
Citation: Wang, L.; Yu, B.; Chen, F.;

Li, C.; Li, B.; Wang, N. A

Cluster-Based Partition Method of

Remote Sensing Data for Efficient

Distributed Image Processing. Remote

Sens. 2022, 14, 4964. https://

doi.org/10.3390/rs14194964

Received: 16 September 2022

Accepted: 3 October 2022

Published: 5 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

A Cluster-Based Partition Method of Remote Sensing Data for
Efficient Distributed Image Processing
Lei Wang 1,2 , Bo Yu 1,2, Fang Chen 1,2,3,4, Congrong Li 1,2, Bin Li 1,2 and Ning Wang 1,2,*

1 International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
2 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute,

Chinese Academy of Sciences, Beijing 100094, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute,

Chinese Academy of Sciences, Beijing 100101, China
* Correspondence: wangning171@mails.ucas.edu.cn

Abstract: Data stream partitioning is a fundamental and important mechanism for distributed
systems. However, use of an inappropriate partition scheme may generate a data skew problem,
which can influence the execution efficiency of many application tasks. Processing of skewed
partitions usually takes a longer time, need more computational resources to complete the task and
can even become a performance bottleneck. To solve such data skew issues, this paper proposes a
novel partition method to divide on demand the image tiles uniformly into partitions. The partitioning
problem is then transformed into a uniform and compact clustering problem whereby the image
tiles are regarded as image pixels without spectrum and texture information. First, the equal area
conversion principle was used to select the seed points of the partitions and then the image tiles
were aggregated in an image layout, thus achieving an initial partition scheme. Second, the image
tiles of the initial partition were finely adjusted in the vertical and horizontal directions in separate
steps to achieve a uniform distribution among the partitions. Two traditional partition methods
were adopted to evaluate the efficiency of the proposed method in terms of the image segmentation
testing, data shuffle testing, and image clipping testing. The results demonstrated that the proposed
partition method solved the data skew problem observed in the hash partition method. In addition,
this method is designed specifically for processing of image tiles and makes the related processing
operations for large-scale images faster and more efficient.

Keywords: partition method; image processing; distributed computation; Apache Spark; digital
disaster reduction

1. Introduction

As the volume of data (texts, images, audios and videos) generated around the world
continues to increase rapidly, the processing and storage of data have become a challenging
issue in recent times and will continue well into the foreseeable future [1–4]. To overcome
such difficulties, big data platforms based on distributed clusters have emerged and ap-
plied in multiple domains to handle various types of massive data [5–8]. Specifically, the
Apache Hadoop [9], the Apache Spark [10] and the Apache Flink [11] have been devel-
oped for massive data processing under a distributed cluster environment. Furthermore,
these frameworks have been widely used by companies and research institutes around
the world [12,13] with remarkable performance. As a result, it is becoming easier to mine
valuable knowledge from massive databases using these tools [14]. However, the com-
plexity of scheduling tasks is increasing compared with that for a single machine with
sequential algorithms [15–17], despite the fact that the distributed clusters possess greater
computational power. Therefore, how to schedule tasks for optimal performance and
efficiency is critical for distributed platforms [18].

Remote Sens. 2022, 14, 4964. https://doi.org/10.3390/rs14194964 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14194964
https://doi.org/10.3390/rs14194964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7163-3644
https://doi.org/10.3390/rs14194964
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14194964?type=check_update&version=2

Remote Sens. 2022, 14, 4964 2 of 19

To schedule tasks efficiently, several data stream partition methods have been devel-
oped for the distributed platforms, most of which have a similar implementation mecha-
nism [19]. The input data stream is always loaded and split into multiple parts according to
the specific partition method, then various computing nodes are employed to process each
part simultaneously to achieve distributed data processing [20]. The partition methods
are critical for distributed systems, as they can regulate the workload of each computing
node scientifically and effectively improve the work efficiency [21]. There have been two
main types of partition methods in use up to now, the static method and the dynamic
method [22]. The static methods, such as the hash, range, and grid partition methods, are
typically provided officially and readily applied to a variety of data types, but they are not
easily adaptable to specific data stream tasks. The dynamic methods are usually designed
by the users and can be applied to specific data stream tasks. They predict and guide
partitions in the future by sampling and estimating the past data streams in a dynamic way,
but their construction steps are complicated. In general, different types of data streams and
distributed algorithms require different partition methods [23]. Hence, how to select the
appropriate partition method suitable for the task in hand is of great importance.

As is well known, improper partition can cause data skew issues, which could influ-
ence the execution efficiency directly in many tasks implemented over distributed clusters.
Skewed partitions usually work harder, take longer and need more computational re-
sources to complete the tasks [24]. This can result not only in a serious waste of computing
resources but also a significant decrease in execution efficiency, and may create computing
bottlenecks and even result in failure of the computing task [25]. Remote sensing images are
an important category of big data given their volume characteristics [26,27]. Hence, how to
select a proper partition method to efficiently process the large number of massive images
under distributed clusters remains a challenge [28]. Although the partition methods are less
studied than the distributed image processing methods, the improper partition could bring
up tough issues. Research on the partition method mainly focus on the task scheduling.
Both Costa and Bentes [29], and Sun and Zhang [30] adopted the directed acyclic graph
(DAG) and the partitionable tasks to exploit the task parallelism to sufficiently utilize the
available computing resources and further improve the execution efficiency. The above
two methods assumed that the images were loaded evenly into each partition. However,
the load balancing of partitions for image tiles remains a problem in the beginning of the
processing job. Specifically, the partition methods which handle the image tiles generated
by the decomposition of large-scale images over distributed clusters are still not available,
and this limits the performance of image processing applications. Therefore, how to divide
the image tiles into appropriate partitions is a key point that needs to be addressed to
further improve the performance of distributed image processing.

To solve the data skew problem, research over the last decade has designed and devel-
oped related data partition methods. Bertolucci and Carlini [22] evaluated the impact of
static and dynamic partition methods on efficiency using several graph algorithms, and
demonstrated that the partition method adopted with respect to the data and algorithm
characteristics could improve the task efficiency. Yu and Chen [31] repartitioned the unpro-
cessed blocks of straggling tasks to other idle tasks according to the constructed active task
list to fully utilize the computing nodes when a new task is registered. Tang and Zhang [32]
evaluated the data stream distribution, sorted the partitions and split the large partition
into various partitions to realize a uniform distribution. Liu and Zhu [33] generated the
partition lookup table to predict and guide future partitions based on the hypothesis that
the characteristics of multi-batch data would not change frequently. Tang and Lv [34]
used rejection sampling to evaluate data distribution in parallel, then improved the hash
or range partition methods, respectively, according to the actual application scenarios.
However, the proposed algorithm was more suitable for the case where the computing
power of each node was the same. Xiujin and Yueqin [35] improved the aforementioned
method by adding a dynamic evaluation method for the computing resource capability to
more accurately evaluate the state of each computing node and more scientifically allocate

Remote Sens. 2022, 14, 4964 3 of 19

the data stream to partitions with different resource allocations. Wang and Khan [36]
predicted automatically the potential problems a priori based on limited execution data
and recommended the use of a locality setting and partitions. Fu and Tang [37] evaluated
the characteristics of a previous data stream, strengthened the capability of the computing
nodes to allocate appropriately the computing tasks and achieved an even distribution
by a series of optimization measures. Huang and Wei [38] leveraged the skew detection
algorithm to identify the skew partition and adjusted the task resource allocation according
to the fine-grained resource allocation algorithm. Guoand Huang [39] took into account
the differences in computational capabilities among the computing nodes and assigned
each task to the computing nodes with the highest performance factor according to the
greedy strategy. Li and Zhang [40] established a virtual partition for data partition with
a huge amount of data, then used the hash partition method to further partition the data
to alleviate the calculation pressure. Shen and Xiong [41] also subdivided the partition
into sub partitions, adjusting the data skew and scheduled the tasks on the basis of the
granularity of the sub partition. Wang and Jia [42] evaluated the data distribution according
to the frequency of each data type, which was then analyzed to guide further merging
or split operations of the partitions. However, the above partition methods are complex
and suitable for different specialty applications, and application directly to image tiles
can cause data skew problems. Moreover, there are no partition methods suitable for the
remote sensing image tiles indexed by row and column numbers. Hence, an appropriate
partition method for massive image tiles is needed urgently.

