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Abstract: The traditional railway survey adopts a manual observation method, such as a total sta-

tion measuring system. This method has high precision, but the amount of data is small, and the 

measurement efficiency is low. Manual measurement cannot meet the requirements of dynamic 

continuous high-precision holographic measurement during railway outages. Mobile laser scanning 

is a mobile mapping system based mainly on a laser scanner, inertial measurement unit (IMU) and 

panoramic camera. Mobile laser scanning has the advantages of high efficiency, high precision and 

automation. However, integrating inertial navigation data and mobile laser scanning data to obtain 

real 3D information about railways has always been an urgent problem to be solved. Therefore, a 

point cloud reconstruction method is proposed based on trajectory filtering for a mobile laser scan-

ning system. This paper corrects the odometer data by identifying railway feature points through 

deep learning and uses Rauch–Tung–Striebel (RTS) filtering to optimize the trajectory results. Com-

bined with the railway experimental track data, the maximum difference in the east and north co-

ordinate direction can be controlled within 7 cm, and the average elevation error is 2.39 cm. This 

paper applies a multi-sensor integrated mobile detection system to railway detection. It is of great 

significance to the healthy development of the intelligent railway system. 

Keywords: mobile laser scanning; point cloud; feature recognition; deep learning;  

inertial measurement unit; multi-sensor 

 

1. Introduction 

In recent years, with the continuous advancement of China's strategy of strengthen-

ing China's transportation, the scale and speed of railway tunnel construction have made 

remarkable achievements. By the end of 2020, 16,798 railway tunnels had been built and 

operated across the country, with a total length of about 19,630 km, and the total mileage 

of the built subway tunnels exceeds 6000 km. Railway operating enterprises attach great 

importance to tunnel safety and invest a lot of manpower and material resources to carry 

out disease investigation, deformation monitoring, operation and maintenance inspec-

tion, etc. [1–4]. In different stages of rail transit construction, operation and maintenance, 

comprehensive testing with high precision, high reliability and high efficiency are neces-

sary to ensure operational safety. 

With the continuous growth of railway operating mileage and its proportion to pub-

lic transportation, the operation and maintenance costs are high, and the demand for ef-

ficient inspection and engineering monitoring during the operation period is also increas-

ing rapidly. The traditional method uses manual inspection, total station and level to 

monitor the structural deformation, but the operation efficiency is difficult to meet the 

detection needs of the normal maintenance and maintenance of the super-large-scale net-

work in the future [5]. In the context of the rapid expansion of railways, the operation and 

maintenance department urgently needs an efficient, precise and comprehensive 
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inspection technology to replace the traditional inspection method in order to inspect the 

operating tunnel during the skylight time. 

In recent years, non-contact detection methods based on laser scanning have been 

rapidly developed. As technology has advanced, efficient and intelligent comprehensive 

detection technologies have been developed for the rail transit industry. In particular, la-

ser scanning technology has the advantages of miniaturization of equipment, measure-

ment and imaging, no need for lighting, and low operating cost. In recent years, it has 

been widely used in the construction and operation of railways and subways [6–11]. 

Shanghai, Nanjing, Shenzhen, Guangzhou, Tianjin, Wuhan and other cities have generally 

applied laser scanning technology for regular convergence and deformation surveys and 

structural disease surveys. The railway mobile laser measurement system used in this 

study has a fast measurement speed and richer results, and it is 5–10 times more efficient 

than traditional measurement methods. 

For complex scenes such as railways, relevant research institutes at home and abroad 

have developed various types of orbital mobile laser scanning systems. Sturari et al. [12] 

proposed a new method to mix visual and point cloud information, using a hybrid of the 

Felix robot's multi-view camera and linear laser. This method is effective for railway safety 

and infrastructure change detection. Stein et al. [13] used template matching and spatial 

clustering to process the laser scanning data of the railway and obtained the rail detection 

results through quantitative and qualitative experiments. The GRP5000 developed by 

Amberg [14] in Switzerland is equipped with a PROFILER 6012 3D scanner, which inte-

grates a tilt sensor, an odometer and a displacement sensor. During the mobile scanning 

process, the prism installed on the car body is tracked and measured by the total station 

to obtain the absolute coordinates of the track. The point cloud results can be used for 

track scanning, central axis extraction, gap analysis, boundary and deformation detection. 

The VMX-RAIL mobile laser measurement system of Riegl, Austria [15] uses three high-

speed laser scanners to reduce scanning shadows and achieve 130 km/h high-speed syn-

chronous acquisition of point clouds and images. It supports third-party software for 

cross-section measurement, limit measurement, asset survey, etc. Li [16] et al. measured 

the high-precision 3D curves of railway tracks using a rail trolley equipped with a laser-

assisted inertial navigation system (INS)/odometer system. A model for measuring the 

irregularity of the track curve was established, and the actual track irregularity was meas-

ured. SUN [17] et al. proposed a tunnel environment disease and deformation detection 

system with laser scanning as the main sensor. This system provided functions such as 

tunnel structure deformation and disease extraction. CHEN [18] proposed a track extrac-

tion algorithm based on generalized neighborhood height differences. Based on the track 

extraction with the last track, it can accurately extract the track information of the entire 

railway. 

Most of the current research on POS (position and orientation system) focuses on 

different types of combined navigation and odometer combined methods, filtering and 

smoothing models, and precise single-point positioning technology. However, the error 

characteristics of the odometer in the actual harsh environment are less involved, and 

there is no mature error suppression or elimination method [19–21]. Because of the special 

environment of railway tunnels with poor positioning, domestic and foreign researchers 

have done a lot of research. Tsujimura et al. [22] proposed a localization scheme for tunnel 

robots that rely on fixed orbits for navigation. This method utilizes a magnetic flux posi-

tion measurement system installed on the ground and underground tunnel robots to lo-

cate the robot. However, this positioning scheme is only suitable for robots with fixed 

orbits, and it is difficult to achieve high dynamic continuous positioning. JING et al. [23] 

achieved accurate 3D reconstruction of objects using a tunnel robot to obtain depth and 

true-color images. JING et al. used an improved iterative closest point to obtain single-

point positions and assembled dense point cloud reconstruction. 

In the above research on orbital mobile laser scanning systems, these systems are 

costly in terms of hardware and software. Because of the large volume and weight of 
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measuring equipment, workers spend more time on installation and operation. The soft-

ware offers only a single mode of data processing, and the software cannot be customized 

to the complex Chinese railway environment. There is no corresponding filtering method 

for the odometer and INS data fusion in the POS calculation. At the same time, there is a 

lack of a method to reduce the accumulation of odometer errors. Therefore, how to study 

a low-cost, high-precision, and efficient railway mobile measurement system is an urgent 

problem to be solved. 

In this study, a mobile laser scanning system is used for data collection, and ortho-

photo images are used to realize the automatic identification of feature points and mileage 

correction. The trajectory data are optimized by the Kalman filter (KF) to obtain high-

precision trajectory data. 

In Section 2, we introduce the hardware and software design of the railway mobile 

laser scanning system. Section 3 introduces the generation method of orthophoto, the 

method of mileage and pose correction and the method of high-precision point cloud gen-

eration. Section 4 evaluates the accuracy of the railway laser scanning results. In Sections 

5 and 6, future research prospects and recommendations, as well as the final findings of 

this paper, are discussed. 

2. Railway Mobile Laser Scanning System 

In order to achieve the purpose of three-dimensional absolute coordinate measure-

ment, it is necessary to integrate the laser scanner and the position and attitude system 

into the system platform. Furthermore, the instrument platform is mounted on the mobile 

carrier to perform fast dynamic scanning during the carrier movement. Therefore, it is 

necessary to design a set of railway mobile laser scanning devices in-house. The self-de-

veloped system integrates two-dimensional cross-section laser scanners, INS, panoramic 

cameras, and a tablet into a mobile carrier that can run on the track. 

Considering the ease of installation and disassembly of the platform, the occlusion of 

the camera’s field of view, the occlusion of the Global Navigation Satellite System (GNSS) 

antenna, and the stability of sensor installation, a multi-sensor integration box is designed. 

