation accuracy, early stopping 
was forced if the validation loss did not decrease anymore. 

2.3.1. State-of-the-Art Architectures 
We used two SotA methods for semantic segmentation to compare to our new 

proposed models: U-Net [36] and DeepLab [37]. U-Net was developed in 2015 for bio-
medical image segmentation. The architecture consists of symmetric down- and 
up-sampling levels of feature maps with skip connections. The idea of down-sampling 
(encoder) and up-sampling (decoder) paths was initially introduced with fully convolu-
tional networks (FCNs) [38] to circumvent the loss of information about the object loca-
tion after the convolution. For model development, we used a modified version of U-Net, 
following [39], with four down- and up-sampling blocks. 

DeepLab [37] is one of the most popular models in computer vision and uses a di-
lated convolutional operation (coined the “atrous” operator). This technique has been 
used in signal processing to efficiently compute the undecimated wavelet transform. 
Atrous convolution makes it possible to enlarge the field of view of filters without in-
creasing the number of parameters to be learned or the computation time. Thus, the idea 
is to use larger kernel sizes for convolution by introducing zero values, called holes, or a 
dilation rate between the filter values. This drastically reduces the number of learnable 
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weights. The Atrous Spatial Pyramid Pooling (ASPP) module is the second useful addi-
tion in this model. This method is used to robustly produce image representations of 
objects at multiple scales by concatenating the feature maps extracted from different di-
lation rates to obtain the final feature map [37]. The implementation of this model is 
based on ResNet50 [40] as the backbone architecture. 

2.3.2. Early Fusion Approach: DeepForest-1 
We propose new architectures for data fusion that take the multi-temporal and 

multi-modal nature of the data into consideration. The architectures are inspired by the 
FCN architecture [38], as well as the ConvLSTM unit [41]. 

We tested three model variations for this approach, which are described in the fol-
lowing and shown in Figure 4. As the FCN architecture merges the skip-connection lay-
ers by summation, the proposed DeepForest-1 architecture additionally introduces layer 
merging through the use of ConvLSTM [41] blocks. This can improve the way the net-
work learns features and propagates them throughout the architecture. Fusing skip 
connections with a linear function (sum) might not consider the correlation between 
them. Instead, DeepForest-1 takes advantage of the properties of LSTM, through Con-
vLSTM, to select and keep the relevant features from the introduced maps in memory. 
Thus, the model has a robust representational power to learn nonlinear features and 
avoid redundancy. As with most of the semantic segmentation models, DeepForest-1 
also employs an encoder/decoder structure. 

Encoder path: As an encoder, ResNet50 [40] is used as the backbone and comprises 
five blocks of convolutional units. However, in this study, only the first four of the five 
blocks are used. Each consists of convolutional layers with batch normalization and 
ReLU activation units. The batch normalization layers compensate for the instability of 
the neural network, which is caused by the distribution variation of the activation values 
after each layer. This layer therefore regularizes the inputs to each layer by normalizing 
each batch [42]. 

ConvLSTM block: The ConvLSTM unit was introduced by [41] as a generalization 
of LSTM [43]. It considers the spatiotemporal correlations of image data rather than just 
the temporal correlation. The block produces an output feature map for each of the pixel 
positions by taking the inputs and the previous states of the surrounding pixels into ac-
count. The key operations [41] of this block are shown in the following equations, where 𝑊 are the learned weights of the block and (⊗) represents the Hadamard product: 𝑓 = 𝜎(𝑊 ∗ 𝑋 + 𝑊 ∗ 𝐻 + 𝑊 ⊗ 𝐶 + 𝑏 )  Forget gate at time 𝑡 (1) 𝑖 = 𝜎(𝑊 ∗ 𝑋 + 𝑊 ∗ 𝐻 + 𝑊 ⊗ 𝐶 + 𝑏 )    Input gate at time t (2) 𝑜 = 𝜎(𝑊 ∗ 𝑋 + 𝑊 ∗ 𝐻 + 𝑊 ⊗ 𝐶 + 𝑏 )  Output gate at time t (3) 𝐶 = tanh (𝑊 ∗ 𝑋 + 𝑊 ∗ 𝐻 + 𝑏 )            Carry candidate at time t (4) 𝐶 = 𝑖 ⊗ 𝐶 + 𝐶 ⊗ 𝑓                           New carry at time t (5) 𝐻 = 𝑜 ⊗ tanh (𝐶 )                              Output at time 𝑡 (6) 