In this paper, the design of a new partition method is proposed to solve the data
skew problem of image tiles, especially over distributed clusters. This partition method
transforms the tile partitioning problem into a pixel clustering problem, and consists of
three main steps, that is, seed point planning, the vertical direction adjustment and the
horizontal direction adjustment. First, the seed point planning decides the initial location
of the total partitions according to the image layout, and the initial seed points aggregate
the surrounding image tiles into initial partitions. Second, the tuning operations are carried
out along the vertical direction from top to bottom over the image layout. Finally, the
bottom image tiles are tuned along the horizontal direction from left to right over the image
layout. Hence, the final partition for the current image layout is generated, thus guiding
the partitions of the image tile. Two traditional partition methods (the hash and range
partition methods) were also employed to evaluate the elapsed time for the methods in
terms of the image segmentation testing, data shuffle testing and image clipping testing.
These experiments were carried out for four different types of image layouts with five
kinds of partitions to reveal the performance in terms of the execution efficiency.

The main objectives of research were to:

1. Transform the partitioning problem into a uniform and compact clustering problem
by regarding the image tiles as image pixels without spectral and texture information;

2. Propose a strategy for seed point generation of partitions based on the equal area con-
version principle and tune the image tiles dynamically among the adjacent partitions
to achieve an even distribution;

3. Solve the data skew problem existing in the distributed image processing tasks of the
hash partition method and achieve an approximate linear relationship between the
elapsed time and parallelism.

The organization of this paper is as follows. Section 2 outlines the methods. Section 3
describes the experimental design. Section 4 presents the results, and this is followed by
the discussion in Section 5. Concluding remarks are given in the last section.

2. Methods

We first define three clustering principles of the image tile partitioning for the efficient
parallel computation of the application tasks: (1) the number of partitions should be an
integer multiple to the number of available nodes (the efficient use of resources); (2) the
image tiles should be divided into partitions as uniformly as possible (even distribution);

Remote Sens. 2022, 14, 4964 4 of 19

and (3) each partition should form a regular shape as possible such that the communications
among nodes would be decreased (the equal area conversion).

This paper describes a novel static partition method—the raster partition method—that
satisfies these clustering principles. The raster partition method is designed to leverage
the row and column indexed characteristics of image tiles. In the method, massive image
tiles are regarded as general image pixels which are missing the attributes of the spectrum
response and texture. The proposed partition method consists mainly of three parts–the
seed point planning, the vertical direction adjustment and the horizontal direction adjust-
ment. Seed point planning is used to select the initial seed points and aggregate the image
tiles to generate the initial partition. Then, the vertical direction adjustment is performed to
fine tune the image tiles of the initial partition from top to bottom in terms of the vertical
direction. Further, the horizontal direction adjustment is adopted to fine tune the image
tiles of the remaining partition from left to right with respect to the horizontal direction.
After performing these three steps, the massive image tiles would be distributed uniformly
among each partition, and the data skew problem would also be solved. These three parts
are explained in detail in the next section.

2.1. Seed Point Planning

In general image segmentation, the image pixels are clustered into meaningful objects
according to its location, spectrum and textures information. However, the massive image
tiles are regarded as image pixels with only location (column and row) information, which
makes its clustering different from that of general ones. In addition, the partitioning process
requires the seed points distributed evenly as possible to form regular shapes and solve
the data skew problem. Therefore, we design a new initialization method for the image
tile partitioning.

Seed point planning is the initial step of the image tile partition process, and it has
a significant impact on the subsequent processing. In general, the number of seed points
is determined by the number of partitions required by the application task (the number
of partitions is set to 7 in all examples). Furthermore, the number of image tiles and the
required number of partitions do not always have an integer division relationship, which
makes it difficult to allocate evenly the total image tiles to each partition. Therefore, this
section introduces the area factor of the image tile and achieves the initial uniform planning
of seed points through the equal area conversion principle.

The area of each image tile is first defined as one unit, and the image area is the sum
of all image tiles. The required number of partitions depends on the user’s actual demands
and is used as the input parameter of the partition method. Then, the average area of the
image tiles contained in each partition is calculated according to the number of partitions.
A virtual square is then obtained by calculating the square root of the average partition
area, as shown in Figure 1b. The virtual squares are put side by side into an image layout,
as shown in Figure 1c. The maximum number (integer) of complete virtual squares that can
be placed in the horizontal direction is recorded, and this is used as the number of filled
virtual squares in the horizontal direction. Then, the horizontal length of the image layout
is divided by the maximum number of virtual squares (integer) to get a virtual rectangle
with the same area as the virtual square, as shown in Figure 1d.

The virtual rectangle obtained by equal area conversion is used to fill the image layout
in the order from left to right and from top to bottom. The maximum number (integer)
of complete rectangles that can be placed in the vertical direction is recorded and taken
as the number of filled virtual rectangles in the vertical direction, as shown in Figure 2a.
Most areas of the image layout have been filled with regular equal area virtual rectangles,
and the length and height of the remaining space of the image layout cannot meet the
demands of placing virtual squares or equal area virtual rectangles at the same time. At
this time, the height of the remaining space in the image layout is taken as the height, and
we calculate the new virtual rectangle according to the area of the virtual square, as shown
in Figure 2b. Next, the virtual square is converted into a new virtual rectangle according

Remote Sens. 2022, 14, 4964 5 of 19

to the equal area conversion principle and used to fill completely the remaining space of
image layout, as shown in Figure 2c. In addition, the number of new rectangles that can be
placed completely in the horizontal direction is also recorded.

Remote Sens. 2022, 14, 4964 5 of 20

Figure 1. Flowchart for the horizontal filling.

The virtual rectangle obtained by equal area conversion is used to fill the image lay-

out in the order from left to right and from top to bottom. The maximum number (integer)

of complete rectangles that can be placed in the vertical direction is recorded and taken as

the number of filled virtual rectangles in the vertical direction, as shown in Figure 2a. Most

areas of the image layout have been filled with regular equal area virtual rectangles, and

the length and height of the remaining space of the image layout cannot meet the demands

of placing virtual squares or equal area virtual rectangles at the same time. At this time,

the height of the remaining space in the image layout is taken as the height, and we cal-

culate the new virtual rectangle according to the area of the virtual square, as shown in

Figure 2b. Next, the virtual square is converted into a new virtual rectangle according to

the equal area conversion principle and used to fill completely the remaining space of

image layout, as shown in Figure 2c. In addition, the number of new rectangles that can

be placed completely in the horizontal direction is also recorded.

Figure 2. Flowchart for the vertical filling.

After completing the above steps, all the spaces in the image layout have been filled

by two types of regular virtual rectangles according to the equal area conversion principle.

In addition, the total number of each type of regular virtual rectangle is the same as that

of the seed points or required partitions. The virtual square and the two types of regular

virtual rectangle are both symmetrical, and the geometric center is just the center of the

shape, as shown in Figure 3a. Therefore, as illustrated in Figure 3b, the geometric center

of each equal area virtual rectangle in the image layout is extracted, and the corresponding

horizontal and vertical coordinates are adopted as the seed point positions of the initial

partition. Additionally, the category index corresponding to the partition encoding is es-

tablished for each seed point. In the image layout, the image tiles are clustered according

to the distance attribute with respect to the position of the initially planned seed points.