The platform integration design is shown in Figure 1, which mainly includes: GNSS an-

tennas, panoramic camera, laser scanner, tablet, and IMU. 10 mm aluminum alloy plates 

splice the main structure, and each plate has a weight reduction design. The outside is 

bent and welded by stainless steel plates to reduce exposed screws. The raw materials of 

each component must meet the requirements of lightweight and high rigidity. The data of 

scanner, INS, panoramic camera, and mileage are collected through a tablet, which adopts 

a capacitive touch screen and embedded wall-mounted installation. The present invention 

completes the startup of the device, the expansion of the power supply, and the transmis-

sion and downloading of data through the control panel, thereby simplifying the data 

transmission process. In the present invention, the scanner is fixed in the instrument case 

through the threads on both sides, which is convenient for installation and disassembly. 

A threaded interface is designed on the base of the instrument, which is suitable for vari-

ous rail cars and official vehicles. The platform reserves total station and prism installation 

interfaces, and corresponding workbenches can be added according to subsequent needs. 



Remote Sens. 2022, 14, 4965 4 of 26 
 

 

 

Figure 1. Schematic diagram of the mobile railway inspection vehicle, including a laser scanner, 

IMU, GNSS antenna, a tablet, an odometer, and the panoramic camera. 

The laser scanner selected in this paper is the German Z+F 9012 section scanner, 

which adopts the principle of laser ranging, emits laser pulses to the target surface, and 

records information such as distance, angle, and reflection intensity. To achieve fast and 

high-density acquisition of a large number of point cloud data of objects, the scanning rate 

of the system exceeds 1 million points per second, the maximum scanning speed is 200 

rpm, and the distance resolution is 0.1 mm. 

The inertial navigation system used in this article is the XD300A-DGI, which consists 

of a cost-effective closed-loop fiber optic gyroscope, an accelerometer, and a high-end 

GNSS receiving board. The bias stability of the inertial accelerometer is 5 × 10-5 g, and the 

bias stability of the gyro is 0.02°/h. The IMU consists of three accelerometers and three 

fiber optic gyroscopes. It is responsible for measuring the acceleration and angular veloc-

ity of the carrier and sending this information to the information processing circuit. The 

information processing circuit utilizes the acceleration and angular velocity measured by 

the inertial measurement unit for navigation and settlement. At the same time, using the 

satellite navigation information received by the GNSS board as a reference, comprehen-

sive navigation is performed to correct the navigation error of the inertial navigation. 

3. Methodology 

This paper divides the process of target detection and trajectory filtering into four 

steps: orthophoto generation, mileage localization method based on You Only Look Once 

(YOLO), location update and RTS trajectory filtering, and high-precision 3D point cloud 

reconstruction. The calculation flow chart is shown in Figure 2. 



Remote Sens. 2022, 14, 4965 5 of 26 
 

 

Raw point cloud

Data fusion and correction

Navigation data

Orthophoto

YOLO Speed correction Mileage results

Pos resultsRTS filtering

High-precision point cloud generation

Point cloud filtering

Step1

Step2

Step3

Step4
 

Figure 2. Flow chart of data processing of railway mobile laser scanning. 

3.1. Orthophoto Generation 

The laser sensor emits a laser beam with a specific transmission power, and the laser 

beam is reflected and scattered when it reaches the surface of the object and is received by 

the laser sensor [24]. The received echo power is obtained after processing by the internal 

system. The receiver converts the received power into voltage and digitally outputs an 

integer value, which is the intensity value. According to the scan lines, raster grayscale 

images are generated by performing projection expansion. The intensity value of the Z+F 

9012 series laser scanner is stored in a 16-bit data length, and the acquired point cloud 

intensity range can be exported as [0, 1] or [0, 65525] and other different grayscale ranges. 

In order to highlight the difference in the point cloud intensity values of railway scan-

ning feature objects, it is necessary to enhance the acquired point cloud intensity values. 

The full-scale grayscale histogram stretching method is adopted. The original intensity 

range is mapped to [0, 1] through a linear change. Let Q be the laser point set, and the 

original intensity value of each point is W(i), i∈Q. Get the min and max in the raw inten-

sity as follows: 

 
𝑊𝑚𝑖𝑛 = min

𝑖∈𝑃
𝑊(𝑖) 

(1) 

 
𝑊𝑚𝑎𝑥 = max

𝑖∈𝑃
𝑊(𝑖)  

(2) 

Linearly map it to 0 and 255, respectively, to get the stretched strength 

value 𝑊𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑖): 
 

𝑊𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑖) =
255

𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛
∗ (𝑊(𝑖) − 𝑊𝑚𝑖𝑛)  

(3) 

The original scanned point cloud has a small number of intensity minimum or max-

imum points. Only using this method to stretch the point cloud intensity value has certain 

defects. In order to solve this defect, on the basis of stretching the full-level grayscale his-

togram, an intensity value stretching method considering the number of point clouds is 

adopted. The minimum number of point clouds is used as a threshold to reduce the influ-

ence of intensity noise points. As a result, the intensity of the point cloud is firstly counted, 
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the number of point clouds corresponding to each intensity value in the intensity value is 

obtained, and the histogram curve is drawn. As shown in Figure 3, the minimum and 

maximum strengths with points greater than the threshold are counted as the minimum 

and maximum strengths of strength stretching. The intensity image is shown in Figure 4. 

 

Figure 3. Removal of unusual parts of the intensity values (red parts) by intensity histogram filter-

ing. 

 

 

(a) (b) 

Figure 4. Intensity image generated from partial railway point cloud data:(a) Before intensity filter-

ing;(b) After intensity filtering. 
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A depth image, also known as a range image, refers to an image that uses the distance 

from the image collector to each point in the scene as a pixel value. The laser scanning 

system realizes the calculation of the depth image by comparing the time delay or phase 

of the transmitted signal and the received signal. 

Firstly, the discrete laser point cloud data are resampled by the regular grid to obtain 

a digital depth (distance) matrix. Resampling is a method to determine the pixel value for 

any unknown point based on the four adjacent known pixel points. The pixel value of the 

unknown point is obtained by a first-order linear calculation in the horizontal and vertical 

directions. Different depth values are grayscale quantized and stretched. Taking this as 

the pixel value, we get a depth image that only contains the distance information. In this 

imaging process, interpolation errors are generated during resampling. For fewer errors, 

adaptive filtering of the resulting depth image is required. 

Adaptive filtering is the process of dividing an image into sub-blocks and detecting 

the noise by applying it to the pixels in each sub-block. After adaptive filtering, the noise 

in the original image is suppressed, the main features of the image become more obvious, 

and the depth image is shown in Figure 5. 

 

 

(a) (b) 

Figure 5. Depth image generated from partial railway point cloud data:(a) Before adaptive filter-

ing;(b) After adaptive filtering. 

The point cloud intensity filtering eliminates the influence of some external factors 

on the intensity value so that the point cloud intensity value is only related to the target 

reflectivity, which can improve detection accuracy. On the other hand, the distribution 

range characteristics of point cloud laser intensity values have been clarified by scanning 

various objects. The processing of point cloud depth images is mainly to enhance the ex-

pression of characteristic structures through image processing. Adaptive filtered images 

are used for target classification and identification based on geometric and spatial features 

of the structure. 
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3.2. Mileage Correction 

3.2.1. YOLO Target Detection 

At present, the method of mileage value acquisition is mainly based on an odometer. 

But the accuracy of the odometer is easily affected by complex environments such as 

wheel slippage, detection speed, and rail wear, resulting in cumulative errors in measure-

ment results [25]. In this study, the deep learning YOLOv3 target detection algorithm is 

used to extract regular feature points such as fasteners in the orthophoto. The method of 

equal-spaced correction is used to reduce the cumulative error effect caused by abnormal 

mileage values. 

