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Abstract: Extracting water bodies is an important task in remote sensing imagery (RSI) interpretation.
Deep convolution neural networks (DCNNs) show great potential in feature learning; they are widely
used in the water body interpretation of RSI. However, the accuracy of DCNNs is still unsatisfactory
due to differences in the many hetero-features of water bodies, such as spectrum, geometry, and
spatial size. To address the problem mentioned above, this paper proposes a multiscale normal-
ization attention network (MSNANet) which can accurately extract water bodies in complicated
scenarios. First of all, a multiscale normalization attention (MSNA) module was designed to merge
multiscale water body features and highlight feature representation. Then, an optimized atrous
spatial pyramid pooling (OASPP) module was developed to refine the representation by leveraging
context information, which improves segmentation performance. Furthermore, a head module (FEH)
for feature enhancing was devised to realize high-level feature enhancement and reduce training
time. The extensive experiments were carried out on two benchmarks: the Surface Water dataset and
the Qinghai–Tibet Plateau Lake dataset. The results indicate that the proposed model outperforms
current mainstream models on OA (overall accuracy), f1-score, kappa, and MIoU (mean intersection
over union). Moreover, the effectiveness of the proposed modules was proven to be favorable through
ablation study.

Keywords: remote sensing imagery; water body extraction; multiscale normalization attention;
multiscale feature; accuracy

1. Introduction

Water plays an important role in human social and economic development [1]. Ac-
curate mapping of water bodies is of great significance for environment monitoring and
water resource management. Satellite remote sensing is widely used in surface water
body interpretation because of its low labor cost and speed [2]. Water has complicated
spectrum features due to its diversity in salinity, dust, microorganisms, and shadow effects,
which brings challenges to water body extraction from remote sensing imagery (RSI) [3].
In addition, the extraction accuracy is limited because of huge variances of water-body in
geometry and spatial size. The purpose of this study is to realize high-accuracy water-body
extraction from RSI.

Traditional methods manually extract water bodies from multispectral RSI with water
features such as normalized difference water index (NDWI) [4] and modified normalized
difference water index (MNDWI) [5]. They perform well when the dataset is low in noise,
but it is inaccessible in real scenes and lacks certain generalization ability. For timely water
body extraction, the traditional methods still have some shortcomings, such as a low level of
automation and manual dependence. Consequently, the traditional water body extraction
methods have deficiencies under the current massive remote sensing data conditions.
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Convolutional neural networks (CNNs) are tremendous superior in learning feature
representation and pattern recognition. Fully convolutional networks (FCNs) were firstly
proposed in 2015, representing a pioneering type of semantic segmentation network [6].
Fully connected layer is replaced by convolution layer in FCN, which realizes feature map-
ping from image pixels to semantic categories. Nevertheless, continuous pooling operation
discards too much detailed information, resulting in deficiencies in semantic segmentation
accuracy. Attempting to address the aforementioned problems, many optimized versions
have been proposed. Ronneberger et al. reused encoder features by using skip connection
during upsampling in U-Net, which is widely used in medical image interpretation [7].
Badrinarayanan et al. proposed a more structured model named SegNet, which uses the
maximum pooling index to fuse more information in the encoder, boosting the bound-
ary classification accuracy [8]. Zhao et al. proposed the pyramid scene parsing network
(PSPNet), which integrates the context information based on different regions with the
pyramid pooling module [9]. Chen et al. proposed the DeeplabV3+ model, which uses
dilated convolution to expand the receptive field, and adopts the atrous spatial pyramid
pooling (ASPP) module to capture multiscale semantic information [10]. Schlemper et al.
introduced the attention mechanism (AM) into U-Net, which has been proven to be effective
in improving the classification ability of the model [11].

As an important research branch of computer vision, AM is widely used in RSI
semantic segmentation [12]. It realizes spatial or channel information enhancement by
injecting weight vectors into the learned features, which improves model performance and
does not introduce multiple parameters at a time. More specifically, AM can avoid the
omission of much key detailed information, which is regarded as a vital factor affecting
the performance.