All image tiles are allocated to the seed points having the closest distance, and the attribute

tag information is also established to achieve the initialization of the image tiles, as shown

in Figure 4a.

Figure 1. Flowchart for the horizontal filling.

Remote Sens. 2022, 14, 4964 5 of 20

Figure 1. Flowchart for the horizontal filling.

The virtual rectangle obtained by equal area conversion is used to fill the image lay-

out in the order from left to right and from top to bottom. The maximum number (integer)

of complete rectangles that can be placed in the vertical direction is recorded and taken as

the number of filled virtual rectangles in the vertical direction, as shown in Figure 2a. Most

areas of the image layout have been filled with regular equal area virtual rectangles, and

the length and height of the remaining space of the image layout cannot meet the demands

of placing virtual squares or equal area virtual rectangles at the same time. At this time,

the height of the remaining space in the image layout is taken as the height, and we cal-

culate the new virtual rectangle according to the area of the virtual square, as shown in

Figure 2b. Next, the virtual square is converted into a new virtual rectangle according to

the equal area conversion principle and used to fill completely the remaining space of

image layout, as shown in Figure 2c. In addition, the number of new rectangles that can

be placed completely in the horizontal direction is also recorded.

Figure 2. Flowchart for the vertical filling.

After completing the above steps, all the spaces in the image layout have been filled

by two types of regular virtual rectangles according to the equal area conversion principle.

In addition, the total number of each type of regular virtual rectangle is the same as that

of the seed points or required partitions. The virtual square and the two types of regular

virtual rectangle are both symmetrical, and the geometric center is just the center of the

shape, as shown in Figure 3a. Therefore, as illustrated in Figure 3b, the geometric center

of each equal area virtual rectangle in the image layout is extracted, and the corresponding

horizontal and vertical coordinates are adopted as the seed point positions of the initial

partition. Additionally, the category index corresponding to the partition encoding is es-

tablished for each seed point. In the image layout, the image tiles are clustered according

to the distance attribute with respect to the position of the initially planned seed points.

All image tiles are allocated to the seed points having the closest distance, and the attribute

tag information is also established to achieve the initialization of the image tiles, as shown

in Figure 4a.

Figure 2. Flowchart for the vertical filling.

After completing the above steps, all the spaces in the image layout have been filled by
two types of regular virtual rectangles according to the equal area conversion principle. In
addition, the total number of each type of regular virtual rectangle is the same as that of the
seed points or required partitions. The virtual square and the two types of regular virtual
rectangle are both symmetrical, and the geometric center is just the center of the shape, as
shown in Figure 3a. Therefore, as illustrated in Figure 3b, the geometric center of each equal
area virtual rectangle in the image layout is extracted, and the corresponding horizontal
and vertical coordinates are adopted as the seed point positions of the initial partition.
Additionally, the category index corresponding to the partition encoding is established for
each seed point. In the image layout, the image tiles are clustered according to the distance
attribute with respect to the position of the initially planned seed points. All image tiles are
allocated to the seed points having the closest distance, and the attribute tag information is
also established to achieve the initialization of the image tiles, as shown in Figure 4a.

Remote Sens. 2022, 14, 4964 6 of 19Remote Sens. 2022, 14, 4964 6 of 20

Figure 3. Seed point planning.

2.2. Vertical Direction Adjustment

Seed point planning mainly uses the clustering principle to initialize the multiple

image tiles into various partitions. Although the seed points are generated according to

the geometric center of the shapes of equal area, the number of image tiles in each partition

still varies significantly after initialization. Hence, more optimization operations are re-

quired to modify the distribution of image tiles. The vertical direction adjustment aims to

further optimize the data skew problem of image tile partition in the vertical direction.

The number of image tiles is not always an integer multiple of the number of parti-

tions required by the application of the user. Although it is not possible to achieve an

absolute average of the number of image tiles in each partition, it should be ensured that

the maximum difference of the number of image tiles among each partition is one image

tile, in order to effectively limit the data skew problem. Therefore, the histogram of the

number of image tiles in each partition is obtained to support the adjustment process in

both directions.

The initialization results of the image tiles are shown in Figure 4a, where most parti-

tions have the same width in their respective vertical directions. The vertical direction

adjustment will continue to maintain the equal width characteristic of these zones in their

respective vertical directions. The overall order of the adjustment calculation over the im-

age layout is from left to right in the horizontal direction and from top to bottom in the

vertical direction. Each seed point and its image tile are regarded as the basic processing

unit. According to the partition histogram and the average number of image tiles for each

partition, another two number thresholds are set for each partition, representing the min-

imum and maximum number standard for the image tiles in each partition, respectively.

The minimum and maximum thresholds are acquired by applying the floor and ceil func-

tions on the average number of image tiles, respectively.

Figure 4. The flowchart for adjustment in the horizontal and vertical directions.

For a partition having more image tiles than the maximum threshold, the number of

redundant image tiles is calculated according to the maximum threshold, which is usually

the actual number of image tiles in the current partition minus the maximum threshold.

Figure 3. Seed point planning.

Remote Sens. 2022, 14, 4964 6 of 20

Figure 3. Seed point planning.

2.2. Vertical Direction Adjustment

Seed point planning mainly uses the clustering principle to initialize the multiple

image tiles into various partitions. Although the seed points are generated according to

the geometric center of the shapes of equal area, the number of image tiles in each partition

still varies significantly after initialization. Hence, more optimization operations are re-

quired to modify the distribution of image tiles. The vertical direction adjustment aims to

further optimize the data skew problem of image tile partition in the vertical direction.

The number of image tiles is not always an integer multiple of the number of parti-

tions required by the application of the user. Although it is not possible to achieve an

absolute average of the number of image tiles in each partition, it should be ensured that

the maximum difference of the number of image tiles among each partition is one image

tile, in order to effectively limit the data skew problem. Therefore, the histogram of the

number of image tiles in each partition is obtained to support the adjustment process in

both directions.

The initialization results of the image tiles are shown in Figure 4a, where most parti-

tions have the same width in their respective vertical directions. The vertical direction

adjustment will continue to maintain the equal width characteristic of these zones in their

respective vertical directions. The overall order of the adjustment calculation over the im-

age layout is from left to right in the horizontal direction and from top to bottom in the

vertical direction. Each seed point and its image tile are regarded as the basic processing

unit. According to the partition histogram and the average number of image tiles for each

partition, another two number thresholds are set for each partition, representing the min-

imum and maximum number standard for the image tiles in each partition, respectively.

The minimum and maximum thresholds are acquired by applying the floor and ceil func-

tions on the average number of image tiles, respectively.

Figure 4. The flowchart for adjustment in the horizontal and vertical directions.

For a partition having more image tiles than the maximum threshold, the number of

redundant image tiles is calculated according to the maximum threshold, which is usually

the actual number of image tiles in the current partition minus the maximum threshold.

Figure 4. The flowchart for adjustment in the horizontal and vertical directions.

2.2. Vertical Direction Adjustment

Seed point planning mainly uses the clustering principle to initialize the multiple
image tiles into various partitions. Although the seed points are generated according to the
geometric center of the shapes of equal area, the number of image tiles in each partition still
varies significantly after initialization. Hence, more optimization operations are required to
modify the distribution of image tiles. The vertical direction adjustment aims to further
optimize the data skew problem of image tile partition in the vertical direction.

The number of image tiles is not always an integer multiple of the number of partitions
required by the application of the user. Although it is not possible to achieve an absolute
average of the number of image tiles in each partition, it should be ensured that the
maximum difference of the number of image tiles among each partition is one image
tile, in order to effectively limit the data skew problem. Therefore, the histogram of the
number of image tiles in each partition is obtained to support the adjustment process in
both directions.