As one of the representative detection networks in the field of object detection, the 

YOLOv3 model is widely used in the field of rapid detection of small objects. YOLOv3 is 

a target detection algorithm with both accuracy and speed. It inherits and integrates the 

network structure of other target detection algorithms so that its overall performance has 

reached a high level. Its network structure is shown in Figure 6 [26–28]. As YOLOv4, 

YOLOv5, and others, have also been proposed one after another, it has been proved that 

the YOLO algorithm still has great potential for improvement [29,30]. 

Since the track fasteners to be identified are small object targets, the input of the net-

work is modified from 416×416×3 to 533×533×3, and the resolution improvement is bene-

ficial to retain more useful information. The multi-scale fusion operation of the feature 

pyramid is realized through multiple convolutions and up-sampling functions between 

the scale feature maps.YOLOv3 not only deepens the network depth through a large num-

ber of residual structures but also uses various methods such as feature fusion, multi-scale 

prediction, and bounding box regression to achieve a great improvement in detection 

speed and accuracy. 

 

Figure 6. YOLOv3 network structure. 

The relationship between the YOLOv3 target box and the prior box is shown in Fig-

ure 7. YOLOv3 does not directly predict the position and size of the target but obtains the 

offset of the grid cell of the feature map by regression to determine the target's center 

position. The size of the target is determined according to the scale factor of the target box 

size relative to the prior box. 
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Figure 7. Bounding boxes with dimension priors and location prediction. 

The regression formula is: 

 
𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥  

(4) 

 
𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 

(5) 

 
𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤   

(6) 

 
𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ 

(7) 

In the formula, (𝑐𝑥, 𝑐𝑦 ) represents the center coordinates of the preset bounding box 

on the feature map; (𝑝𝑤 , 𝑝ℎ ) represents the width and height of the prior box on the fea-

ture map; (𝑡𝑥, 𝑡𝑦) represents the offset of the prediction center relative to the grid point; 

(𝑡𝑤, 𝑡ℎ ) represents the predicted bounding box width and height scaling ratio; 

(𝑏𝑤, bℎ, 𝑏𝑥, 𝑏𝑦) represents the final predicted target bounding box; σ represents the use of 

an activation function to scale the prediction offset into the interval 0 to 1. 

In order to improve the speed of model training, the K-means method is used to per-

form cluster analysis of the data set, and the initial prediction frame parameters that are 

closer to the detection target in the orthophoto image are obtained. During the training 

process, in order to prevent overfitting caused by too many iterations, a loss value protec-

tion function is added to improve the stability of model training. 

3.2.2. Performance Evaluation Indicators 

The loss function is an important indicator for evaluating the model's performance. 

During the model's training process, the parameters in the network are continuously ad-

justed, and the value of the loss function loss is optimized to minimize the model's value 

to complete the model's training. The loss function of YOLOv3 consists of three parts, 

including confidence loss ( 𝐿𝑐𝑜𝑛𝑓 ), class loss error ( 𝐿𝑐𝑙𝑎 ) and localization loss ( 𝐿𝑙𝑜𝑐 ), 

𝜆1、𝜆2、𝜆3 are balance weight coefficients. The loss function can be specifically expressed 

by the following formula: 

 𝐿(𝑂, 𝑜, 𝑃, 𝑝, 𝑙, 𝑔) = 𝜆1𝐿𝑐𝑜𝑛𝑓 + 𝜆2𝐿𝑐𝑙𝑎 + 𝜆3𝐿𝑙𝑜𝑐 (8) 

The target confidence loss (𝐿𝑐𝑜𝑛𝑓) is expressed as: 
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 𝐿𝑓(𝑜, 𝑝) = − ∑(𝑜𝑖 ln(𝑝′
𝑖
) + (1 − 𝑜𝑖)ln (1 − 𝑝′

𝑖
) (9) 

 𝑝′𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑖) (10) 

In the formula, 𝑝𝑖 represents the confidence score, and oi represents the ratio of the 

predicted box to the ground-truth box. 

The target class loss (𝐿𝑐𝑙𝑎) is expressed as: 

 𝐿𝑐𝑙𝑎(𝑂, 𝑃) = − ∑ ∑ (𝑂𝑖𝑗 ln(𝑃′
𝑖𝑗)

𝑗∈𝑐𝑙𝑎𝑖∈𝑃𝑜𝑠

+ (1 − 𝑂𝑖𝑗)ln (1 − 𝑃𝑖𝑗
′ ) (11) 

 𝑃′𝑖𝑗 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑃𝑖𝑗) (12) 

In the formula, Oij represents the binary cross-entropy loss, and Pij represents the 

probability of the existence of the j-th object in the predicted object bounding box. 

The target localization loss is expressed as: 

 𝐿𝑙𝑜𝑐(𝑙, 𝑔) = ∑ ∑ (𝑙𝑖
𝑚 − 𝑔𝑖

𝑚)2

𝑚∈{𝑥,𝑦,𝑤,ℎ}𝑖∈𝑃𝑜𝑠

 (13) 

In the formula, 𝑙𝑖
𝑚 represents the value of the coordinate offset processed by the ac-

tivation function, and 𝑔𝑖
𝑚 represents the coordinate offset between the real frame and the 

default frame. 

The algorithm test in this paper uses Mean Average Precision (𝑚𝐴𝑃), Recall, and Pre-

cision to evaluate the performance of the algorithm. The evaluation formulas are: 

 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑘

𝑖=0

𝑚
 (14) 

In the formula, AP represents the accuracy rate corresponding to each target, and m 

represents the total number of target object categories. 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(15) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(16) 

In the formula, TP is the positive detection rate, that is, the calibration is a positive 

sample, and the actual detection is also a positive sample; FP is the false detection rate, 

that is, the calibration is a negative sample, and the actual detection is a positive sample. 

FN is the missed detection rate; it is calibrated as a positive sample, and the actual detec-

tion is a negative sample.  

The target detection system filters out useless target boxes below the threshold ac-

cording to the settings of the confidence threshold and the intersect over the union thresh-

old. If the threshold is too high, it may cause some real targets to be filtered out and 

missed. If the threshold is set too low, some targets for model error detection will not be 

filtered out and will be treated as normal targets. This paper selects the best confidence 

threshold through multiple tests. When the confidence threshold is 0.50, and the intersect 

over union threshold is 0.55, more targets are correctly detected, and no false targets occur. 

Finally, we use the above thresholds for model training to ensure that more correct targets 

are detected. 

3.2.3. Mileage Constraints and Positioning 

Due to the complex environment of mobile scanning, the YOLO target detection al-

gorithm has certain errors, and only deep learning cannot extract all the coordinate infor-

mation of feature points. Therefore, this paper first adopts the method of distance cluster-

ing to segment the target set of fasteners identified by deep learning. If the number of 

targets in the clustering set is less than three, the set is not calculated. This method can 

effectively eliminate the feature information that is wrongly identified and count the num-

ber of missing feature points. Secondly, the missing fastener feature points are comple-

mented using Lagrangian interpolation, and their coordinate values can be expressed as: 
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y(t) = ∑ (∏ (
𝑝 − 𝑝𝑖

𝑝𝑗 − 𝑝𝑖
)

𝑛

𝑖=0

) 𝑦𝑗

𝑛

𝑗=0
𝑗≠𝑖

 (17) 

In the formula, t is the missing feature node; p0, p1, p2, ..., pn are the feature points 

obtained by clustering. y0, y1, y2, ..., yn are the abscissa values in the pixel coordinate 

system corresponding to the cluster feature points. 

According to the obtained abscissa information of the feature points and the starting 

and ending mileage information of the measurement interval, the accurate mileage value 

corresponding to each feature point can be obtained, which solves the problem that the 

image coordinates do not match the actual mileage in the mobile measurement. The main 

calculation process is as follows: 

(1) Mileage constraint: Calculate the total length D of the interval according to the 

information of the starting and ending mileage plates. According to the target detection 

result, the pixel interval 𝑦𝑖 of the feature point is obtained. Combined with the change 

value y of the abscissa of the start and end pixels, the interval value 𝑑𝑖 of each feature 

point is calculated. We obtain the mileage value between the feature points according to 

the pixel value interpolation method: 

 
 𝑑𝑖  = 𝑑𝑖−1 +

𝑦𝑖

𝑦
∗ 𝐷 (18) 

In the formula, 𝐷 represents the length of the known start and end points, and 𝑑𝑖 

represents the mileage value of the feature points identified by target detection. 𝑦 repre-

sents the pixel interval between start and end points, 𝑦𝑖 represents the pixel interval of 

consecutive feature points. 