RSI implies inherent complex spectral and spatial information. Simultaneously, the
semantic features that are abstracted from these properties contribute to correctly classify-
ing water bodies from sufficient clues. Therefore, Miao et al. proposed a novel edge loss
function, which effectively mitigates the boundary blur problem [13]. Similarly, He et al. uti-
lized edge information guidance in pursuit of improving the performance [14]. Wang et al.
designed a shape feature optimization module to optimize the shape structure of water
bodies, which improves their structural similarity [15]. The core of these strategies is to
enhance the accuracy of water extraction by leveraging boundary information, but this
kind of method always performs conservatively in case significant differences exist in the
water spectrum. In order to address this problem, Weng et al. expanded the receptive
field through dilated convolution to enhance feature representation [16]. Guo et al. pro-
posed a multiscale feature extractor to ensure the accuracy of water body extraction [17].
Zhang et al. proposed a multiscale encoder network to improve the semantic segmentation
accuracy of RSI [18]. Li et al. proposed a cross-level context network to augment the
distinguishability of features, enabling the model to make more accurate judgments [19].
Wang et al. proposed a network based on multiscale attention and transfer learning which
obtained satisfactory results [20]. Zhang et al. devised a multiscale feature extraction
module to realize semantic feature fusion and achieve high-accuracy extraction of water
bodies from satellite and aerial imagery [21]. For methods based on channel attention
mechanisms, channels that are more informative are chosen to train the model. This is
helpful for enhancing the classification ability of the model. However, it compresses the
whole channel-wise feature into a single value, resulting in the loss of some key information.
Consequently, some tiny water bodies cannot be identified in real applications.

Firstly, it is very important to make full use of multiscale information to enhance the
representation of water features [22–24]. In addition, speeding up the training of the model
while ensuring accuracy has great value for the practicality of the model [25]. We suppose
that these are the main reasons that hinder the practicability and accuracy of the model.
Accordingly, a multiscale normalization attention network (MSNANet) is proposed in this
study. In general, the main contributions are as follows:
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1. To enhance the attention representation of water body semantic features, a mul-
tiscale normalization attention (MSNA) module was designed. It utilizes BN to
obtain weights rather than global average pooling (GAP), which reduces the amount
of parameters in the model and retains spatial information concurrently. In addi-
tion, a grouping strategy used in MSNA augments feature representations with
multiscale context information and establishes long-distance feature dependencies
between channels.

2. To achieve high-level semantic understanding of multiscale water bodies, an op-
timized atrous spatial pyramid pooling (OASPP) module was designed. OASPP
incorporates a global maximum pooling branch on the basis of ASPP, which alleviates
the negative impacts from GAP fusing too much noise.

3. To reduce training time and accelerate model convergence, a head module (FEH)
for feature enhancing was designed. It utilizes three-layer convolution operations to
refine the representation for decoding. Furthermore, it concatenates average pooling
and maximum pooling to compress the size of the input, which has been proven to be
negligible in deteriorating model performance.

4. Based on the above-mentioned models, MSNANet is proposed to extract water
bodies from RSI. MSNANet fully samples multiscale context information in the
encoder stage, and reconstructs the resolution in the decoder stage to achieve accurate
dense prediction.

2. Related Works
2.1. Dilated Convolution

Dilated convolution expands the receptive field with the hyperparameter r, which
defines the distance between the elements of a convolution kernel (Figure 1). Meanwhile, it
does not introduce additional computational overhead. More specifically, the expansion of
a receptive field can extract rich contextual information and help the model more accurately
interpret surface features in RSI. He et al. introduced dilated convolution into ResNet
and obtained satisfactory segmentation results. [26]. Depthwise atrous convolution was
introduced to improve the precision of label annotation [27]. Li et al. pointed out that
self-smoothing dilated convolution can resolve the variable object problem [28]. Ma et al.
combined dilated convolution and multiscale skip connection to extract multiscale fea-
tures [29]. Bai et al. designed a compact atrous spatial pyramid pooling (CASPP) module
to merge context information [30]. Kyrkou et al. proposed a lightweight network for
emergency response based on dilated convolution [31].

Figure 1. Dilated convolution with different dilated rate r. (a–c) are the dilated rates of 0, 1, and
2, respectively.

Dilated convolution has incredible potential for refining representation and refactor-
ing features. Much research has shown that dilated convolution can be widely used
in RSI processing and that it is superior in terms of accuracy and efficiency for RSI
semantic segmentation.