The formulation is similar to the LSTM unit, but it includes spatial correlation using 
the convolution operator (∗) rather than simple multiplication. Similarly, each unit of 
ConvLSTM comprises three gates (forget 𝑓 , output 𝑜  and input 𝑖 ), as well as two 
states (memory cell state 𝐶  and hidden state 𝐻 ), characteristic elements for an LSTM 
unit. These elements allow not only the propagation of regulated information (to hold or 
forget) but also the prevision of the vanishing gradients. In the context of recurrent neu-
ral networks (RNNs), the feature maps extracted from different levels are treated as im-
ages with different timestamps in the new designed architecture (RNNs). The Con-
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vLSTM therefore produces a new representation segment from the two introduced fea-
ture maps. 

Decoder path: The decoder path consists of a succession of up-convolutional layers 
to recover the initial spatial resolution. The skip connections from the encoder path are 
merged with the up-convoluted feature maps through concatenation and ConvLSTM 
blocks. The merging of features from different resolutions aids in the combination of 
context information and spatial information, as well as the reconstruction of the spatial 
resolution of the initially introduced image [38]. The rest of the model consists of a final 
convolution layer using Softmax as the activation function. 

Model Variations: We propose three modifications to the model, the first with one 
ConvLSTM unit (DeepForest-1a), the second with two units to include a lower layer be-
low the encoder (DeepForest-1b) and a final version with atrous convolution and an ad-
ditional ASPP block (DeepForest-1c). The architectures of these three models are shown 
in Figure 4. The first model variation (DeepForest-1a) introduces a ConvLSTM block that 
merges the feature maps from block 3 (with a size of 32 × 32) and block 4 (with dimen-
sions of 16 × 16) of the encoder backbone (ResNet50). The dimensions of each feature map 
have to be up-sampled first to 64 × 64 in order to then enter the ConvLSTM unit (see 
Figure 4a). The second variation (DeepForest-1b) concatenates the outputs from block 2 
(64 × 64) and block 3 (32 × 32) of the encoder and then merges the resulting output of the 
ConvLSTM unit (64 × 64) with the output from block 4 (16 × 16) (cf. Figure 4b). The third 
version (DeepForest-1c) is analogous to the second model variation but introduces an 
ASPP block that was initially introduced in the DeepLab [37] architecture. This block is 
added at the end of the architecture to test the effect of the multiple scale map generation 
on our data (see Figure 4c). 

 
Figure 4. DeepForest variations: (a) DeepForest architecture with one ConvLSTM block 
(DeepForest-1a). (b) DeepForest architecture with two ConvLSTM blocks (DeepForest-1b). (c) 
DeepForest with an ASPP block (DeepForest-1c). 

2.3.3. Representation Fusion: DeepForest-2 
Designing two-branch models was another approach taken to investigate the effect of 

fusion of Sentinel-1 and Sentinel-2 data. Each of the streams has its own architecture (Figure 
5) that learns sensor-specific representations. The stream responsible for multi-spectral data 
(S2) consists of either U-Net (DeepForest-2a) or DeepForest-1b (DeepForest-2b), while the 
second stream contains one ConvLSTM block for time-series Sentinel-1 (TS S1). This allows 
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the model to learn features from both modalities separately. The final produced feature maps 
from both branches are concatenated to form the new global model (DeepForest-2). The 
training process of the global model and the separate branches are intertwined. The contri-
bution of each stream is weighted differently in the final loss function 𝐿. In our experiments, 
we assigned a higher weight to the Sentinel-2 branch with 70%, given the high correlation of 
spectral information with land cover classes, while 30% was assigned for Sentinel-1. 

 
Figure 5. The architecture of the two-branch model DeepForest-2. For the multispectral stream, a 
prior learned classifier was used; i.e., DeepLab or one of the DeepForest-1 model variations. 

2.3.4. Loss Function 
The most commonly used loss function for multiclass segmentation is the categorical 

cross-entropy (CCE).  