(2) Initial positioning: Starting from the initial feature point mileage, iteratively accu-

mulate the interval values of each feature point to obtain the mileage value of each feature 

point. According to the position of the pixel in the pixel interval 𝑚𝑖, we obtain the mileage 

value of the pixel point 𝑠′𝑖: 

 
 𝑠′𝑖  = 𝑑𝑖−1 +

𝑚𝑖

𝑦𝑖
∗ 𝑑𝑖 (19) 

In the formula, 𝑠′𝑖 represents the initial mileage of any pixels, and 𝑚𝑖 represents the 

pixel values within adjacent feature points. 

(3) Speed analysis: According to the scanning frequency f of the laser scanner, the 

time interval 𝑇𝑖  of the scanning line is calculated. The corresponding speed 𝑣′𝑖 is ob-

tained based on the finite element method, and the mean filtering method is used to fur-

ther optimize the speed value. The influence of the noise in the system on the speed value 

is weakened, and the speed value 𝑣𝑖 of the moving carrier in each period is obtained. 

 𝑣′𝑖  = (𝑠′
𝑖 − 𝑠′

𝑖−1)/𝑇𝑖 (20) 

 𝑣𝑖  = g(𝑣′
𝑖 , w) 

(21) 

In the formula, 𝑔 represents the mean filter, and w represents the window size of 

mean filtering. 𝑇𝑖  represents the time interval between adjacent scan lines, 𝑣′𝑖  repre-

sents the initial velocity value, and 𝑣𝑖 represents the filtered velocity value. 

(4) Mileage correction: Correct the initial mileage value according to the optimized 

speed value to obtain the final mileage value 𝑠𝑛. 

 

 𝑠𝑛  = ∑ 𝑀𝑖

𝑛

𝑖=0

= ∑ 𝑣𝑖𝑇

𝑛

𝑖=0

 (22) 

In the formula, 𝑀𝑖 represents the mileage value of adjacent pixels after filtering, and 

𝑠𝑛 represents the mileage value of the target point after filtering. 
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3.3. Inertial Navigation Data Processing Model 

3.3.1. Location Update Algorithm 

Dead reckoning is a technology that uses the known position, combined with the 

moving speed and bearing, to estimate the existing position [31]. Because it does not need 

to receive external signals, it is suitable for estimating the position of the mobile measure-

ment system in the position without a GNSS signal. Furthermore, we can form an inertial 

navigation system with the data of the GNSS navigation data to overcome the shortcom-

ing that the accumulated error will increase with time. 

When the inertial navigation data are used as the original data for position update, 

the attitude update adopts the quaternion algorithm, and the formula is as follows: 

 𝑄(𝑞0, 𝑞1, 𝑞2, 𝑞3) = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 (23) 

In the formula, 𝑞0,  𝑞1,  𝑞2, 𝑞3 are real numbers, 𝑖, 𝑗, 𝑘 are both mutually orthogonal 

unit vectors and imaginary units √−1. 

The projection of the carrier measured by the accelerometer relative to the inertial 

frame into the local coordinate system, namely: 

 
𝒇𝑖𝑏

𝑒 (𝑡𝑘+1) ≈
1

2
(𝑪𝑏

𝑒 (𝑡𝑘) + 𝑪𝑏
𝑒 (𝑡𝑘+1))𝒇𝑖𝑏

𝑏 (𝑡𝑘+1) (24) 

In the formula, 𝒇𝑖𝑏
𝑏 (𝑡𝑘+1) represents the specific force output of the accelerometer, 

and 𝒇𝑖𝑏
𝑒 (𝑡𝑘+1) represents the specific force projected to the local coordinate system. 

𝑪𝑏
𝑒 (𝑡𝑘+1) and 𝑪𝑏

𝑒 (𝑡𝑘) represent the pose matrices of two adjacent moments, respectively. 

Using rectangular integration for the velocity differential equation gives: 

 
𝐯𝑒(𝑡𝑘+1)  = 𝐯𝑒(𝑡𝑘) + ∫

𝑡𝑘

𝑡𝑘+1  (𝐟𝑖𝑏
𝑒 (𝑡) − 2𝛀𝑖𝑒

𝑒 𝐯𝑒(𝑡) + 𝐠𝑒(𝑡))𝑑𝑡

 ≈ 𝐯𝑒(𝑡𝑘) + (𝐟𝑖𝑏
𝑒 (𝑡𝑘+1) − 2𝛀𝑖𝑒

𝑒 𝐯𝑒(𝑡𝑘) + 𝐠𝑒(𝑡𝑘))Δ𝑡
 (25) 

In the formula, 𝐯𝑒(𝑡𝑘+1) represents the velocity of the motion carrier obtained in the 

current epoch, 𝐯𝑒(𝑡) represents the velocity of the motion carrier in the previous epoch, 

Δt represents the epoch interval, 𝛀𝑖𝑒
𝑒  is an obliquely symmetric matrix formed by the an-

gular velocity of the carrier rotating relative to the local geographic coordinate system, 

and 𝐠𝑒 represents the local gravity vector at the location of the carrier. 

It is easy to derive from the position differential equation: 

 𝐫𝑒(𝑡𝑘+1) = 𝐫𝑒(𝑡𝑘) + ∫
𝑡𝑘

𝑡𝑘+1  𝐯𝑒(𝑡)𝑑𝑡 (26) 

Usually using trapezoidal integration to solve the above equation, we get: 

 
𝐫𝑒(𝑡𝑘+1) ≈ 𝐫𝑒(𝑡𝑘) + (𝐯𝑒(𝑡𝑘) + 𝐯𝑒(𝑡𝑘+1))

Δ𝑡

2
 (27) 

In the formula, 𝐫𝑒(𝑡𝑘) and 𝐫𝑒(𝑡𝑘+1) represent the position of the motion carrier at ad-

jacent times. 

For the case of fusion calculation of odometer and inertial navigation data, it is nec-

essary to use vehicle non-integrity constraints to assist in the calculation. For the conven-

ience of research, the odometer measurement coordinate system is established, the y-axis 

is in the ground plane in contact with the carrier wheels and points to the front of the 

vehicle body, the z-axis is perpendicular to the ground plane and is positive, and the x-

axis points to the right. Assuming that the carrier trolley does not drift, derail, and shake 

up and down when the vehicle runs as normal on the railway, the sky and lateral velocities 

can be set to 0 as constraints. According to the above definition, the speed output of the 

odometer in the navigation coordinate system can be obtained: 

 𝒗D
𝑚 = [0 𝑣D 0]T (28) 

 𝑣D
𝑛 = 𝐶𝑏

𝑛 ⋅ 𝑣D
𝑚 (29) 

In the formula, 𝑣D represents the forward speed of the odometer, 𝒗D
𝑚 represents the 

speed vector of the odometer in the odometer coordinate system, and 𝑣D
𝑛 represents the 

speed vector of the odometer in the navigation coordinate system. 
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The components of the odometer in the east, north, and sky directions of the naviga-

tion system are: 

 

{

𝑣ODE = −𝑣OD𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
𝑣ODN = 𝑣OD𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑
𝑣ODU = 𝑣ODsin𝜃

 (30) 

3.3.2. Installation Declination Error 

In the inertial navigation system, the velocity measured by the odometer is usually 

projected to the inertial navigation coordinate system. In practical applications, the odom-

eter coordinate system and the inertial navigation coordinate system often do not coin-

cide, and an installation error needs to be calibrated and compensated, as shown in Figure 

8. 

 

Figure 8. Installation declination error of the odometer coordinate system and the inertial navigation 

coordinate system. 