The initialization results of the image tiles are shown in Figure 4a, where most par-
titions have the same width in their respective vertical directions. The vertical direction
adjustment will continue to maintain the equal width characteristic of these zones in their
respective vertical directions. The overall order of the adjustment calculation over the
image layout is from left to right in the horizontal direction and from top to bottom in the
vertical direction. Each seed point and its image tile are regarded as the basic processing
unit. According to the partition histogram and the average number of image tiles for each
partition, another two number thresholds are set for each partition, representing the mini-
mum and maximum number standard for the image tiles in each partition, respectively. The
minimum and maximum thresholds are acquired by applying the floor and ceil functions
on the average number of image tiles, respectively.

For a partition having more image tiles than the maximum threshold, the number of
redundant image tiles is calculated according to the maximum threshold, which is usually

Remote Sens. 2022, 14, 4964 7 of 19

the actual number of image tiles in the current partition minus the maximum threshold.
All image tiles of the current partition are scanned in the vertical direction to look for its
neighbor partitions in its bottom of the image layout. The processing list is established by
sorting the image tiles in the current partition according to the row and column index in
descending order. Then, the image tiles with the highest ranking, according to the number
of redundant image tiles, are transferred to the adjacent partition, and the related tags
of partitions and image tiles are also updated. The transferred image tiles will join the
adjacent partition below the current partition.

For a partition with less image tiles than the minimum threshold, the number of
missing image tiles is calculated according to the minimum threshold, which is usually the
minimum threshold minus the actual number of image tiles in the current partition. All
image tiles of the adjacent partition at the bottom of the vertical direction are interrogated.
The current and the adjacent partitions are scanned at the same time. The processing list is
established by sorting the image tiles in the adjacent partition according to the row and
column index in ascending order. Then, the image tiles with the highest ranking in the
adjacent partition, according to the number of missing image tiles, are transferred to the
current partition, and the related tags of partitions and image tiles are also updated. The
transferred image tiles will join the current partition from the below adjacent partition.

As shown in Figure 4b, the above adjustment process in the vertical direction will
cover all but the bottom partitions which will remain stable. Therefore, the data skew
problem of most partitions is solved, and the remaining data skew problem will be solved
by the adjustment process for the horizontal direction.

2.3. Horizontal Direction Adjustment

After vertical direction adjustment, the data skew problem of image tiles in most
partitions has been solved, but there remains a data skew problem in a small number of
bottom partitions. This section is mainly concerned with how to optimize the bottom
partitions in the image layout. In general, when the number of partitions can be exactly
divided by the total number of image tiles, the horizontal direction adjustment would not
be required.

Connected component analysis is used to scan and analyze the image tiles in the
remaining bottom partitions, and the image tiles of all the data skew partitions are added to
the same connected component. In the connected component, the image tiles are processed
in each partition in the order from left to right along the horizontal direction according to
the predefined number of partitions and the threshold values. Due to the irregular shape of
the bottom connected component, it is inefficient to continue to use the simple image tile
transfer as in the vertical direction adjustment. Therefore, the region growing algorithm
may be adopted to process the target partitions based on four neighborhood directions
(top, right, bottom and left), in order to obtain the partitions in which the number of image
tiles meets the partition threshold well and all remaining image tiles in the image layout
are evenly distributed.

After the bottom partitions are adjusted, the partitions in the connected component,
and the corresponding mark and attribute information of the image tiles are updated. As
shown in Figure 4c, through the vertical and horizontal direction adjustment, all the image
tiles located in the image layout are evenly distributed in predefined partitions, which
solves the data skew problem with respect to the partitioning of image tiles during the
distributed processing of remote sensing images.

3. Experimental Design

In this section, comparative partition methods, the degrees of data skew, the adopted
test applications, the related remote sensing images and the parametric setups are all
described in detail. The performance of the proposed method is evaluated primarily in
terms of the execution time for the comparison methods with various parameter settings
which can visually reflect the execution efficiency.

Remote Sens. 2022, 14, 4964 8 of 19

3.1. Image Data

As can be seen in Figure 5, the synthetic Landsat remote sensing images were acquired
to verify the proposed partition method [43], the location being at the southeast of China
(23.75◦N–33.75◦N, 106.25◦E–116.25◦E). The image was acquired in 2021 and the spatial
resolution is 30 m [44]. The image was cropped to four sizes, that is, 8000 × 8000 pixels,
10,000 × 10,000 pixels, 12,000 × 12,000 pixels, and 40,000 × 40,000 pixels. Three true color
bands (red, green and blue) were selected as input data for all experiments in the study.
The landscape of the remote sensing images included mountains, forests, rivers, cities and
others. The image tile size of all the distributed partition experiments was set uniformly as
1000 × 1000 pixels, so that the four remote sensing images could be constructed with an
8 × 8, 10 × 10, 12 × 12, and 40 × 40 image layout, in order to increase the verification data
for the samples of the distributed partition experiment.

Remote Sens. 2022, 14, 4964 8 of 20

3.1. Image Data

As can be seen in Figure 5, the synthetic Landsat remote sensing images were ac-

quired to verify the proposed partition method [43], the location being at the southeast of

China (23.75°N–33.75°N, 106.25°E–116.25°E). The image was acquired in 2021 and the spa-

tial resolution is 30 m [44]. The image was cropped to four sizes, that is, 8000 × 8000 pixels,

10,000 × 10,000 pixels, 12,000 × 12,000 pixels, and 40,000 × 40,000 pixels. Three true color

bands (red, green and blue) were selected as input data for all experiments in the study.

The landscape of the remote sensing images included mountains, forests, rivers, cities and

others. The image tile size of all the distributed partition experiments was set uniformly

as 1000 × 1000 pixels, so that the four remote sensing images could be constructed with an

8 × 8, 10 × 10, 12 × 12, and 40 × 40 image layout, in order to increase the verification data

for the samples of the distributed partition experiment.

Figure 5. The true color Landsat images for the partition experiments.

3.2. Comparative Partition Methods

To illustrate the performance of the proposed raster partition method, another two

traditional partition methods (the hash partition method [45] and the range partition

method [46]) were employed as comparative methods. In terms of the hash partition

method, it regards each basic element as an object and calculates the hash code of the

object, then the partition number is acquired based on the number of partitions being di-

vided by the hash code. In terms of the range partition method, it is appropriate to spread

the data with keys that follows a particular order, and those data with keys within the

same range will appear on the same computing node. However, the particular order of

the range partition method needs to be defined by the user. In this experiment, we define

the sweep curve for the range partition method. Hence, three partition methods were ac-

tually adopted to build the comparison experiment. For convenience, the partition meth-

ods implemented in the comparative experiments are referred simply as the hash, range

and raster methods in the following figures, which are also specified in Table 1.

Table 1. Methods and nomenclature used in the comparative experiments.

Name Description

Hash The hash partition method of Apache Spark

Range The range partition method with sweep curve of Apache Spark

Raster The raster partition method

Figure 5. The true color Landsat images for the partition experiments.

3.2. Comparative Partition Methods

To illustrate the performance of the proposed raster partition method, another two
traditional partition methods (the hash partition method [45] and the range partition
method [46]) were employed as comparative methods. In terms of the hash partition
method, it regards each basic element as an object and calculates the hash code of the object,
then the partition number is acquired based on the number of partitions being divided
by the hash code. In terms of the range partition method, it is appropriate to spread the
data with keys that follows a particular order, and those data with keys within the same
range will appear on the same computing node. However, the particular order of the range
partition method needs to be defined by the user. In this experiment, we define the sweep
curve for the range partition method. Hence, three partition methods were actually adopted
to build the comparison experiment. For convenience, the partition methods implemented
in the comparative experiments are referred simply as the hash, range and raster methods
in the following figures, which are also specified in Table 1.

Table 1. Methods and nomenclature used in the comparative experiments.