2.2. Attention Mechanism

The attention mechanism originated from the human visual system. When humans
observe an object, they pay more attention to the informative parts rather than seeing the



Remote Sens. 2022, 14, 4983 4 of 19

object as a whole. Many scholars have introduced AM into the field of computer vision and
have achieved satisfactory performance. AM can help models extract more vital information
and make more accurate classification decisions. Furthermore, it does not introduce too
much calculation and storage burden to the model. Li et al. integrated the channel attention
mechanism and spatial attention mechanism to realize end-to-end semantic segmentation
in RSI [32]. Niu et al. designed a novel module called the class augmented attention
module to capture semantic interdependencies, which benefits semantic segmentation [33].
Li et al. designed a linear attention mechanism to reduce the time complexity of the
model [34]. Sinha et al. designed a guided self-attention mechanism to capture richer
context dependencies for medical image semantic segmentation [35]. Li et al. proposed a
structured model based on a dual attention mechanism, which mitigates the imbalance of
categories [36].

Although AM can lead to significantly improved performance by enhancing the
informative part, the integrated context information is still insufficient. This phenomenon
causes unreliable feature representation and hinders classification ability.

2.3. Batch Normalization

Batch normalization was proposed to attenuate the difficulty of deep model train-
ing [37]. For each batch size B = {x1, . . . , xn}, the mean value can be computed as

µB =
1
n

n

∑
i=1

xi (1)

where xi is the i-th sample of a batch, n is the size of each batch, and µB is the mean value
of samples in the same batch.

The variance can be computed as

σ2
B =

1
n

n

∑
i=1

(xi−µB)
2 (2)

where σB is the standard deviation of batch size.
Then, the input is normalized by the following formula:

x̂i =
xi − µB√

σ2
B + ε

(3)

where ε is a constant added to maintain numerical stability and x̂i is the normalized input.
Finally, the output is given by:

yi = γx̂i + β (4)

where γ and β are the scale factor and the translation factor, respectively, which are trainable
parameters of the model.

3. The Proposed Method

In recent years, CNNs have shown remarkable potential in object detection [38] and
semantic segmentation [39–42]. However, their performance can be weakened by the
many hetero-features of water bodies, which is considered to be a vital factor that reduces
accuracy. Striving to realize high-accuracy water body extraction in RSI, MSNANet is
proposed and implemented. The core of MSNANet is to leverage rich context information
to optimize performance.

As depicted in Figure 2, MSNANet is based on an encoder–decoder framework. First of
all, FEH is designed to enhance feature representation and diminish the indistinguishability.
Simultaneously, it can significantly reduce training time and accelerate model convergence.
Subsequently, the enhanced feature maps are fed into OASPP after four convolution layers.
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More specifically, the receptive fields of different sizes are integrated into OASPP to capture
multiscale context information, which improves the accuracy and mapping ability of the
model. Then, the encoded feature maps are fed into MSNA. It establishes long-distance
feature dependencies between channels and realizes accurate fusions of multiscale context
information. Finally, the resolution is reconstructed by convolution and upsampling, and
the final segmentation result is output. The rest of this section will elaborate on MSNA,
OASPP, and FEH modules in detail.

Figure 2. The structure of MSNANet. Inside the dotted box are the structures of FEH and
OASPP, respectively.

3.1. Multiscale Normalization Attention Module

Inspired by Liu et al. [43], a multiscale normalization attention (MSNA) module was
designed in this study. An MSNA module is an optimized channel attention mechanism
which refines feature maps with well-rounded multiscale semantic information. Specifically,
two primary components were designed and embedded: grouping strategy (GS) and
normalization attention (NA) module (see Figure 3a). The input feature channels are
equally divided into four groups in GS. Such a design enables the MSNA module to merge
multiple pieces of multiscale semantic information and establishes long-distance feature
dependencies, which can boost performance. The Squeeze-and-Excitation (SE) module
represents the channel attention mechanism, recalibrating the channel-wise weights with
correlations (see Figure 3b). Although competitive performance has been proven, the
multiscale semantic information is neglected while compressing all the channel features
into a single value. Thus, striving to address the aforementioned drawbacks, an NA module
is proposed. Different to the way the SE module weighs feature maps, the NA module
weighs and recalibrates feature maps with the learnable parameter γ, which is dynamically
adapted during the training process. Consequently, the spatial information is preserved in
the NA module. The weight of each feature map can be expressed as

Wi =
γ2

i
∑j=0 γj

(5)

where γ is the scale factor of each feature map after BN operation.
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Figure 3. Pipeline of (a) normalization attention (NA) module and (b) Squeeze-and-Excitation (SE)
module. The white cubes represent the unweighted feature maps, and the colored cubes represent the
weighted feature maps. Different colors represent different weights. Light-colored rectangles indicate
the low-level attention vector, and dark-colored rectangles indicate the high-level attention vector.