Assuming that the transformation matrix between the odometer coordinate system 

and the inertial navigation coordinate system is 𝐶b
d，𝛼、𝛽、𝛾 represent the pitch angle, 

roll angle, and heading angle of the odometer coordinate system relative to the inertial 

navigation coordinate system. The attitude matrix is: 

𝐶b
d = [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

]

= [
cos 𝛽cos 𝛾 − sin 𝛼sin 𝛽sin 𝛾 cos 𝛽sin 𝛾 + sin 𝛼sin 𝛽cos 𝛾 −sin 𝛽cos 𝛼

−cos 𝛼sin 𝛾 cos 𝛼cos 𝛾 sin 𝛼
sin 𝛽cos 𝛾 + sin 𝛼cos 𝛽sin 𝛾 sin 𝛽sin 𝛾 − sin 𝛼cos 𝛽cos 𝛾 cos 𝛼cos 𝛽

] 

(31) 

In the case that the three installation error angles are all small angles, the above atti-

tude matrix can be simplified as follows: 

 

𝑪b
d = [

1 𝛾 −𝛽
−𝛾 1 𝛼
𝛽 −𝛼 1

] (32) 
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Let 𝝋 = [𝛼 𝛽 𝛾]T, then: 
 𝑪d

b = (𝑪b
d)

T
= (𝑰 + 𝝋 ×) (33) 

In the formula, I is the identity matrix; φ× represents the cross-product antisymmetric 

matrix constructed by each component of φ. 

The projection of 𝒗d on the inertial navigation coordinate system is: 

 𝒗b = 𝐶d
b𝒗d = (𝑰 + 𝝋 ×)𝒗d = 𝒗d + (𝝋 ×)𝒗d (34) 

Arrange to get: 

 

𝒗b − 𝒗d = (−𝒗d ×)𝝋 = [
0 0 −𝒗𝐷

0 0 0
𝒗𝐷 0 0

] 𝝋 (35) 

The speed of the vehicle in the navigation system can be obtained from the inertial 

navigation system output and the attitude transformation matrix 𝐶n
b is obtained from the 

inertial navigation output. Taking the quantity on the left side of the equal sign in the 

formula as the measured value and φ as the estimated value, the corresponding state can 

be estimated by the recursive least squares method. 

3.3.3. RTS Filtering 

A Kalman filter is an estimation method. Kalman filtering can estimate parameters 

in the system in real-time, such as continuously changing position and velocity, among 

others. The estimator is updated with a series of noise-contaminated observations, which 

must be a function of the parameter to be estimated, but may not contain enough infor-

mation to determine a unique estimate over a given time. 

After obtaining adequate information, the Kalman filter uses prior knowledge, such 

as deterministic and statistical properties of system parameters, as well as observations to 

obtain the optimal estimate, which is a Bayesian estimate. On the basis of the provided 

initial estimates, the Kalman filter performs a weighted average of the prior values and 

the new values obtained from the latest observation data through recursive operations to 

obtain the latest state estimates [32]. In order to achieve the optimal weighting of data, the 

Kalman filter has estimation uncertainty and can give the correlation measure between 

estimation errors of different parameters. This is achieved with step-by-step iterations of 

parameter estimation, which also incorporates the uncertainty of observations due to 

noise. 

Since the 3D point cloud generation based on multi-sensor fusion uses the original 

data to estimate the trajectory position error as the observation update of the Kalman fil-

ter, when there is an observation update, the error of the position estimation and its co-

variance is tiny. However, due to the existence of residual systematic errors, the position 

measurement estimation error and its covariance between two observation updates will 

gradually increase with time. In order to obtain a high-accuracy position estimate in the 

whole measurement process, it is necessary to make full use of all observations to update 

the constraint error through an appropriate algorithm, which is a typically fixed interval 

smoothing problem. In the fixed interval smoothing algorithm, the commonly used meth-

ods mainly include the forward and backward Kalman filter smoothing algorithm and the 

RTS smoothing algorithm. The two algorithms are equivalent in theory, and the RTS 

smoothing algorithm is relatively simple to implement. In this paper, the RTS smoothing 

algorithm is used to process the data in the orbit measurement interval [33–35]. 

The RTS smoother consists of a typical forward Kalman filter and a reverse smoother. 

After each system propagation and observation update, the system state vector, error co-

variance matrix, and state transition matrix are recorded. After the data reaches the end, 

the data is smoothed from the endpoint to the start point in the reverse direction. The 

calculation flow of the RTS smoothing algorithm is shown in Figure 9: 
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. 

Figure 9. RTS smoothing algorithm flow. 

The forward filtering of the RTS smoothing algorithm is a typical Kalman filter, and 

the smooth estimated value of the state vector is a weighted combination of two filtering 

estimated values. The calculation process is as follows: 

 
𝑋𝑡,𝑓

− = 𝐹𝑡 ∗ 𝑋𝑡−1,𝑓  
(36) 

 
𝑃𝑡,𝑓

− = 𝐹𝑡 ∗ 𝑃𝑡−1,𝑓 ∗ 𝐹𝑡
𝑇 + Γ𝑡𝑄𝑡Γ𝑡

𝑇 
(37) 

 
 𝐾𝑡,𝑓 = 𝑃𝑡,𝑓

− ∗ 𝐻𝑡
𝑇 ∗ [𝐻𝑡 ∗ 𝑃𝑡,𝑓

− ∗ 𝐻𝑡
𝑇 + 𝑅𝑡]

−1
  

(38) 

 
𝑋𝑡,𝑓 = 𝑋𝑡,𝑓

− + 𝐾𝑡 ∗ [𝑍𝑡 − 𝐻𝑡 ∗ 𝑋𝑡,𝑓
− ] 

(39) 

 
𝑃𝑡,𝑓 = [𝐼 − 𝐾𝑡 ∗ 𝐻𝑡] ∗ 𝑃𝑡,𝑓

−  
(40) 

In the formula, 𝑋𝑡,𝑓 and 𝑃𝑡,𝑓 represent the optimal filter estimation value and its co-

variance matrix of the forward filtering state vector at time t, 𝑋𝑡,𝑓
−  and 𝑃𝑡,𝑓

−  represents the 

optimal one-step predicted value of the state vector and its covariance matrix at time t of 

the forward filtering, 𝐻𝑡 is the observation matrix at time t, and 𝐾𝑡,𝑓 is the optimal gain 

matrix of the forward filtering at time t. 𝐹𝑡 represents the system state transition matrix, 

which can be obtained from the system error matrix 𝐴𝑡, and Γ𝑡 is the discrete noise matrix 

at time t of the forward filter. 

The inverse smoothing process can be expressed as: 

 
 𝐾𝑡,𝑏 = 𝑃𝑡,𝑓 ∗ 𝐹𝑡

𝑇 ∗ (𝑃𝑡+1,𝑓
− )

−1
 

(41) 

 
𝑋𝑡,𝑏 = 𝑋𝑡,𝑓 + 𝐾𝑡,𝑏 ∗ [𝑋𝑡+1,𝑏 − 𝑋𝑡+1,𝑓

− ] 
(42) 

 
  𝑃𝑡,𝑏 = 𝑃𝑡,𝑓 + 𝐾𝑡,𝑏 ∗ [𝑃𝑡+1,𝑏 − 𝑃𝑡+1,𝑓

− ] ∗ 𝐾𝑡,𝑏
𝑇 

(43) 

In the formula, 𝑋𝑡,𝑏 and 𝑃𝑡,𝑏 are the optimal smoothing estimation value and its er-

ror covariance matrix of the RTS smoothing algorithm at time t.  𝐾𝑡,𝑏  is the optimal 

smoothing gain matrix of the RTS smoother at time t. 

3.4. High-Precision Point Cloud Generation 

One of the keys to multi-source data fusion of mobile scanning systems is time reg-

istration. First, the field data acquisition achieves zero-time identity through the synchro-

nous control of integrated acquisition software. In the post-processing process, the data 

matching of the adjacent moments is carried out through the phase time interval to realize 

the consistency of the data, as shown in Figure 10. 
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Figure 10. Fixed-time synchronization of laser scanning data and IMU data. 