Name Description

Hash The hash partition method of Apache Spark
Range The range partition method with sweep curve of Apache Spark
Raster The raster partition method

3.3. Evaluation Metircs for Partitions

In this study, two types of evaluation metrics were adopted to examine the partitions—
the degree of data skew and the compactness of partitions. The degree of data skew over

Remote Sens. 2022, 14, 4964 9 of 19

the partition was evaluated by the Degrees illustrated in Equation (2), where the Averege is
the mean number of image tiles of all partitions [33]. To evaluate the partition methods, ten
kinds of Degrees were used. The various values of the degrees of data skew were realized
by changing the number of partitions, as the other conditions in this work are fixed, such
as the image shape and size.

Averege = ∑
nb
x=1 Bx

nb
(1)

Degrees =

√
∑

nb
x=1(Bx−Averege)2

nb−1

Averege
(2)

where Bx is the number of image tiles of partition x, and nb is the number of partitions.
In the study, ten types of degrees of data skew were constructed for each image layout

to evaluate the partition method by setting in the experiment the number for the used
computing nodes of the distributed cluster as 3–7 and 30–70. The degree of data skew
was also the main variable of the experiment. As shown in Figure 6, the degree of data
skew of different image layouts and partition methods shows different variation rules as
the parallelism increases from 3 to 7 and 30–70, and the range of variation is 0–0.65 (this
value refers to the hash partition method, while those for the range and raster partition
methods are relatively small). As can be seen from Figure 6, the degree of data skew
for the hash partition method is significantly higher than those for the range and raster
partition methods as mentioned. The degree of data skew for the range and raster partition
methods are very close to each other in various combinations of parallelism for the various
image layouts.

Remote Sens. 2022, 14, 4964 9 of 20

3.3. Evaluation Metircs for Partitions

In this study, two types of evaluation metrics were adopted to examine the parti-

tions—the degree of data skew and the compactness of partitions. The degree of data skew

over the partition was evaluated by the 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 illustrated in Equation (2), where the

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 is the mean number of image tiles of all partitions [33]. To evaluate the partition

methods, ten kinds of 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 were used. The various values of the degrees of data skew

were realized by changing the number of partitions, as the other conditions in this work

are fixed, such as the image shape and size.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝐵𝑥
𝑛𝑏
𝑥=1

𝑛𝑏
 (1)

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 =

√
∑ (𝐵𝑥 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)2
𝑛𝑏
𝑥=1

𝑛𝑏 − 1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒

 (2)

where 𝐵𝑥 is the number of image tiles of partition 𝑥, and 𝑛𝑏 is the number of partitions.

In the study, ten types of degrees of data skew were constructed for each image lay-

out to evaluate the partition method by setting in the experiment the number for the used

computing nodes of the distributed cluster as 3–7 and 30–70. The degree of data skew was

also the main variable of the experiment. As shown in Figure 6, the degree of data skew

of different image layouts and partition methods shows different variation rules as the

parallelism increases from 3 to 7 and 30–70, and the range of variation is 0–0.65 (this value

refers to the hash partition method, while those for the range and raster partition methods

are relatively small). As can be seen from Figure 6, the degree of data skew for the hash

partition method is significantly higher than those for the range and raster partition meth-

ods as mentioned. The degree of data skew for the range and raster partition methods are

very close to each other in various combinations of parallelism for the various image lay-

outs.

The compactness of partitions was evaluated by the areas and bounding box, which

is the ratio of pixels in the region to pixels in the total bounding box. As can be seen in

Figure 7, the compactness of raster partition method is the highest in all image layouts,

and the hash partition method acquired the lowest compactness in all cases. This could

support the partition results of our proposed raster partition method.

Figure 6. The data skew for various image layouts. Figure 6. The data skew for various image layouts.

The compactness of partitions was evaluated by the areas and bounding box, which
is the ratio of pixels in the region to pixels in the total bounding box. As can be seen in
Figure 7, the compactness of raster partition method is the highest in all image layouts, and
the hash partition method acquired the lowest compactness in all cases. This could support
the partition results of our proposed raster partition method.

Remote Sens. 2022, 14, 4964 10 of 20

Figure 7. The compactness for various image layout.

3.4. Testing Applications

In this study, the applications adopted were the three stages of the distributed image

segmentation process implemented over Apache Spark. They are the image segmentation

stage, the data shuffle stage [47], and the image clipping stage [48]. With respect to the

distributed image segmentation stage, for the first round of computing, the distributed

strategy of Wang and Chen [49], and the simple linear iterative clustering (SLIC) image

segmentation algorithm were employed to construct the distributed method in Apache

Spark. During this stage, the image tiles distributed to each computing node were seg-

mented to generate regular super pixels simultaneously which have a similar shape and

size to each other. In terms of the data shuffle stage, the segmented image tiles which were

distributed among multiple computing nodes would buffer border image pixels from

their adjacent image tiles located in various computing nodes through the inner network

communications. Moreover, the buffer size of each segmented image tile was predefined

according to the specific applications. With respect to the image clipping stage, the buff-

ered image tiles distributed among the multiple computing nodes should be transformed

to the original shapes and sizes before the image tiles are stitched. The distributed image

segmentation is a user defined application, the data shuffle is a characteristic of Apache

Spark, and image clipping is an application developed by the Geo Trellis framework.

3.5. Parametric Setups

In the experiment, the implementation environment was as follows. All experiments

were implemented in Apache Spark with the Hadoop Yarn mode, and the data manage-

ment section of Apache Spark was used to record the elapsed times of the three test ap-

plications. The information of the basic services of the distributed cluster used is shown

in Table 2.

Table 2. Details for the version used for the basic service in the distributed cluster.

Service Ambari Hadoop Spark Geo Trellis Scala

Version 2.6.2 2.7.3 2.2.0 2.1.0 2.11.8

The Apache Spark configurations used in this experiment are presented in Table 3,

and where the number of executors, the executor memory, the executor cores, the driver

memory and the parallelism are all set with specific values. The number of partitions was

set to 3–7 and 30–70 equaling to the number of executors and the number of parallelisms.

Table 3. Parameters for the Spark submit system.

Parameters
Number of

Executors

Executor

Memory

Executor

Cores

Driver

Memory
Parallelism

Values 3–7 & 30–70 10 GB 1 20 GB 3–7 & 30–70

Figure 7. The compactness for various image layout.

Remote Sens. 2022, 14, 4964 10 of 19

3.4. Testing Applications

In this study, the applications adopted were the three stages of the distributed image
segmentation process implemented over Apache Spark. They are the image segmentation
stage, the data shuffle stage [47], and the image clipping stage [48]. With respect to the
distributed image segmentation stage, for the first round of computing, the distributed
strategy of Wang and Chen [49], and the simple linear iterative clustering (SLIC) image
segmentation algorithm were employed to construct the distributed method in Apache
Spark. During this stage, the image tiles distributed to each computing node were seg-
mented to generate regular super pixels simultaneously which have a similar shape and
size to each other. In terms of the data shuffle stage, the segmented image tiles which
were distributed among multiple computing nodes would buffer border image pixels from
their adjacent image tiles located in various computing nodes through the inner network
communications. Moreover, the buffer size of each segmented image tile was predefined
according to the specific applications. With respect to the image clipping stage, the buffered
image tiles distributed among the multiple computing nodes should be transformed to
the original shapes and sizes before the image tiles are stitched. The distributed image
segmentation is a user defined application, the data shuffle is a characteristic of Apache
Spark, and image clipping is an application developed by the Geo Trellis framework.

3.5. Parametric Setups

In the experiment, the implementation environment was as follows. All experiments
were implemented in Apache Spark with the Hadoop Yarn mode, and the data management
section of Apache Spark was used to record the elapsed times of the three test applications.
The information of the basic services of the distributed cluster used is shown in Table 2.

Table 2. Details for the version used for the basic service in the distributed cluster.