The pipeline of the MSNA module is illustrated in Figure 4. Firstly, the input feature
maps are divided into four groups to establish the long-distance feature dependencies
between channels. Subsequently, the convolution kernels of different sizes are operated on
each group to extract multiscale context semantic information. Then, the low-level attention
vectors of each group are obtained by BN operation. In our opinion, the low-level attention
vectors are still limited and insufficient in channel feature representation. The low-level
attention vectors are multiplied by γ to obtain high-level attention vectors. Ultimately, the
feature maps are weighted by the high-level attention vectors and concatenated to obtain
the final result.

The process can be described as follows:

[X0, X1, . . . , XS−1] = Split(X) (6)

Fi = Conv(Ki × Ki, Gi)(Xi), i = 0, 1, . . . , S− 1 (7)

F = Concat([F0, F1, . . . , FS−1]) (8)

where Split(·) is the split operation, X is the number of the input channel, Ki is the size
of the convolution kernel, Gi is the i-th group, Fi is the convoluted feature map in the i-th
group, Concat(·) is the concatenate operation, and S is the number of the group.

On the basis of formula (7), the weights of feature maps in each group are obtained
through the NA module (Figure 3a). The process is as follows:

Zi = σ(Wγ(BN(Fi))), i = 0, . . . , S− 1 (9)

where Zi is the weight of feature maps in the i-th group, σ is the sigmoid function, Wγ is
the network weight, and BN(·) is the BN operation.
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Then, the feature maps are weighted by the attention vector:

Yi = Fi � Zi (10)

where � is the weighting channel operation and Yi is the weighted feature map in the
i-th group.

Finally, the cross-channel information fusion is realized to obtain the final output:

Y = Y0 ⊕Y1 . . .⊕YS−1 (11)

where ⊕ is the group-merging operation.

Figure 4. Pipeline of MSNA module. The white cube represents the unweighted feature maps, and
the colored cubes represent the weighted feature maps. Different colors represent weighted feature
maps with different scales.

3.2. Optimized Atrous Spatial Pyramid Pooling Module

In the field of computer vision, many scholars utilize ASPP extracting and fusing
multiscale information to enhance the context understanding of the model [44–50]. Never-
theless, the high variation in water bodies (e.g., in terms of spectrum, geometry, and spatial
size) is considered an essential factor affecting extraction accuracy. Furthermore, noise
disturbances (such as mountain shadow) can easily cause misclassification in the model.

The ASPP module always consists of five branches, including one 1 × 1 convolution
branch, three 3 × 3 convolution branches, and one global average pooling branch. Due
to the limited sampling range and quantity of parallel branches, many valuable global
features and context information cannot be fully sampled. The module performs favorably
in extracting multiscale water bodies, being especially effective for large-scale water bodies,
but it always fails to extract tiny water bodies (e.g., the RSI only includes a small part of
tiny water areas) due to it is easily confusing water and background information during
global average pooling. In this study, a global maximum pooling (GMP) branch has been
integrated on the basis of ASPP, which can highlight the semantic features of tiny water
bodies in the global receptive field (the structure can be seen in Figure 2). Firstly, 1 × 1
convolution was adopted to reduce the dimensions and provide more spatial details for the
decoder. The 1 × 1 convolution branch allows tiny water body information to be preserved,
which helps the model extract tiny water bodies. In addition, we utilized 3 × 3 convolution
kernels with different dilated rates (r = 6, 12, 18) to obtain receptive fields of different
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sizes, which makes the multiscale features of water bodies more discernable. A relatively
small dilated rate (r = 6) was used to extract small-scale water bodies. A relatively large
dilated rate (r = 12, 18) was used to extract large-scale water bodies. Finally, GAP and GMP
followed by a 1 × 1 convolution were integrated to realize global information interaction.

Simply put, OASPP not only captures rich multiscale detail information, but makes
full use of global valuable information to suppress noise interference.