After the time synchronization between the sensors is completed, the relevant sensor 

data under the same time reference can be obtained, and the spatial calibration of the sys-

tem hardware can unify the relevant sensor data on the same spatial reference. According 

to the transformation relationship between the coordinate systems and the model param-

eters, the scan data can be converted from the scanner coordinate system to the vehicle 

body coordinate system by using the calibration parameters of the system. Combined with 

the position and attitude data of the vehicle body coordinate system with the GNSS an-

tenna phase center as the origin of the coordinate system calculated by the INS, the 

scanned data can be converted from the vehicle body coordinate system to the data in the 

absolute coordinate system. Finally, the 3D point cloud data based on the absolute coor-

dinate system is obtained by completing the fusion processing of multi-source data. 

The point cloud calculation formula for converting the point cloud data from the 

scanner coordinate system to the absolute coordinate system is: 

 

[

XC

YC

ZC

] = [

∆XBC

∆YBC

∆ZBC

] + RBC([

∆XQB

∆YQB

∆ZQB

] + RMB [

x𝑄

yQ

zQ

]) (44) 

In the formula, (𝑥𝑄，𝑦𝑄，𝑧𝑄)
𝑇
is the section coordinates based on the scanner coor-

dinate system after the original Z+F 9012 scan data is parsed; the original data is recorded 

by the inertial navigation system. Combined with the body trajectory position parame-

ters(∆𝑋𝐵𝐶,∆𝑌𝐵𝐶 , ∆𝑍𝐵𝐶)𝑇, the rotation matrix 𝑅𝐵𝐶  is provided by the combination of three 

attitude angles (yaw, pitch, roll); The translation matrix (∆𝑋𝑄𝐵,∆𝑌𝑄𝐵, ∆𝑍𝑄𝐵)
𝑇
and rotation 

matrix 𝑅𝑀𝐵 are obtained from the system calibration obtained from the scanner coordi-

nate system to the vehicle body coordinate system. 

Through the above calculation formula, the original data obtained by the scanner can 

be used to post-process the data of the inertial navigation system, combined with the 

transformation principle of the coordinate system, and finally, the 3D point cloud data 

based on the absolute coordinate system can be obtained. 

4. Experimental Results 

In order to verify the feasibility and stability of the railway mobile scanning system, 

in this study, the data acquisition and processing analysis test was carried out at the track 

comprehensive test site of the Jiading Campus of Tongji University, as shown in Figure 

11. The total mileage of the test area is about 200 meters, and multiple control points are 

arranged in the middle of the test site as known points. In this study, multi-sensor inte-

gration was carried out at the test site, and a base station was established in an open area. 

The above-mentioned railway mobile laser scanning hardware integration system is used 

to collect and record the data of the scanner and the inertial navigation system and com-

plete time synchronization for multiple data sources. The trajectory data is filtered and 



Remote Sens. 2022, 14, 4965 17 of 26 
 

 

corrected by using the method proposed in this paper. The accuracy is evaluated with the 

Inertial Explorer (IE) solution data. The commercial software meets the needs of mobile 

measurements for high accuracy positioning and attitude processing. Finally, multiple 

data are fused to obtain the railway's 3D continuous point cloud data. Furthermore, we 

compare the known points measured by the total station with the coordinate points ex-

tracted from the point cloud. The accuracy of the 3D point cloud was verified through the 

above experiment. 

 

Figure 11. Mobile laser scanning system in experiment environment. 

4.1. Target Detection and Mileage Calibration Accuracy 

To the best of our knowledge, there is no standard dataset for railway fastener train-

ing and testing. Our previous study collected thousands of kilometers of mobile laser 

scanning data from Chinese railways. Then, the position of the fasteners in the laser image 

was marked by the tool Label-Image. Finally, a railway fasteners dataset was established. 

We randomly selected 925 images as the training data and designated the other 322 im-

ages as the testing data. After obtaining the training model, we performed target detection 

on the laser-scanned images for this experiment. At the same time, the positions of the 

fasteners were manually marked as the true value data to verify the target detection accu-

racy. 

The precision rate of rail fasteners extracted by YOLOV3 is above 91.3%, and the re-

call rate is above 89.6%. The recognition results of some fasteners are shown in Figure 12. 

Using the method of feature point completion, the missing fasteners are interpolated and 

completed, and the center point position information of all fasteners in the interval is ob-

tained. 



Remote Sens. 2022, 14, 4965 18 of 26 
 

 

 

Figure 12. Feature point recognition results. 

Since the electric carrier's moving speed remains unchanged, the initial mileage po-

sitioning result and the carrier running speed in this interval are calculated according to 

the mileage constraint and the positioning algorithm. In order to avoid the influence of 

factors such as motion vibration and track irregularity, velocity filtering is used to opti-

mize the results. Calculate the final interval mileage positioning result according to the 

optimized speed value. 

The comparison results between the actual measured value and the mileage position-

ing algorithm are shown in Table 1. The mileage positioning error before filtering is within 

9 cm, the mileage positioning error after filtering is about within 6 cm, and the standard 

error is 0.04. The accuracy of mileage positioning is high, which can better reduce the in-

fluence of the cumulative error of the odometer and meet the accuracy requirements of 

the trajectory solution. 

Table 1. Mileage positioning accuracy. 

Truth Value (m) 
Before Filtering 

(m) 

After Filtering 

(m) 

Error Before  

Filtering (m) 

Error After  

Filtering (m) 

YK660 + 0.97 YK0660 + 0.94 YK660 + 0.98 0.03  −0.01  

YK680 + 0.23 YK680 + 0.19 YK680 + 0.22 0.04  0.01  

YK700 + 0.69 YK700 + 0.60 YK700 + 0.63 0.09  0.06  

YK720 + 0.45 YK720 + 0.54 YK720 + 0.50 −0.09  −0.05  

YK740 + 0.28 YK740 + 0.33 YK740 + 0.27 −0.05  0.01  

YK760 + 0.01 YK760 + 0.08 YK760 + 0.02 −0.07  −0.01  

YK780 + 0.98 YK780 + 0.9 YK780 + 0.94 0.08  0.04  

YK800 + 0.97 YK800 + 0.94 YK800 + 0.98 0.03  −0.01  

Standard Deviation 0.07 0.04 

4.2. Trajectory Correction Results 

Before the on-board test, the installation deviation angle of the inertial navigation 

system was pre-calibrated by using the odometer information and the reference position 

point, and the heading angle (α) = −0.4579° and the heading angle (γ) = 0.5457° were ob-

tained. The calibration results show that the installation deviation angle meets the require-

ments of a small angle. After adding the installation declination error, the influence of the 

system error caused by the installation can be better corrected. At the same time, the 
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divergence trend of the inertial navigation trajectory over time is also suppressed, as 

shown in Figure 13. 

 

Figure 13. The influence of installation declination on the trajectory. 

In order to facilitate the analysis, the deviations in the east, north, and sky directions 

of the original estimated data, the RTS smoothing filter, and the ground truth data were 

calculated, respectively, as shown in Figures 14–16. The solid green line represents the 

RTS, and the KF error is represented by the solid red line. It can be seen from the schematic 

diagram that under the same conditions, the error of RTS in the north direction is the 

smallest, and the error in the east direction is relatively unstable. The instability of the 

inertial navigation system and the vibration of the system may cause direction anomalies. 

Except for a single outlier in the east direction, the error is below 5 cm in all other direc-

tions. Experiments show that the RTS algorithm has a better correction effect than the KF 

algorithm. 
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Figure 14. Comparison of northward error between the KF and RTS. 

 

Figure 15. Comparison of eastward error between the KF and RTS. 
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Figure 16. Comparison of elevation error between the KF and RTS. 

4.3. 3D Point Cloud Generation Accuracy 

After the data collection is completed, the trajectory data is filtered and smoothed to 

calculate the positioning and attitude information of the trolley trajectory on the railway 

track. Combining the solution trajectory, vehicle system calibration parameters, INS in-

formation, and scanning point cloud synchronization information for the calculation, the 

conversion from the relative point cloud to the geographic coordinate system is realized. 