CCE(𝑦, 𝑦) =  − 1𝑁 𝑦 , ∙ log 𝑝 𝑦 ,  (7) 𝑁 represents the number of samples and 𝐶 is the number of classes. The value 𝑦 
represents the predicted class, with 𝑦 being the expected class; i.e., the training label. 
The predicted labels are normalized with the Softmax function 𝑝(𝑥) = 𝑒 / ∑ 𝑒 . To 
compensate for the problem of class imbalance, one solution is to use a weighted loss 
function. The weights are calculated per class from the training set labels and represent 
the complementary respective percentage of the number of pixels for every class 
(NPC%). Well-represented classes have lower weights and underrepresented classes 
have higher weights. In all the experiment cases, we consider the weighted version of the 
loss functions. Class weights =  100 –  NPC% (8)

2.4. Evaluation Metrics 
The OA and the class-wise accuracies are commonly used metrics to evaluate the 

performance of deep neural networks. The OA is derived from the values of the confu-
sion matrix (TP: true positive, TN: true negative, FP: false positive and FN: false nega-
tive): 

OA =  TP + TN
TP + TN + FP + FN (9)

However, as the OA reports the number of correctly assigned pixels over the total 
number, it does not represent the model’s performance well in scenarios with class im-
balance and favors the dominant classes. Therefore, we also report the intersection over 
union (IoU) (10) and the F1 score (11). IoU represents the proportion of correctly classi-
fied pixels to the total number of pixels between the reference and the resulting classifi-
cation. F1 represents the harmonic mean of the precision and the recall metric and, thus, 
can be interpreted as the trade-off measure between both metrics. 
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IoU = TP
TP + FP + FN (10)

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall = TP

TP + 12 ⋅ (FP + FN) (11)

3. Results 
In the following sections, we present the quantitative results of the experiments de-

scribed in the previous section. In addition, we also describe the qualitative analysis, as 
quantitative metrics are not completely reliable due to the problem of inaccurate labels in 
the maps produced by the models. 

3.1. Quantitative Results on Multispectral Data 
U-Net reached the highest OA among all the models (77.9%) classifying Sentinel-2 data 

(Table 3). However, the model failed to capture all classes: three classes, forest plantation, 
wetland and semi-perennial crop, were completely omitted by the model and attributed to 
other classes, as shown in the confusion matrix in Figure 6a. Considering the class accuracies, 
we observe that U-Net performed well with multispectral data for forest, water and annual 
crops. However, other classes, such as non-vegetated areas, were not very well captured (cf. 
Table 3). DeepLab was the second best model and reached an OA of 72.7%, which was 5.2 pp 
lower than U-Net. Similar to U-Net, this model also exhibited low performance in capturing 
semi-perennial crop and wetland areas. However, it was able to correctly classify some forest 
plantation and non-vegetated pixels in the test set. Overall the two SotA models had com-
parable class accuracies. 

 
(a) (b) 

Figure 6. Confusion matrices for the best-performing model with mono-modal data (a: U-Net) vs. 
multi-modal data (b: DeepLab). 

Table 3. Test accuracies of the classifications based on multispectral data (S2 dataset) for SotA and 
DeepForest-1 models. Abbreviations: DF = DeepForest, DLab = DeepLab, UN = U-Net, FF = forest 
formation, FP = forest plantation, A&P Crop = annual and perennial crop, oN-FNF = other 
non-forest natural formation, oN-VNA = other non-vegetated area, SP Crop = semi-perennial crop. 
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F1 [%] IoU [%] 

UN DLab 
DF  
1a 

DF  
1b UN DLab 

DF  
1a 

DF  
1b 

FF 92.0 90.1 87.7 91.2 85.1 82.0 78.2 83.8 
Savanna 65.8 60.5 41.2 39.7 49.0 43.4 26.0 24.7 

FP 0.0 2.8 0.0 0.0 0.0 1.4 0.0 0.0 
Wetland 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Grassland  48.8 38.6 25.5 21.1 32.3 23.9 14.6 11.8 
oN-FNF 50.4 45.0 33.6 39.5 33.7 29.0 20.1 24.6 
Pasture 72.8 64.6 73.2 61.5 57.2 47.7 57.7 44.4 

A&P Crop 76.2 54.8 73.5 68.1 61.5 37.7 58.1 51.6 
SP Crop 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Urban  69.4 61.5 0.0 0.0 53.1 44.4 0.0 0.0 

oN-VNA 0.3 8.8 2.6 0.0 0.14 4.6 1.3 0.0 
Water 86.0 85.7 76.7 78.8 75.4 75.0 62.2 65.0 

Macro Average 46.8 42.7 34.5 33.3 37.3 32.4 26.5 27.8 
Weighted Average 77.9 71.9 69.9 68.4 66.0 59.1 57.5 56.5 