Service Ambari Hadoop Spark Geo Trellis Scala

Version 2.6.2 2.7.3 2.2.0 2.1.0 2.11.8

The Apache Spark configurations used in this experiment are presented in Table 3,
and where the number of executors, the executor memory, the executor cores, the driver
memory and the parallelism are all set with specific values. The number of partitions was
set to 3–7 and 30–70 equaling to the number of executors and the number of parallelisms.

Table 3. Parameters for the Spark submit system.

Parameters Number of
Executors

Executor
Memory

Executor
Cores

Driver
Memory Parallelism

Values 3–7 & 30–70 10 GB 1 20 GB 3–7 & 30–70

4. Results

The results were evaluated comprehensively from four aspects, (1) the distributed
image segmentation testing was used to evaluate the impact of the degree of data skew
on the image segmentation process, (2) the data shuffle testing was used to evaluate the
impact of the degree of data skew on the data shuffle process, (3) the image clipping testing
was used to evaluate the impact of the degree of data skew on the image clipping process,
and (4) the partition layout was used to illustrate the performance of the three different
partition methods in the 8 × 8, 10 × 10, 12 × 12 and 40 × 40 layout schemes, respectively.
The difference in the elapsed times of the jars with the same implementation parameters is
a unique aspect of the evaluation. All of these tests were carried out on the Apache Spark
platform. To ensure the reliability and stability of the data captured by the distributed
cluster, the study involved repeat testing of each group of computing units 15 times. For

Remote Sens. 2022, 14, 4964 11 of 19

the same operating environment and parameters, the differences in the elapsed times for
the tasks can effectively characterize the efficiency of the various partition methods.

4.1. Image Segmentation Testing

The experimental results for the influence of data skew on the execution efficiency
of the distributed image segmentation stage are shown in Figure 8. As can be seen in the
layout schemes for 8 × 8, 10 × 10, 12 × 12 and 40 × 40, the elapsed times for the range
and raster partition methods gradually decreased as the number of partitions increased.
Meanwhile, the differences in the elapsed times between two adjacent partitions gradually
decreased as the number of partitions increased. The elapsed times for the range and raster
partition methods were relatively close to each other in the image layouts, especially so
for the median value of the box graph. The elapsed time for the hash partition method
depended more on the degree of data skew than the increase or decrease of the actual
number of partitions. Therefore, the elapsed time for hash partition method did not exhibit
a consistent change trend with increase in the number of partitions. For example, with
an increase in the number of partitions, the elapsed time for the hash partition method
represented a trend of at first decreasing and then increasing for the 8 × 8 and 12 × 12
image layouts; the elapsed time for the hash partition method could represent a trend of
repeated decline and rise in the 10 × 10 and 40 × 40 schemes. Furthermore, the elapsed
time difference between two adjacent partitions also varied, and there was no obvious
change in the rule. In the comparison experiments, the raster partition method reduced the
computational time by 21.5% and 1.5% on average compared with those for the hash and
range partition methods, respectively. For each number of partition groups, the elapsed
time of the image segmentation stage for each partition method continued to rise with the
image layout increasing in going from 8 × 8 to 10 × 10 to 12 × 12 and 40 × 40.

Remote Sens. 2022, 14, 4964 12 of 20

Figure 8. The elapsed time for image segmentation testing.

4.2. Data Shuffle Testing

The experimental results for the influence of data skew on the execution efficiency of

data shuffle stage are shown in Figure 9. The data shuffle time for the range and raster

partition methods were similar in all image layout schemes, and, in general, the raster

partition method reduced the computational time by 1.1% compared with the range par-

tition method. In the layout schemes of 8 × 8, 10 × 10 and 12 × 12, the data shuffle time for

the range and raster partition methods decreased monotonously as the number of parti-

tions increased from 3 to 7. Although the data shuffle time for the hash partition method

was close to that for the range and raster partition methods in many subfigures, the aver-

age efficiencies for the range and raster partition methods were 6.7% and 7.7% higher than

that for the hash partition method, respectively. However, the data shuffle time for the

hash, range and raster partition methods remained stable as the number of partitions in-

creased from 30 to 70. In terms of the box graphs and the median values, the data shuffle

time for the hash partition method was significantly different from that for the range and

raster partition methods as shown in Figures 9c,e,i,j, and l. In terms of the mean values,

the hash partition method clearly requires more data shuffle time compared to that for the

range and raster partition methods in most experiments as shown in Figure 9. The data

shuffle time for the hash partition method showed a decreasing, overall flat and overall

flat but with fluctuations trends separately in the 12 × 12, 10 × 10 and 8 × 8 image layouts

as the number of partitions increased from 3 to 7. For each number of partition groups,

the elapsed time for the data shuffle stage for each partition method continued to rise with

the image layout increasing from 8 × 8, to 10 × 10 to 12 × 12 and 40 × 40.

Figure 8. The elapsed time for image segmentation testing.

Remote Sens. 2022, 14, 4964 12 of 19

4.2. Data Shuffle Testing

The experimental results for the influence of data skew on the execution efficiency
of data shuffle stage are shown in Figure 9. The data shuffle time for the range and
raster partition methods were similar in all image layout schemes, and, in general, the
raster partition method reduced the computational time by 1.1% compared with the range
partition method. In the layout schemes of 8 × 8, 10 × 10 and 12 × 12, the data shuffle
time for the range and raster partition methods decreased monotonously as the number
of partitions increased from 3 to 7. Although the data shuffle time for the hash partition
method was close to that for the range and raster partition methods in many subfigures,
the average efficiencies for the range and raster partition methods were 6.7% and 7.7%
higher than that for the hash partition method, respectively. However, the data shuffle
time for the hash, range and raster partition methods remained stable as the number of
partitions increased from 30 to 70. In terms of the box graphs and the median values, the
data shuffle time for the hash partition method was significantly different from that for the
range and raster partition methods as shown in Figure 9c,e,i,j and Figure 1. In terms of the
mean values, the hash partition method clearly requires more data shuffle time compared
to that for the range and raster partition methods in most experiments as shown in Figure 9.
The data shuffle time for the hash partition method showed a decreasing, overall flat and
overall flat but with fluctuations trends separately in the 12 × 12, 10 × 10 and 8 × 8 image
layouts as the number of partitions increased from 3 to 7. For each number of partition
groups, the elapsed time for the data shuffle stage for each partition method continued to
rise with the image layout increasing from 8 × 8, to 10 × 10 to 12 × 12 and 40 × 40.

Remote Sens. 2022, 14, 4964 13 of 20

Figure 9. The elapsed time for the data shuffle testing.

4.3. Image Clipping Testing

The experimental results for the influence of data skew on the execution efficiency of

the distributed image clipping are shown in Figure 10. In the image layout schemes for 8

× 8, 10 × 10, 12 × 12 and 40 × 40 the image clipping time for the range and raster partition

methods showed a gradual downward trend and the image clipping time difference be-

tween two adjacent number of partitions was not clear as the number of partitions in-

creased. The image clipping times for the range and raster partition methods were very

similar in most subfigures, whether it is the box graphs or the median or mean values. The

image clipping time for the hash partition method depended mainly on the degree of data

skew, rather than the variation of the actual number of partitions. As the number of par-

titions increased, the image clipping time (mean value of box graph) generally showed

that the phenomenon at first decreases and then rises in terms of the 8 × 8 image layout

scheme, the image clipping time (mean and median of the box chart); for the 10 × 10 image

layout scheme, it generally showed the phenomenon of repeatedly decreasing at first and

then rising; for the 12 × 12 and 40 × 40 image layout schemes, the image clipping time

(mean and median of box chart) showed a downward trend on the whole. The image clip-

ping time difference between two adjacent partitions for the hash partition method exhib-

ited no obvious trends. In the comparative experiments for each group, the raster partition

method reduced the computational time by 8.5% and 1% on average compared with hash

and range partition methods. In each number of partition groups, the elapsed time for the

image clipping stage of each partition method kept rising with the image layout increasing

from 8 × 8, to 10 × 10 to 12 × 12 and 40 × 40.