3.3. Head Module for Feature Enhancing

Different from the semantic segmentation of natural imagery, the semantic segmenta-
tion of RSI is extremely dependent on the representation ability of surface features. Affected
by various factors, water bodies show dramatic variation in spectral features in RSI. This
causes water bodies to be easily confused with other surface features, which decreases the
segmentation ability of CNNs.

In this study, FEH (structure shown in Figure 2) was designed to improve feature
distinguishability and accelerate network convergence. Firstly, a three-layer convolution
operation was performed on the input to enrich the channel domain information. Subse-
quently, 3 × 3 average pooling and maximum pooling with a stripe of 2 were performed to
compress the size of the input, which reduces the training time. More specifically, pooling
operations can augment the representation of water body semantic features and discard
the background information, which refines features for the following decoding stage. Ulti-
mately, the pooled feature maps are concatenated to realize precise channel information
interaction and feature injection.

In general, FEH provides enhanced semantic features for the decoder, which aid
in performance.

4. Experiments
4.1. Dataset

In order to verify the performance and universality of MSNANet, extensive exper-
iments were conducted on two public satellite remote sensing datasets: Surface Water
dataset (SW dataset) and Qinghai–Tibet Plateau Lake dataset (QTPL dataset). The datasets
contain more than 24,000 high-resolution RSIs of lakes in total, with different sizes and
various shapes, with lakes in the shadows of clouds and water bodies connecting lakes
(such as rivers).

4.1.1. Surface Water Dataset

The SW dataset is a novel visible spectrum satellite remote sensing dataset which
includes three spectral bands—R (red), G (green), and B (blue)—and has annotated water
bodies and backgrounds. The number of bits per pixel of each image is 24. There are
17,596 remote sensing images, 17,596 label images, and 17,596 visual label images in the
original SW dataset, and the size is 256 × 256. Here, 80% of them were randomly assigned
to the training set and 20% were assigned to the testing set, which are used for model
training and testing, respectively. Finally, 14,077 training images and 3519 testing images
were obtained.

4.1.2. Qinghai–Tibet Plateau Lake Dataset

The QTPL dataset is a visible spectrum RSI dataset. Only lakes in the dataset are
labeled by labelme [51]. The sampling location of the QTPL dataset is shown in Figure 5.
There are 6774 remote sensing images in the QTPL dataset, with a size of 256 × 256. The
number of bits per pixel of each image is 24, and the spatial resolution is 17 m. Here, 90%
of them were randomly assigned to the training set and 10% were assigned to the testing
set. Finally, 6069 training images and 705 testing images were obtained.
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Figure 5. Sampling location of Qinghai–Tibet Plateau Lake dataset. Inside the dotted box are some
typical samples.

In an attempt to achieve superior performance and enhance the universality of the
model, data augmentation—including random clipping, random horizontal sliding, ran-
dom flipping, rotation, and color enhancement—was performed on all images before each
epoch (Figure 6).

Figure 6. Data augmentation. a(1)–a(3) random flipping, b(1)–b(3) random rotation, c(1)–c(3) color
enhancement. The first column indicates the original image; the second and third columns indicate
the enhanced image from the first column, respectively.

4.2. Experimental Details

The operating system used by the experiment was Ubuntu 20.04. The GPU was an
NVIDIA Tesla V100 with 32 GB of memory. The deep learning framework used was Pytorch
and the python version was Python 3.7. No models were pre-trained in the experiment.
Before each epoch, all images were shuffled to enhance the generalization ability of the
model. The batch size was set to 4. Cross entropy (CE) loss has been used as the loss
function of the model; its formula is as follows:

H(p, q) = −
n

∑
i=1

p(xi) log(q(xi)) (12)
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where p(xi) and q(xi) are the true probability distribution and the predicted probability
distribution, respectively. The goal of the training process is to minimize CE loss. In this
study, the adaptive adadelta optimizer was adopted to update model parameters. The
initial learning rate was set to 0.1. The learning rate reduction strategy can be calculated by
the following formula:

lr = lr0 × (1− epochi
epochmax

)
0.9

(13)

where lr is the current learning rate, lr0 is the initial learning rate, epochi is the current
epoch, and epochmax is the maximum epoch (which was set to 200). The details regarding
hyperparameters are listed in Table 1.

Table 1. Details of hyperparameter settings.