 U-Net DeepLab DeepForest-1a DeepForest-1b 
Overall Accuracy [%] 77.9 72.7 72.7 71.4 

With these data settings, SotA models seemed to perform slightly better than 
DeepForest variations. The newly designed deep learning model, DeepForest-1a, reached 
the same OA as DeepLab (72.7%) but with different class accuracies. Similarly to U-Net, 
both DeepForest models failed to detect forest plantation, wetland and semi-perennial 
crop classes. Additionally, none of the urban infrastructure class samples in the test set 
were identified correctly (cf. Table 3). However, they still had plausible accuracies for the 
dominant classes in the selected area. For instance, DeepForest-1a had the highest detec-
tion rate for the pasture class, reaching an F1 score of 73.2%, and DeepForest-1a reached 
the second highest score for forest formation classification (F1 of 91.2%; cf. Table 3) 

3.2. Quantitative Results on Multi-Modal-Data 
The best overall accuracy for purely multi-spectral data slightly outperformed 

models trained on multi-modal data (note that the datasets did not cover the same area 
extents; cf. Figure 2). However, U-Net’s performance dropped significantly when intro-
ducing the multi-modal dataset that included the Sentinel-1 time series (Tables 3 and 4). 
Overall, the class accuracies for models calibrated with multi-modal data were improved 
compared to when only using Sentinel-2 data (Tables 3 and 4). For instance, the map-
pings of savanna, grassland and annual and perennial crop classes (dominant classes) 
had the same accuracy patterns as with the mono-modal experiments, even with smaller 
area extent, but were clearly improved for all models. In particular, the crop sub-class (SP 
Crop) was mostly better mapped with DeepForest models. Apart from the vegetated ar-
eas, the urban, non-vegetated and water classes also improved with more information in 
the input data. Surprisingly, the accuracies for the forest formation class slightly dropped 
with all models when introducing SAR data. 

Table 4. Test accuracies of the classifications based on multi-modal data (S1TsS2_12 dataset) for 
SotA and DeepForest models. Abbreviations: DF = DeepForest, DLab = DeepLab, FF = forest for-
mation, FP = forest plantation, A&P Crop = annual and perennial crop, oN-FNF = other non-forest 
natural formation, oN-VNA = other non-vegetated area, SP Crop = semi-perennial crop. 

 
F1 [%] IoU [%] 

UN DLab DF  
1a 

DF  
1b 

DF  
1c 

DF  
2a 

DF  
2b UN DLab DF  

1a 
DF  
1b 

DF  
1c 

DF  
2a 

DF  
2b 
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FF 32.6 80.9 81.5 81.1 82.1 77.5 71.8 19.5 67.9 68.8 68.2 69.7 63.2 56.0 
Savanna 60.0 74.4 77.1 74.3 77.8 71.6 73.2 42.8 64.6 62.7 59.1 63.7 55.8 57.7 

FP 0.0 30.3 0.0 0.0 0.0 0.9 0.0 0.0 17.9 0.0 0.0 0.0 0.5 0.0 
Wetland 0.0 18.1 0.6 0.0 1.8 0.1 5.0 0.0 9.9 0.3 0.0 0.9 0.1 2.6 

Grassland  52.2 59.8 58.7 53.0 60.1 46.4 47.2 35.4 42.7 41.5 36.1 43.0 30.2 30.9 
oN-FNF 2.6 7.4 3.3 5.6 8.8 4.7 2.2 1.3 3.8 1.7 2.9 4.6 2.4 1.2 
Pasture 67.6 75.5 76.4 74.8 76.2 75.3 71.5 51.0 60.7 61.8 59.8 61.5 60.4 55.6 

A&P Crop 61.9 81.6 83.6 85.0 83.2 84.1 82.9 44.8 69.0 71.8 73.9 71.3 72.6 70.8 
SP Crop 0.0 13.8 0.0 0.4 32.2 26.2 12.0 0.0 7.4 0.0 0.2 19.2 15.1 6.4 
Urban  43.0 85.5 88.0 86.5 85.2 77.7 72.7 27.4 74.6 78.6 76.2 74.2 63.5 57.1 

oN-VNA 15.0 28.4 21.9 25.8 7.7 12.7 8.0 8.1 16.6 12.3 14.8 4.0 6.8 4.2 
Water 84.9 88.8 89.0 88.2 67.6 89.5 88.8 73.8 79.9 80.2 78.9 51.1 81.0 79.8 