Figure 9. The elapsed time for the data shuffle testing.

4.3. Image Clipping Testing

The experimental results for the influence of data skew on the execution efficiency of
the distributed image clipping are shown in Figure 10. In the image layout schemes for
8 × 8, 10 × 10, 12 × 12 and 40 × 40 the image clipping time for the range and raster partition

Remote Sens. 2022, 14, 4964 13 of 19

methods showed a gradual downward trend and the image clipping time difference
between two adjacent number of partitions was not clear as the number of partitions
increased. The image clipping times for the range and raster partition methods were very
similar in most subfigures, whether it is the box graphs or the median or mean values.
The image clipping time for the hash partition method depended mainly on the degree of
data skew, rather than the variation of the actual number of partitions. As the number of
partitions increased, the image clipping time (mean value of box graph) generally showed
that the phenomenon at first decreases and then rises in terms of the 8 × 8 image layout
scheme, the image clipping time (mean and median of the box chart); for the 10 × 10 image
layout scheme, it generally showed the phenomenon of repeatedly decreasing at first and
then rising; for the 12 × 12 and 40 × 40 image layout schemes, the image clipping time
(mean and median of box chart) showed a downward trend on the whole. The image
clipping time difference between two adjacent partitions for the hash partition method
exhibited no obvious trends. In the comparative experiments for each group, the raster
partition method reduced the computational time by 8.5% and 1% on average compared
with hash and range partition methods. In each number of partition groups, the elapsed
time for the image clipping stage of each partition method kept rising with the image layout
increasing from 8 × 8, to 10 × 10 to 12 × 12 and 40 × 40.

Remote Sens. 2022, 14, 4964 14 of 20

Figure 10. The elapsed time for the image clipping testing.

4.4. Partition Layout

In this study, the experiment used four images to generate four image layouts (8 × 8,

10 × 10, 12 × 12 and 40 × 40) according to the size of image tile. Given that the rendering of

image layout by color separation was more intuitive, the partition details in the form of

the images—as shown in Figures 11, 12 and 13 respectively—may be readily visualized.

The range of variation in the number of partitions in this research was 3–7 and 30–70. The

rendering color of each partition index was fixed, in the 8 × 8, 10 × 10 and 12 × 12 image

layout schemes, seven colors were selected to render the partitions of various image lay-

out schemes. As the image layout for 40 × 40 required at least 30 kinds of colors, it is not

rendered.

As can be seen from Figures 11–13, the partition results for the hash partition method

were generated by the hash value of the row and column index for each image tile. Hence,

the distribution of image tiles was nearly random, and there was no regular shape or ob-

vious rules in the image layout. The partition results for the range partition method were

distributed along the vertical scan line in the image layout, and the shape of the partition

was relatively regular. Furthermore, the number of image tiles in each partition was very

close to each other, and the maximum difference of image tiles among the partitions was

no more than 1. The partition results for the raster partition method were close to a rec-

tangle. The maximum difference of image tiles among the partitions for the raster partition

method was also no more than 1. However, the image tile distribution for the raster par-

tition method was more compact than that of the range and hash partition methods.

Figure 10. The elapsed time for the image clipping testing.

4.4. Partition Layout

In this study, the experiment used four images to generate four image layouts (8 × 8,
10 × 10, 12 × 12 and 40 × 40) according to the size of image tile. Given that the rendering
of image layout by color separation was more intuitive, the partition details in the form
of the images—as shown in Figures 11–13 respectively—may be readily visualized. The
range of variation in the number of partitions in this research was 3–7 and 30–70. The
rendering color of each partition index was fixed, in the 8 × 8, 10 × 10 and 12 × 12 image
layout schemes, seven colors were selected to render the partitions of various image layout

Remote Sens. 2022, 14, 4964 14 of 19

schemes. As the image layout for 40 × 40 required at least 30 kinds of colors, it is not
rendered.

Remote Sens. 2022, 14, 4964 15 of 20

Figure 11. The partition results for the hash, range and raster partition methods over the 8 × 8-

image layout.

Figure 12. The partition results for the hash, range and raster partition methods over the 10 × 10-

image layout.

Figure 11. The partition results for the hash, range and raster partition methods over the 8 × 8-
image layout.

Remote Sens. 2022, 14, 4964 15 of 20

Figure 11. The partition results for the hash, range and raster partition methods over the 8 × 8-

image layout.

Figure 12. The partition results for the hash, range and raster partition methods over the 10 × 10-

image layout.

Figure 12. The partition results for the hash, range and raster partition methods over the 10 × 10-
image layout.

Remote Sens. 2022, 14, 4964 15 of 19Remote Sens. 2022, 14, 4964 16 of 20

Figure 13. The partition results for the hash, range and raster partition methods over the 12 × 12-

image layout.

5. Discussion

In this research, the raster partition method is proposed to solve the improper parti-

tion problem of image tiles decomposed from large-scale images. This method focused on

the unevenly divided image tiles among partitions which occurs in the loading or dividing

stages and leads to the data skew problem. The researches of [29] and [30] focused on the

task parallelism problem, which profiled the applications in remote sensing field and in-

corporated them with DAG to realize the further optimization the execution time. They

usually find the partitionable tasks and build the task parallelism based on the analysis of

the dependencies among tasks, while the load balancing in the beginning of the task were

not discussed. The load balancing and the task parallelism concentrate on the partition

problems occurring in different computing stages, but both of them could promote the

further improvement of the execution efficiency. Additionally, the task parallelism

method would be the further study point in our research.

In terms of testing the image segmentation stage, the box graph is used to represent

the elapsed time for all the repeat tests. The elapsed time recorded in each group changes

within a certain range rather than having a fixed value, which is mainly caused by the

operating condition of the distributed cluster and each computing node. When perform-

ing each round of calculation with a fixed number of computing nodes, the combination

among these computing nodes is not unique, hence this will affect the execution efficiency

of the same application task. The hash partition method requires more operational time

than the range and raster partition methods in the image segmentation stage. The elapsed

time for the hash partition method is affected by the degree of data skew and will rise

with increase in the number of partitions, while the other two partition methods solve the

problem of data skew. Although the elapsed time difference between the range and raster

partition method is usually small, the elapsed time of the raster partition method is

slightly lower than that of the range partition method.

In terms of testing the data shuffle stage, the two highest degrees of data skew for the

hash partition method will clearly lead to the highest data shuffle time (as shown in Figure

Figure 13. The partition results for the hash, range and raster partition methods over the 12 × 12-
image layout.

As can be seen from Figures 11–13, the partition results for the hash partition method
were generated by the hash value of the row and column index for each image tile. Hence,
the distribution of image tiles was nearly random, and there was no regular shape or
obvious rules in the image layout. The partition results for the range partition method were
distributed along the vertical scan line in the image layout, and the shape of the partition
was relatively regular. Furthermore, the number of image tiles in each partition was very
close to each other, and the maximum difference of image tiles among the partitions was no
more than 1. The partition results for the raster partition method were close to a rectangle.
The maximum difference of image tiles among the partitions for the raster partition method
was also no more than 1. However, the image tile distribution for the raster partition
method was more compact than that of the range and hash partition methods.

5. Discussion

In this research, the raster partition method is proposed to solve the improper partition
problem of image tiles decomposed from large-scale images. This method focused on the
unevenly divided image tiles among partitions which occurs in the loading or dividing
stages and leads to the data skew problem. The researches of [29,30] focused on the
task parallelism problem, which profiled the applications in remote sensing field and
incorporated them with DAG to realize the further optimization the execution time. They
usually find the partitionable tasks and build the task parallelism based on the analysis of
the dependencies among tasks, while the load balancing in the beginning of the task were
not discussed. The load balancing and the task parallelism concentrate on the partition
problems occurring in different computing stages, but both of them could promote the
further improvement of the execution efficiency. Additionally, the task parallelism method
would be the further study point in our research.