Hyperparameter Setting

Batch size 4
Loss function Cross entropy loss

Optimizer Adadelta
Initial learning rate 0.1
Maximum epochs 200

4.3. Evaluation Metrics

Essentially, extracting water bodies from RSI is a semantic segmentation task. Con-
sequently, five semantic segmentation evaluation metrics were adopted to evaluate the
performance of the proposed model: Overall Accuracy (OA), F1-score, kappa, Water Inter-
section over Union (WIoU), and Mean Intersection over Union (MIoU). The OA denotes the
proportion of all correctly classified pixels to the total pixels. Ideally, both precision (P) and
recall (R) should be as high as possible. When these two metrics are conflicting, it is difficult
to evaluate the performance of the models. Therefore, in order to give consideration to both
P and R, F1-score was adopted as the evaluation metric. Due to the imbalance between
the number of water body pixels and background pixels in the dataset, the model is more
inclined to predict pixels as the background pixels. In order to address the background bias
of the model, kappa was introduced. The WIoU is the proportion of intersection and union
of predicted water body values and real water body values, while the MIoU is the mean of
intersection and union ratios of all categories; their formulae are as follows:

OA =
TP + TN

TP + TN + FP + FN
× 100% (14)

F1 − score =
2

1
precision + 1

recall
= 2× precision× recall

precision + recall
× 100% (15)

precision =
TP

TP + FP
(16)

recall =
TP

TP + FN
(17)

Kappa =
p0 − pe

1− pe
(18)

p0 = OA =
TP + TN

TP + TN + FP + FN
× 100% (19)

pe =
(TP + TN)× (TP + FP) + (FP + FN)× (TN + FN)

N2 (20)

WIoU =
TP

FN + TP + FP
× 100% (21)
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MIoU =
1

k + 1

k

∑
i=0

TP
FN + TP + FP

× 100% (22)

where TP denotes true positive. In this paper, this means the number of pixels correctly
predicted to be water body pixels. FN denotes false negative. In this paper, this means the
number of water body pixels incorrectly predicted to be background pixels. FP denotes false
positive. In this paper, this means the number of background pixels incorrectly predicted
to be water body pixels. TN denotes true negative. In this paper, this means the number of
pixels correctly predicted to be background pixels.

4.4. Results and Analysis

To verify the performance of the proposed method, five advanced semantic segmen-
tation models are presented in this section: DeeplabV3+ [10], SegNet [8], PSPNet [9],
Attention U-Net [11], and LANet [52]. In addition, in order to verify the generalization
ability of the proposed model, the experiments have been conducted on two datasets:
Surface Water dataset and Qinghai–Tibet Plateau Lake dataset.

4.4.1. Results for the Surface Water Dataset

Quantitative comparison results for the SW dataset are summarized in Table 2. The
boldface indicates the optimal result of each evaluation metric. It can be seen that MSNANet
has outperformed others in five evaluation metrics: OA, F1-score, kappa, WIoU, and MIoU.
The MIoU is 0.38% higher than the second best model, DeeplabV3+. Attention U-Net,
which is also an embedded attention mechanism, is 1.1% lower than MSNANet in OA.
LANet enhances feature representation by fusing high-level semantic information and
low-level spatial information. Unfortunately, it is slightly problematic for the SW dataset.
MSNANet achieved 92.12% and 0.87908 in F1-score and kappa, respectively, which indicates
that MSNANet can better address the background bias. Visual inspections are shown in
Figure 7, from which it can be seen that the proposed method can extract water bodies
accurately in the narrow areas (a(3)–e(3)). In the case of cloud interference, it also performs
better than other methods (b(1)–b(8)). This means MSNANet has a strong capability of
resisting interference compared to other methods. When the spectral features of water
bodies are quite different (a(1)–f(1)), MSNANet’s performance is not greatly affected. This
means that the proposed method has a robust and stable extraction capability. The training
time and the Flops (floating point operations) are listed in Table 3. Although the amount of
parameters has increased, the computational time has not increased significantly, especially
in the Flops. Meanwhile, the increased training time is acceptable. This means that the
proposed method has good practicability while maintaining accuracy.

Table 2. Quantitative comparison for the SW dataset. Bold numbers indicate the best results.