Macro Average 35.0 54.1 48.3 47.9 48.6 47.2 44.6 25.3 42.9 40.0 39.2 38.6 37.6 35.2 
Weighted Average 52.2 69.4 71.0 69.4 71.5 67.1 65.5 37.1 60.6 57.8 55.8 58.3 53.2 51.3 

 UN DLab DF-1a DF-1b DF-1c DF-2a DF-2b 
Overall Accuracy 

[%] 56.7 74.4 74.3 72.9 74.4 70.9 69.0 

The early data fusion approaches (DeepForest-1) seemed to have higher model ac-
curacies than those with the representation fusion (DeepForest-2). DeepForest-1a and 
DeepForest-1b were able to learn and map, albeit with a low accuracy, some of the com-
plex and underrepresented classes that could not be predicted using only S2 data (e.g., 
forest plantation and wetland). The best-performing model with early data fusion 
(DeepLab) reached an average F1 score of 53.7% compared to only 42.7% with multi-
spectral data. The model learned to detect almost all of the existing classes, as shown by 
the diagonal values of the confusion matrix in Figure 6b. 

The atrous convolutions and ASPP block of DeepForest-1c did not improve results 
significantly, as the model achieved similar scores as DeepLab and DeepForest-1a. The 
extension of the receptive field through the ASPP block only increased the accuracies of 
crop and vegetated classes. 

3.3. Quantitative Results on Reduced Multi-Modal Data 
The results suggest that U-Net is not suitable for classification using multi-modal 

and multi-temporal data (Table 4). Thus, we only tested DeepLab and DeepForest on the 
reduced time-series data using just a seven-month time frame, from June to December, 
instead of all 12 months (Table 5). DeepForest-1b achieved the best results with an OA of 
75% for the reduced time-series, while the other models exhibited decreases in their OAs 
(cf. Table 5). Interestingly, the detection of classes such as forest formation, savanna and 
wetland slightly improved using the shorter time-series. However, crop classes seem to 
benefit the most from longer time-series. 

Table 5. Test metrics comparison of DeepForest-1 and DeepLab with different time-series lengths 
for Sentinel-1 data (S1TsS2_7 vs. S1TsS2_12). Abbreviations: DF = DeepForest, FF = forest for-
mation, FP = forest plantation, A&P Crop = annual and perennial crop, oN-FNF = other non-forest 
natural formation, oN-VNA = other non-vegetated area, SP Crop = semi-perennial crop. 

 

F1 [%] IoU [%] 
DeepLab DF-1b DF-1c DF-2b DeepLab DF-1b DF-1c DF-2b 
7  

Ms 
12 Ms 7 Ms 12 Ms 7 Ms 12 Ms 7 Ms 12 Ms 7 Ms 12 Ms 7 Ms 12 Ms 7 Ms 12  

Ms 
7 Ms 12 Ms 

FF 71.2 80.9 81.9 81.1 44.2 82.1 55.2 71.8 55.3 67.9 69.3 68.2 28.4 69.7 38.1 56.0 
Savanna 75.8 74.4 79.6 74.3 72.2 77.8 73.4 73.2 61.0 64.6 66.1 59.1 56.5 63.7 58.0 57.7 
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FP 0.0 30.3 3.7 0.0 0.0 0.0 0.0 0.0 0.0 17.9 1.9 0.0 0.0 0.0 0.0 0.0 
Wetland 27.0 18.1 1.7 0.0 0.0 1.8 0.0 5.0 15.6 9.9 0.9 0.0 0.0 0.9 0.0 2.6 

Grassland 58.0 59.8 61.9 53.0 60.3 60.1 56.5 47.2 40.8 42.7 44.8 36.1 43.2 43.0 39.4 30.9 
oN-FNF 2.0 7.4 4.0 5.6 3.2 8.8 1.3 2.2 1.0 3.8 2.0 2.9 1.6 4.6 0.6 1.2 
Pasture 71.9 75.5 76.0 74.8 76.1 76.2 73.8 71.5 56.0 60.7 61.3 59.8 61.4 61.5 58.5 55.6 