The 3D point cloud data of the railway track in the Shanghai urban construction coordi-

nate system is obtained, as shown in Figure 17. 

 

Figure 17. 3D point cloud effect of the railway. 
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After obtaining the 3D point cloud of the railway track and its surroundings, in order 

to test the actual accuracy of the 3D point cloud generated by the system, this paper uses 

the absolute accuracy index of the scanned point cloud to evaluate that accuracy as shown 

in Figure 18. For absolute accuracy, this paper selects 23 identification points and uses the 

method of total station measurement to measure the coordinates, and the measurement 

accuracy can reach the millimeter level. By comparing the coordinates of the identified 

points in the corresponding 3D point cloud, the corresponding coordinate difference and 

statistical difference are obtained. Table 2 lists the coordinate errors of 23 orbital points. 

The average error of the absolute value in the north coordinate direction of the identifica-

tion point is 0.86 cm, the maximum difference is 4.6 cm, and the standard deviation is 1.65. 

The average error of the absolute value in the east coordinate direction is 1.34 cm, the 

maximum difference is 6.9 cm, and the standard deviation is 2.95. The average error of the 

absolute value in the elevation coordinate direction is 2.39 cm, the maximum difference is 

6.33 cm, and the standard deviation is 1.77. The point error of the system is 1.6 cm, which 

proves that the system's overall accuracy is high. 

 

  

 (a) (b) 

 

 

(c) 

Figure 18. Control point signs in different images:(a) Real scene image; (b) Grayscale image; (c) 

Intensity scale image. 
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Table 2. Point cloud accuracy. 

Point Name ΔN(cm) ΔE(cm) ΔH(cm) 

JD01 1.20  −0.50  −0.17  

JD02 1.00  −6.90  1.13  

JD03 −1.80  −1.60  1.73  

JD04 0.40  −3.20  0.03  

JD05 −0.30  −6.80  0.03  

JD06 −0.50  3.10  5.63  

JD07 1.30  −1.20  3.73  

JD08 −0.30  −4.55  3.78  

JD09 −1.50  1.10  1.23  

JD10 0.80  −2.85  3.13  

JD11 0.30  −5.10  3.38  

JD12 −1.50  2.35  0.48  

JD13 1.30  −0.60  3.98  

JD14 1.60  −3.40  3.43  

JD15 −0.65  −1.40  3.53  

JD16 −0.30  2.70  1.93  

JD17 1.75  1.45  3.13  

JD18 3.10  −3.60  6.33  

JD19 2.10  −2.30  0.83  

JD20 1.20  2.10  0.43  

JD21 2.10  0.70  1.83  

JD22 4.60  1.60  3.23  

JD23 3.90  −2.00  2.03  

Average Deviation 0.86  −1.34  2.38  

Standard Deviation 1.65  2.95  1.77  

5. Discussion 

In this study, the deep learning method is used to extract the track feature points, the 

Lagrange interpolation is used to complete the missing feature points, and the speed fil-

tering method is used to optimize the mileage in segments. In an interval of 20 meters, the 

mileage accuracy is controlled within 1 decimeter so as to reduce the influence of the cu-

mulative error caused by the odometer as much as possible. In the traditional method, it 

is necessary to reduce the influence of the cumulative error caused by the slippage of the 

odometer by increasing the fixing device between the trolley and the track. Still, this 

method will gradually increase the error over time and reduce the work efficiency. At 

present, the target detection algorithm used in this paper is YOLOv3, and more advanced 

target detection algorithms such as YOLOv7 can be used in the future to obtain better 

recognition accuracy and speed of track feature points. 

In this paper, the RTS smoothing algorithm is used to smooth the dead reckoning 

results, and the experiments show that smoothing has a great effect on improving the 

accuracy of post-processing. Due to the complex and changeable railway environment, 

the GNSS signal is often blocked. At this time, it is necessary to use an appropriate method 

to compensate for the drift of the inertial navigation system. In addition to the smoothing 

algorithm proposed in this paper, the commonly used method of dynamic zero-speed 

correction can only slow down the drift speed of the error but cannot completely limit the 

drift of the error. Therefore, in order to obtain better trajectory results in the subterranean 

environment, it is necessary to use higher-precision IMU in the future and continue to 

study and optimize the proposed IMU trajectory error model to improve the practicability 

of the system. 
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In the future, we will add visual sensors and simultaneous localization and mapping 

(SLAM) algorithms to optimize the trajectory to adapt to complex railway environments 

such as mountain tunnels. At the same time, the conversion relationship between the 

measurement coordinates and point cloud coordinates based on the control points is stud-

ied, and the trajectory data is further corrected by segmental fitting to obtain a higher-

precision railway three-dimensional point cloud. 

6. Conclusions 

In this study, we adopt a mileage correction algorithm based on visual feature points 

and use deep learning to detect objects in the generated orthophoto. Then, RTS filtering is 

used to optimize the dead reckoning trajectory, and the real motion trajectory of the mo-

bile carrier is restored. The multi-source data fusion method is used to obtain the railway 

point cloud data in the absolute coordinate system. 

The experimental results show that the mileage correction method has good posi-

tioning accuracy and stability, and the mileage positioning error is within about 6 cm, 

which provides accurate mileage results for trajectory calculation. The 3D point cloud data 

is generated by combining the trajectory generated by the RTS filtering algorithm and the 

scanning data. The maximum errors of the 23 coordinate points measured are all within 7 

cm. The average error of the point position is 1.60 cm, and the average error of the eleva-

tion is 2.39 cm. 

Different from the traditional method that uses manual detection of railways, this 

paper proposes a new method using the combination of calibrated mileage and inertial 

navigation data. The mileage is calibrated segmentally using visual feature points, which 

avoids multiple stops of the mobile laser scanning system for calibration. It reduces the 

influence of the trajectory error increasing with time in the traditional method. There is 

no relevant research on this method yet. 

The measurement method combined with laser scanning and inertial navigation can 

quickly obtain the real 3D scene point cloud in the absolute coordinate system. The speed 

and amount of information at the measuring point far exceed traditional methods. In the 

future, according to the point cloud data, we can complete the extraction of railway ele-

ments, including the track centerline, contact wire, and catenary wire. Moreover, 3D mod-

els of railway buildings can be built from point cloud data. At the same time, high-preci-

sion point cloud data can help us to complete the information of infrastructure along the 

route quickly. It is of great significance in railway digital survey and design, intelligent 

operation and maintenance, and digital transformation. 

Author Contributions: methodology, H.L. and Z.X.; validation, H.L.; software, H.L.; formal analy-

sis, H.L. and L.Y.; writing—original draft preparation, H.L.; writing—review and editing, H.L.; vis-

ualization, H.L. and Z.X.; supervision, L.Y.; resources, X.F., X.J. and P.S. All authors have read and 

agreed to the published version of the manuscript. 

Funding: Class B scientific research projects of China Railway Shanghai Design Institute Group 

Corporation Limited(No.20-20). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Lee, J.; Choi, H.; Park, D.; Chung, Y.; Kim, H.-Y.; Yoon, S. Fault detection and diagnosis of railway point machines by sound 

analysis. Sensors 2016, 16, 549. https://doi.org/10.3390/s16040549. 

2. Liu, S.; Lu, Q.; Li, H.; Wang, Y. Estimation of moisture content in railway subgrade by ground penetrating radar. Remote Sens. 

2020, 12, 2912. https://doi.org/10.3390/rs12182912. 



Remote Sens. 2022, 14, 4965 25 of 26 
 

 

3. Jang, J.; Shin, M.; Lim, S.; Park, J.; Kim, J.; Paik, J. Intelligent image-based railway inspection system using deep learning-based 

object detection and weber contrast-based image comparison. Sensors 2019, 19, 4738. https://doi.org/10.3390/s19214738. 

4. Huang, Q.; Wang, Y.; Luzi, G.; Crosetto, M.; Monserrat, O.; Jiang, J.; Zhao, H.; Ding, Y. Ground-based radar interferometry for 

monitoring the dynamic performance of a multitrack steel truss high-speed railway bridge. Remote Sens. 2020, 12, 2594. 

https://doi.org/10.3390/rs12162594. 