Method OA F1-Score Kappa WIoU MIoU

MSNANet 94.44 92.12 0.87908 85.4 88.66
Attention

U-Net 93.34 90.56 0.85479 82.76 86.54

DeeplabV3+ 94.3 91.87 0.87487 84.96 88.28
PSPNet 94.17 91.73 0.87299 84.72 88.12
SegNet 94.15 91.55 0.8701 84.41 87.87
LANet 94.14 91.62 0.87114 84.52 87.96
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Figure 7. Visualization results for the SW dataset: a(1)–f(1), images; a(2)–f(2), ground truth; a(3)–f(3),
MSNANet; a(4)–f(4), Attention U-Net; a(5)–f(5), DeeplabV3+; a(6)–f(6), PSPNet; a(7)–f(7), SegNet;
a(8)–f(8), LANet. The white circles indicate obvious differences.
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Table 3. Comparison in terms of computational time. Bold numbers indicate the best results. The
size of the input was 256 × 256.

Method Params (M) Training Time (s) Flops (G)

MSNANet 72.3 627 61.943
Attention U-Net 34.9 459 66.636

DeeplabV3+ 54.7 348 20.757
PSPNet 46.8 413 46.112
SegNet 29.4 271 40.169
LANet 24.0 255 8.309

4.4.2. Results for the Qinghai–Tibet Plateau Lake Dataset

Quantitative comparison results for the QTPL dataset are summarized in Table 4.
Statistically, the OA, F1-score, kappa, WIoU, and MIoU of MSNANet (98.47%, 98.11%,
0.96824, 96.29%, and 96.88%, respectively) are the highest. This sufficiently demonstrates
MSNANet’s ability in feature discrimination and distinction perception. Figure 8 illustrates
the visualization comparison for the QTPL dataset. Compared with other models, the
inference result of MSNANet is the closest to the ground truth. In addition, MSNANet
showed the best performance in water boundary prediction and anti-interference. As we
can see, Attention U-Net is effective in extracting large water bodies, but fails to fully
extract small water bodies (a(4), d(4), and e(4)). Compared with MSNANet, DeeplabV3+
showed better performance in extracting small water bodies, but it is vulnerable to shadows
(d(5)). PSPNet has low water body extraction accuracy due to the use of multi-layer pooling
operations (a(6)-e(6)), and the segmentation accuracy at water body boundaries is not very
high (f(6)). SegNet is easily affected by shadows and its extraction accuracy is limited
(a(7)–d(7)). LANet has some shortcomings in the extraction of small water bodies (a(8),
c(8)–e(8)), and the delineation of water boundaries is not satisfactory (f(8)).

Table 4. Quantitative comparison for the QTPL dataset. Bold numbers indicate the best results.

Method OA F1-Score Kappa WIoU MIoU

MSNANet 98.47 98.11 0.96824 96.29 96.88
Attention

U-Net 98.24 97.87 0.96347 95.76 96.42

DeeplabV3+ 98.39 98.03 0.96691 96.14 96.75
PSPNet 98.4 98.03 0.9671 96.15 96.77
SegNet 98.12 97.69 0.96135 95.49 96.21
LANet 98.29 97.89 0.96457 95.86 96.52

4.5. Ablation Study

In this section, the effectiveness of the proposed modules is analyzed comprehensively.
In our strategy, the MSNA module was designed to extract multiscale water body features
and enhance attention expression. The OASPP module was designed to extract multiscale
context information and realize cross-scale feature interaction. The FEH module was
designed to accelerate model training and increase feature distinguishability. In addition,
in order to verify the universality of the proposed module, sufficient ablation experiments
were performed on two datasets.



Remote Sens. 2022, 14, 4983 14 of 19

Figure 8. Visualization results for the QTPL dataset: a(1)–f(1), images; a(2)–f(2), ground truth;
a(3)–f(3), MSNANet; a(4)–f(4), Attention U-Net; a(5)–f(5), DeeplabV3+; a(6)–f(6), PSPNet; a(7)–f(7),
SegNet; a(8)–f(8), LANet. The white circles indicate obvious differences.