A&P Crop 74.1 81.6 81.3 85.0 83.1 83.2 79.5 82.9 58.8 69.0 68.6 73.9 71.0 71.3 66.4 70.8 
SP Crop 0.1 13.8 0.0 0.4 0.1 32.2 0.0 12.0 0.0 7.4 0.0 0.2 0.0 19.2 0.0 6.4 
Urban 79.0 85.5 80.3 86.5 84.6 85.2 71.2 72.7 65.3 74.4 67.1 76.2 73.3 74.2 55.3 57.1 

oN-VNA 18.0 28.4 26.8 25.8 23.9 7.7 26.1 8.0 9.9 16.0 15.5 14.8 13.6 4.0 15.0 4.2 
Water 86.0 88.8 67.6 88.2 88.9 67.6 89.3 88.8 76.0 79.9 80.1 78.9 79.5 51.1 80.6 79.8 

Macro Average 46.9 53.7 47.1 47.9 44.7 48.5 43.9 44.6 36.6 42.9 39.8 39.2 35.7 38.6 34.3 35.2 
Weighted Av-

erage 
67.5 71.0 72.6 70.4 64.3 72.2 65.0 66.5 52.9 58.8 59.6 56.7 50.0 58.9 50.4 52.1 

 DeepLab DeepForest-1b DeepForest-1c DeepForest-2b 
 7 Months 12 Months 7 Months 12 Months 7 Months 12 Months 7 Months 12 Months 

Overall Accu-
racy [%] 69.9 74.4 75.0 72.9 67.8  74.4  68.1  69.0  

3.4. Qualitative Assessment 
For the qualitative assessment, all models acting on the combined dataset (S1TsS2) 

were integrated into an ArcGIS Toolbox (GUI) to perform inference with a larger con-
tiguous extent. We visually inspected the resulting maps and compared them to the 
MapBiomas Collection 4 labels from 2018 (shown in Figure 7). 

 
Figure 7. Map showing the MapBiomas Collection 4 labels from 2018. This extent was used for the 
qualitative assessment. Legend colors were chosen to be coherent with the MapBiomas Project. 

Both SotA networks performed vastly differently with the dataset. The map pro-
duced by DeepLab (cf. Figure 8) looked visually similar to the labels of the MapBiomas 
project. Finer structures in areas with multiple classes were lost, while large contiguous 
areas of one class were correctly assigned. Additionally, some kind of tiling was clearly 
visible (i.e., northeast of the urban area) where classes exhibited hard edges that were 
horizontal or vertical. This effect was probably caused by the tiling of the dataset along 
the x-y-plane. 
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Figure 8. Classification maps using the SotA networks DeepLab and U-Net. The legend for these is 
presented in Figure 8. 

The map produced by U-Net (see Figure 8) showed major misclassifications of the 
urban infrastructure class, as well as grassland formations. The tiling effect caused by the 
image tiles was not apparent in this classification. Overall, this model did not seem to be 
able to produce reliable results with multi-modal input data. 

Both predicted maps appeared smoother compared to the salt and pepper effect of 
the labels. This was due to the pixel-based nature of the algorithms used to derive the 
label maps in the first place. CNNs, on the other hand, also consider the neighborhood 
and were capable of deriving information that was more coherent. 

The three presented models using the early fusion approach, DeepForest-1a/b/c, 
produced visually similar maps, as shown in Figure 9. As in the SotA models, smoother 
maps were produced, with larger homogenous areas due to the spatial neighborhood 
considered by the classifiers. The tiling effect present in the map produced by DeepLab 
was also visible in the classifications of DeepForest-1a and -1c. They all showed the edge 
along 54°W east of the urban settlement. DeepForest-1b provided a more detailed classi-
fication of forest formation (dark green). It was the only model out of the three to detect 
some of the other non-vegetated areas (pink; between 53°50’ W and 53°30’ W). 
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Figure 9. Classification maps produced with the presented early fusion models DeepForest-1a/b/c. 
The legend for these maps is presented in Figure 8. 

The two representation-fusion models, DeepForest-2a and -2b, showed more fi-
ne-grained classifications compared to the other models (cf. Figure 10). As in the Map-
Biomas label map, these models produced less homogenous large patches. None of the 
tiling artifacts from the other models were present here. However, structures such as the 
river in the northeastern part of the extent were not present in the classification maps of 
either of these models. They also seemed to omit the other non-vegetated area class 
completely. The classification of the urban area visible in the maps seemed to be more 
concise with the labels. 
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Figure 10. Classification maps produced with the presented representation fusion models 
DeepForest-2a/b. The legend for these maps is presented in Figure 8. 