5. Specht, C.; Wilk, A.; Koc, W.; Karwowski, K.; Dąbrowski, P.; Specht, M.; Grulkowski, S.; Chrostowski, P.; Szmagliński, J.; 

Czaplewski, K.; et al. Verification of GNSS measurements of the railway track using standard techniques for determining coor-

dinates. Remote Sens. 2020, 12, 2874. 

6. Zou, R.; Fan, X.; Qian, C.; Ye, W.; Zhao, P.; Tang, J.; Liu, H. An Efficient and accurate method for different configurations railway 

extraction based on mobile laser scanning. Remote Sens. 2019, 11, 2929. https://doi.org/10.3390/rs11242929. 

7. Elberink, S.O.; Khoshelham, K. Automatic extraction of railroad centerlines from mobile laser scanning data. Remote Sens. 2015, 

7, 5565–5583. https://doi.org/10.3390/rs70505565. 

8. Du, L.; Zhong, R.; Sun, H.; Liu, Y.; Wu, Q. Cross‐section positioning based on a dynamic MLS tunnel monitoring system. Pho-

togramm. Rec. 2019, 34, 244–265. https://doi.org/10.1111/phor.12287. 

9. Han, Y.; Sun, H.; Zhong, R. Three-dimensional linear restoration of a tunnel based on measured track and uncontrolled mobile 

laser scanning. Sensors 2021, 21, 3815. https://doi.org/10.3390/s21113815. 

10. Hruboš, M.; Janota, A. 3D surface modeling based on data from the mobile measurement platform. In Proceedings of the 2014 

IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovakia, 23–25 Janu-

ary 2014; pp. 39–43. 

11. Zhou, S.; Song, W. Deep learning-based roadway crack classification using laser-scanned range images: A comparative study 

on hyperparameter selection. Autom. Constr. 2020, 114, 103171. https://doi.org/10.1016/j.autcon.2020.103171. 

12. Sturari, M.; Paolanti, M.; Frontoni, E.; Mancini, A.; Zingaretti, P. Robotic platform for deep change detection for rail safety and 

security. In Proceedings of the 2017 European Conference on Mobile Robots (ECMR), Paris, France, 6–8 September 2017; pp. 1–

6. 

13. Stein, D.; Spindler, M.; Lauer, M. Model-based rail detection in mobile laser scanning data. In Proceedings of the 2016 IEEE 

Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp. 654–661. 

14. Cui, H.; Ren, X.; Mao, Q.; Hu, Q.; Wang, W. Shield subway tunnel deformation detection based on mobile laser scanning. Autom. 

Constr. 2019, 106, 102889. https://doi.org/10.1016/j.autcon.2019.102889. 

15. Boavida, J.; Oliveira, A.; Santos, B. Precise long tunnel survey using the Riegl VMX-250 mobile laser scanning system. In Pro-

ceedings of the 2012 RIEGL International Airborne and Mobile User Conference, Orlando, FL, USA, February 28–March 1 2012. 

16. Li, Q.; Chen, Z.; Hu, Q.; Zhang, L. Laser-aided INS and odometer navigation system for subway track irregularity measurement. 

J. Surv. Eng. 2017, 143, 04017014. https://doi.org/10.1061/(asce)su.1943-5428.0000236. 

17. Sun, H.; Xu, Z.; Yao, L.; Zhong, R.; Du, L.; Wu, H. Tunnel monitoring and measuring system using mobile laser scanning: Design 

and deployment. Remote Sens. 2020, 12, 730. https://doi.org/10.3390/rs12040730. 

18. Chen, C.; Zhang, T.; Kan, Y.; Li, S.; Jin, G. A rail extraction algorithm based on the generalized neighborhood height difference 

from mobile laser scanning data. In Proceedings of the SPIE Future Sensing Technologies, online, 9–13 November 2020; pp. 105–

124. 

19. Bobkowka, K.; Nykiel, G.; Tysiąc, P. DMI measurements impact on a position estimation with lack of GNSS signals during 

Mobile Mapping. J. Physics: Conf. Ser. 2017, 870, 12010. https://doi.org/10.1088/1742-6596/870/1/012010. 

20. Specht, C.; Koc, W.; Chrostowski, P.; Szmagliński, J. Accuracy assessment of mobile satellite measurements in relation to the 

geometrical layout of rail tracks. Metrol. Meas. Syst. 2019, 309–321. 

21. Kaartinen, H.; Kukko, A.; Hyyppä, J.; Jaakkola, A. Benchmarking mobile laser scanning systems using a permanent test field. 

Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, B5. 

22. Tsujimura, T.; Manabe, T. Electromagnetic system navigating tunneling robots. Robot. Auton. Syst. 2002, 40, 229–238. 

https://doi.org/10.1016/s0921-8890(02)00249-x. 

23. Jing, N.; Ma, X.; Guo, W.; Wang, M. 3D Reconstruction of underground tunnel using depth-camera-based inspection robot. 

Sensors Mater. 2019, 31, 2719. https://doi.org/10.18494/sam.2019.2321. 

24. Pfeifer, N.; Briese, C. Laser scanning–principles and applications. In Proceedings of the GeoSiberia 2007-International Exhibition 

and Scientific Congress, Novosibirsk, Russia, 25 April 2007; pp. cp-59-00077. 

25. Boronahin, A.; Larionov, D.Y.; Podgornaya, L.; Shalymov, R.; Filatov, Y.V.; Bokhman, E. Specialized navigation system for rail 

track diagnostics. In Proceedings of the 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Con-

ference, St. Petersburg, Russia, 2–3 February 2016; pp. 401–403. 

26. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, Preprint arXiv:1804.02767 2018. 

27. Zhao, L.; Li, S. Object detection algorithm based on improved YOLOv3. Electronics 2020, 9, 537. https://doi.org/10.3390/electron-

ics9030537. 

28. Yi, Z.; Yongliang, S.; Jun, Z. An improved tiny-yolov3 pedestrian detection algorithm. Optik 2019, 183, 17–23. 

https://doi.org/10.1016/j.ijleo.2019.02.038. 

29. Yu, J.; Zhang, W. Face Mask Wearing Detection Algorithm Based on Improved YOLO-v4. Sensors 2021, 21, 3263. 

https://doi.org/10.3390/s21093263. 



Remote Sens. 2022, 14, 4965 26 of 26 
 

 

30. Yang, G.; Feng, W.; Jin, J.; Lei, Q.; Li, X.; Gui, G.; Wang, W. Face mask recognition system with YOLOV5 based on image recog-

nition. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, 

China, 11–14 December 2020; pp. 1398–1404. 

31. Randell, C.; Djiallis, C.; Muller, H. Personal position measurement using dead reckoning. In Proceedings of the Seventh IEEE 

International Symposium on Wearable Computers, White Plains, NY, USA, 21–23 October 2003; pp. 166–166. 

32. Li, Q.; Li, R.; Ji, K.; Dai, W. Kalman filter and its application. In Proceedings of the 2015 8th International Conference on Intelli-

gent Networks and Intelligent Systems (ICINIS), Tianjin, China, 1–3 November 2015; pp. 74–77. 

33. Wang, Y. Position estimation using extended Kalman filter and RTS-smoother in a GPS receiver. In Proceedings of the 2012 5th 

international congress on image and signal processing, Chongqing, China, 16–18 October 2012; pp. 1718–1721. 

34. 34. Murata, M.; Kashino, K. Normalized unscented Kalman filter and normalized unscented RTS smoother for nonlinear 

state-space model identification. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 

2013; pp. 5462–5467. 

35. Sun, M.; Gao, Y.; Jiao, Z.; Xu, Y.; Zhuang, Y.; Qian, P. R-T-S assisted kalman filtering for robot localization using UWB meas-

urement. Mob. Networks Appl. 2022, 27, 1–10. https://doi.org/10.1007/s11036-021-01902-6. 

 