The statistical results of the ablation study are summarized in Table 5. For the SW
dataset, after removing FEH, the OA, F1-score, kappa, WIoU, and MIoU decreased by 0.22%,
0.49%, 0.00694, 0.85%, and 0.61%, respectively. Meanwhile, the training time of each epoch
increased by more than four-fold. After removing OASPP, the OA, F1-score, kappa, WIoU,
and MIoU decreased by 0.11%, 0.21%, 0.00377, 0.36%, and 0.34%, respectively. Moreover, the
amount of parameters decreased to 39.6 M. This means that OASPP introduces numerous
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parameters and computational burden while boosting the model performance, but the
cost is acceptable. After ablation of MSNA, the OA, F1-score, kappa, WIoU, and MIoU
decreased by 0.18%, 0.33%, 0.00527, 0.57%, and 0.47%, respectively, and the amount of
parameters decreased by 1.7 M. The training time of per epoch did not increase significantly.
Similar to the results for the SW dataset, the ablation study for the QTPL dataset also
proved the performance of the proposed module. This means that the MSNA module does
not introduce too much computational burden while improving the accuracy of the model.
Consequently, we deem that the MSNA module is a lightweight and eminent channel
attention module.

Table 5. Quantitative analysis of ablation study. Training time indicates the training time of each
epoch. Bold numbers indicate the best results.

Dataset Method Params (M) OA F1-Score Kappa WIoU MIoU Training Time
(s/epoch)

SW dataset

MSNANet 72.3 94.44 92.12 0.87908 85.4 88.66 627
MSNANet (without FEH) 72.2 94.22 91.63 0.87214 84.55 88.05 2629

MSNANet (without OASPP) 39.6 94.33 91.91 0.87531 85.04 88.32 373
MSNANet (without MSNA) 70.6 94.26 91.79 0.87381 84.83 88.19 611

QTPL dataset

MSNANet 72.3 98.47 98.11 0.96824 96.29 96.88 326
MSNANet (without FEH) 72.2 98.31 97.96 0.96585 96.01 96.65 1097

MSNANet (without OASPP) 39.6 98.41 98.05 0.96713 96.17 96.77 157
MSNANet (without MSNA) 70.6 98.37 97.98 0.96621 96.06 96.68 254

In order to verify the effectiveness of the proposed module visually, the segmentation
result of the ablation study is shown in Figure 9. The visualization results show that when
the FEH is removed, it is easy for the model to recognize the background as a water body,
which impedes the classification ability (d(4), f(4)). Some tiny water bodies are missed when
the OASPP is removed (a(5)–d(5)). After the ablation of MSNA, MSNANet has reduced
capability in suppressing noise interference (c(5)). The error for water boundaries increased,
which may lead to some areas being missed (b(6), d(6), e(6)).

In general, the quantitative and qualitative results of the ablation study demonstrate
that each module we designed has preponderance in helping the model refine feature
representation and optimize segmentation performance.
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Figure 9. Visualization results of ablation study: a(1)–f(1), images; a(2)–f(2), ground truth; a(3)–f(3),
MSNANet; a(4)–f(4), MSNANet (without FEH); a(5)–f(5), MSNANet (without OASPP); a(6)–f(6),
MSNANet (without MSNA). a(1)–c(1)—images in the SW dataset; d(1)–f(1)—images in the QTPL
dataset. The white circles indicate obvious differences.

5. Conclusions

Along with the development of remote sensing technology, traditional water body
extraction methods have deficiencies in automation scenes because they are affected by
expert knowledge or artificial factors. In addition, the accuracy is limited because of the
huge differences in water body spectral features, geometry, and spatial size. In order to
address the above problems, MSNANet is proposed and implemented.

First of all, MSNA is designed to realize the attention interaction of multiscale water-
body features. MSNA splits the input into four groups and extracts multiscale features with
the convolution kernel of different sizes. Specially, MSNA weights feature maps according
to the learnable parameter γ, which is learned by BN and dynamically adapted during the
training process. Moreover, the OASPP we proposed concatenates multiscale features to
realize cross-level information interaction and captures global valuable information for
further performance improvement. Furthermore, FEH was designed to reduce training
time and accelerate model convergence. Two parallel pooling branches were embedded in
FEH to compress the size of the input and provide enhanced feature maps for the encoder.
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Extensive experiments have been conducted for the SW dataset and QTPL dataset,
and the results indicate the progressiveness of our strategy. Meanwhile, the ablation study
utterly demonstrates the effectiveness of the modules we designed. MSNA is a novel
lightweight and efficient attention module which can be flexibly applied to other computer
vision scenes. In future work, the proposed method should be used and testified in different
scenarios; in addition, the model structure should be evolved to capture the boundaries of
water bodies more accurately.
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