4. Discussion 
In a realm of dynamic land cover and challenging weather conditions for optical 

remote sensing data, we proposed new deep learning models employing two different 
data fusion approaches—namely, early and representation fusion—for LULC assessment 
in the Amazon forest. We addressed several design and conceptual aspects of computer 
vision DL models and adapted them for remote sensing data. The results of multiple 
experiments highlighted the potential of these DL architectures with multi-modal data. 
However, many uncertainties and challenges were involved in the process and need to be 
taken into consideration to produce robust and reliable models with new data. In the 
following, we discuss the opportunities and the challenges of the presented approaches 
and the quality of our results compared to similar studies. A direct comparison, however, 
is difficult due to the differences in the application, number and kind of classes, the sen-
sors used and the challenges of weakly supervised learning. 

4.1. Effect of the Synergy between Sentinel-1 and Sentinel-2 Data 
The synergetic use of Sentinel-1 and Sentinel-2 data indeed improved the land cover 

mapping capability in the context of weakly supervised learning. This might be coun-
ter-intuitive since the best OA accuracy of 77.9% was achieved with mono-modal data 
(Table 3). However, this was due to the high bias of OA towards the dominant class (FF) 
covering 43% of the area. Compared to the mono-modal experiments (S2), the mul-
ti-modal approaches showed an improvement in mapping some complex and un-
derrepresented land cover classes, except for the U-Net model (cf. Tables 3 and 4). For 
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instance, classification of savanna can be challenging, as this class can be confused with 
forest, grassland and pasture (cf. Figure 6) [44]. Therefore, this class is often omitted from 
analyses [26]. From the confusion matrices of the best-performing models with S2 
(U-Net) vs. S1TsS2_12 (DeepLab) in Figure 6 (also see Figure A1), we can note a decrease 
in the false predictions of savanna from grassland and pasture. This can be explained 
partly by the use of ASPP but also by the features introduced with SAR data. 

Furthermore, by using time-series SAR data, some models were able to better clas-
sify the annual and perennial crops (cf. Tables 3 and 4), as most models showed signifi-
cant improvements in F1 and IoU. Time-series scenes can capture the different plant 
phenologies during the crop life cycle, from seedlings to fully developed crops. For ex-
ample, soybeans are fully ripe in southern Brazil in March [45], while the harvesting 
season for corn already begins in January [46]. 

Shortening the time-series length did not show a significant change in the results. 
Although using few bands can be beneficial to save computational resources, it requires 
specific consideration of the involved classes and the nature of the area of interest since 
some land cover can benefit from shorter time spans while others might not be captured 
well. 

4.2. Classification Scheme and Label Quality 
The experiments implemented with weak labels showed promising results. The 

models were able to learn the important features for the dominant classes and even im-
prove the delivered representation maps (cf. Figures 9 and 10). However, for LULC clas-
sification, it is difficult to obtain error-free labels, especially in a very dynamic environ-
ment such as the Amazon [19]. In contrast to the existing benchmark datasets with con-
trolled quality of labels (e.g., SEN12MS [26]), it is challenging to evaluate the quality of 
the results from real-world datasets. Low accuracies can be induced from either misclas-
sification errors or mislabeling. Additionally, due to resource limitations, it was not pos-
sible to test the models with the same large extent. This had an impact on the difference 
in the class distribution (different proportions for the class imbalance) and, therefore, on 
the models’ performance. Due to the strong class imbalance, the technique applied to 
circumvent this issue (weighted loss functions) did not result in any remarkable im-
provement in the results. To efficiently solve this problem, a prior sampling process of 
the area of extent is recommended [47]. 

Another main issue with LULC studies is appropriately defining the classification 
scheme. As this is very application domain-related, it is difficult to agree on a global 
scheme, given the heterogeneity of available label sources [48]. This is one of the limita-
tions in this study, and we acknowledge that the classification scheme adopted in the 
ground-truth data had a significant effect on the quality of the model results. A sugges-
tion for improvement is to use more generic classes based on the properties of the area or 
the research questions addressed. 

4.3. Discussion of the Results Compared to Related Studies 
The results of the present study show that classification of LULC demonstrated 

good overall results using SotA methods applied to single-date multi-spectral data (S2). 
However, the inclusion of Sentinel-1 time-series improved the classification, especially 
considering underrepresented classes. 

In a case study in the tropical forests of Myanmar, the authors of [49] used a com-
bination of Landsat imagery and L-Band SAR data (JERS-1 and ALOS-2/PALSAR-2) to 
classify nine classes using an RF algorithm. Although this study used single-date im-
agery instead of SAR time-series, the authors showed an increase in classification accu-
racy when using multi-modal data. 

An improvement in classification results due to spatiotemporal data fusion was also 
shown in another study [50]. The authors compared six spatiotemporal deep learning 
models, including ConvLSTM, which is one of the building blocks of DeepForest. They 
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used a series of median composite Landsat images from across the tropics to classify 
seven follow-up land use classes after deforestation. The ConvLSTM model was among 
the best in all tropical areas. However, the authors mainly showed that the classification 
performance, measured as the class-wise F1 score, was very dependent on location. 
Combing multiple seemingly similar regions into one training set vastly reduces accu-
racy and highlights the importance of regional differences in vegetation that might 
hamper automation on a very large scale, such as the whole Amazon basin. This regional 
consideration is taken into account in the MapBiomas project [19], which uses different 
models and learning strategies for different biomes of Brazil. 

Another study in Brazil [51] used a time-series of 42 Sentinel-1 scenes combined 
with a mosaic of Seninel-2 scenes in Paragominas. The authors also faced the problem of 
heavy cloud cover in this region, thus being unable to produce a time-series for the mul-
ti-spectral data. Their reference data were captured during a field mission, beating our 
labels in terms of quality and correctness. They defined seven major LULC classes for 
classification with an RF classifier. In contrast to our findings, they showed that the 
choice of the intra-annual time period of the SAR time series did not play a significant 
role. However, our approach used much more computationally intensive and dynamic 
models; thus, we argue that a good choice of time period for inclusion in the training 
process is important, as we experienced an increase in classification performance. This 
could save on costly computation time in the learning and inference process due to 
dropping data from time periods that do not significantly contribute to the model per-
formance. 

The authors of [52] used time-series for both the multi-spectral Sentinel-2 images 
and the Sentinel-1 data. This represents the most comparable setting to our study with 
respect to data fusion. They compared RF [13], ConvLSTM [41] and their own proposed 
dual-stream CNN combined with an RNN architecture called TWINNS. They trained 
these models on data from Burkina Faso and Reunion with 8 and 13 classes, respectively. 
In Burkina Faso, the model could achieve at most an OA of 87.5%, and it achieved 89.97% 
in Reunion. However, the ground truth was mostly captured by labor-intensive in situ 
measurements and expert interpretation of VHR imagery and, therefore, the problems 
with weakly supervised learning were not relevant for their study. This is not feasible for 
most areas and, therefore, not directly comparable to our study. However, this compar-
ison highlights that good labels are crucial for good results. Furthermore, the investiga-
tion of how to deal with weakly supervised learning is very important and the issue 
could be tackled by, for example, a combination of unsupervised and supervised learning 
approaches. 

5. Conclusions 
Due to the challenging weather conditions in the Amazon basin, using multi-modal 

remote sensing data is a compelling approach to improve LULC classification. In the 
present study, we compared different fusion approaches using DL, including spatio-
temporal aspects, and propose novel deep learning approaches. 

Our results highlight improvements in detecting underrepresented LULC classes, 
with additional spectral similarities to other dominating classes when using the proposed 
novel deep learning approaches. The potential of developing DL models specifically for 
multi-modal and multi-temporal satellite data for large-scale mapping in tropical regions 
is clearly shown by our results. Furthermore, the integration of the novel models within a 
GUI is of great importance for potential users who might not be familiar with coding. We 
used the inference function on a larger area to conduct qualitative assessment of the re-
sults, which shows that quantitative results might sometimes be misleading, especially in 
the presence of class imbalances and inaccurate labels. 

More research is needed to explore better methods for dealing with inaccurate and 
noisy label data. Ongoing research is diving into the employment of methods to cluster 
robust labels, such as self-supervision techniques [53,54], on even larger datasets from the 
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Amazon area and will hopefully further improve large-scale mapping of this highly 
important environment 
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Appendix A 

 
Figure A1. Confusion matrices and the associated kappa metric for each model with their respec-
tive best-performing datasets in brackets: (a) U-Net (b) DeepLab (c) DeepForest-1c (d) 
DeepForest-1b (e) DeepForest-2a 
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