In terms of testing the image segmentation stage, the box graph is used to represent
the elapsed time for all the repeat tests. The elapsed time recorded in each group changes
within a certain range rather than having a fixed value, which is mainly caused by the
operating condition of the distributed cluster and each computing node. When performing

Remote Sens. 2022, 14, 4964 16 of 19

each round of calculation with a fixed number of computing nodes, the combination among
these computing nodes is not unique, hence this will affect the execution efficiency of the
same application task. The hash partition method requires more operational time than the
range and raster partition methods in the image segmentation stage. The elapsed time for
the hash partition method is affected by the degree of data skew and will rise with increase
in the number of partitions, while the other two partition methods solve the problem of
data skew. Although the elapsed time difference between the range and raster partition
method is usually small, the elapsed time of the raster partition method is slightly lower
than that of the range partition method.

In terms of testing the data shuffle stage, the two highest degrees of data skew for
the hash partition method will clearly lead to the highest data shuffle time (as shown in
Figure 9). The higher the degree of data skew, the more the image tiles are contained in
a small number of partitions. As is well known, the data shuffle process needs to obtain
the image pixels of the image tiles located in the surrounding neighborhood, therefore, the
partition needs to communicate using an internal network with more partitions (computing
nodes) during the data shuffling stage. Compared with the internal network communi-
cation of the distributed cluster, the amount of image tiles is relatively small, therefore, a
very high degree of data skew can lead to significant changes in the data shuffle time. In
addition, the data shuffle time for the range partition method is slightly more than that for
the raster partition method according to the average elapsed time for the data shuffle. The
verification results show that the proposed raster partition method has a more compact par-
tition structure and better efficiency performance among the three partition methods. On
the one hand, due to the limitation of the Apache Spark platform management components,
the elapsed time for all experiments can only be accurate to 0.1 s, which leads to a lack of
accuracy in the recording of the elapsed time to a certain extent. On the other hand, other
applications or service programs may occupy the internal network for communication
when the test task is run in this experiment.

In terms of the testing of the image clipping stage, the image clipping process is a
built-in function of the Geo trellis framework and is used to evaluate the impact of the
variation in the number of partitions on the elapsed time. The elapsed time difference
of image clipping stage can further verify the results generated by the former two test
experiments. The elapsed times for the hash, range and raster partition methods were very
close where the degree of data skew for the hash partition method was relatively low. In
contrast, the elapsed time for the hash partition method can be clearly distinguished from
that of the range and raster partition methods when the degree of data skew for the hash
partition method was relatively high. This is because the image clipping function in the
Geo trellis framework is very simple and requires very little operating time to complete.
Therefore, only a huge difference of image tiles in each partition can lead to the relatively
clear change in the operating time. The experimental testing shows that the data skew
problem will indeed affect the efficiency of the distributed applications.

In terms of the several types of partition layout, the partition results for the hash, range
and raster partition methods show, respectively, the randomness, the strip characteristic,
and the aggregation feature in all types of image layouts and number of partitions. The hash
partition method calculates the hash value of the column and row index corresponding to
each decomposed image tile, and the manner of generation of the hash partition method
determines the partition results. This usually generates random partition results, which
leads to an extremely uneven number of image tiles in each partition. Therefore, more
partitions will not improve the efficiency of the task but may lead to a longer task operating
time or performance bottleneck. The processing order of the raster partition method is from
top to bottom and from left to right, and the partitions located at the bottom of the image
layout sometimes can have an abnormal shape and are not compact enough. A similar
situation occurs in the results of the raster partition method when the number of partitions
is 5 or 7, which is one deficiency in the current design scheme of the raster partition method.

Remote Sens. 2022, 14, 4964 17 of 19

6. Conclusions

As is well known, the data skew problem can influence the execution efficiency
directly in many application tasks implemented over distributed clusters and even lead to
performance bottlenecks. In addition, a partition method suitable for image tiles organized
by row and column index characteristics is still not available. To solve the aforementioned
data skew issues, this study proposed a novel partition method based on the clustering
idea and the equal area conversion principle. The approach could specifically distribute
the decomposed large-scale remote sensing image tiles uniformly to each computing node.
Our proposed partition method consists of three main parts: the seed point planning,
vertical direction adjustment and horizontal direction adjustment. In the method, image
tiles are regarded as image pixels lacking spectrum and texture attributes, and the image
tile partitioning problem is transformed into an image pixel clustering problem. First,
the seed points are planned based on the equal area conversion principle and the image
tiles are aggregated by taking the uniformity and compactness criteria into account to
generate an initial partition. Second, the initial partition is fine tuned in terms of the vertical
and horizontal directions to achieve a uniform distribution, which solves the data skew
problem of image tiles. Two traditional partition methods (the hash and range partition
methods) were employed to evaluate and verify the proposed partition method from three
aspects: the elapsed time for the image segmentation stage, the data shuffle stage, and the
image clipping stage. The results showed that the proposed partition method can solve
the data skew problem by distributing image tiles evenly to each partition (computing
node), and reduced the computational time by 21.5%, 7.7% and 8.5% on average in the
three stages. Meanwhile, the elapsed time decreased monotonically as the number of
partitions increased.

In future work, the proposed raster partition method could be further optimized in
terms of the computational complexity and the compactness of the total partitions in the
image layouts. In addition, the initial seed points should be selected and initialized in a
more balanced distribution, which would maintain the adjacent image tiles within the same
computing node as much as is feasibly possible. Furthermore, the task parallelism would
be considered to further improve the execution efficiency in our research.

Author Contributions: Conceptualization, L.W. and N.W.; methodology, L.W. and N.W.; software,
C.L.; validation, B.Y., F.C. and B.L.; formal analysis, B.Y.; investigation, L.W.; resources, F.C.; data
curation, B.Y.; writing—original draft preparation, N.W.; writing—review and editing, B.Y.; visualiza-
tion, N.W.; supervision, C.L.; project administration, L.W.; funding acquisition, F.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the Strategic Priority Research Program of the Chinese
Academy of Sciences (XDA19030101), Youth Innovation Promotion Association, CAS (2022122) and
China-ASEAN Big Earth Data Platform and Applications (CADA, guikeAA20302022).

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, N.; Chen, F.; Yu, B.; Qin, Y. Segmentation of large-scale remotely sensed images on a Spark platform: A strategy for

handling massive image tiles with the MapReduce model. ISPRS J. Photogramm. Remote Sens. 2020, 162, 137–147. [CrossRef]
2. Chen, F.; Wang, N.; Yu, B.; Qin, Y.C.; Wang, L. A Strategy of Parallel Seed-Based Image Segmentation Algorithms for Handling

Massive Image Tiles over the Spark Platform. Remote Sens. 2021, 13, 1969. [CrossRef]
3. Jia, H.; Chen, F.; Zhang, C.; Dong, J.; Du, E.; Wang, L. High emissions could increase the future risk of maize drought in China by

60–70%. Sci. Total Environ. 2022, 852, 158474. [CrossRef]
4. Jia, H.; Chen, F.; Pan, D.; Du, E.; Wang, L.; Wang, N.; Yang, A. Flood risk management in the Yangtze River basin—Comparison of

1998 and 2020 events. Int. J. Disaster Risk Reduct. 2022, 68, 102724. [CrossRef]
5. Guo, H.; Chen, F.; Sun, Z.; Liu, J.; Liang, D. Big Earth Data: A practice of sustainability science to achieve the Sustainable

Development Goals. Sci. Bull. 2021, 66, 1050–1053. [CrossRef]
6. Guo, H. Big data drives the development of Earth science. Big Earth Data 2017, 1, 1–3. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2020.02.012
http://doi.org/10.3390/rs13101969
http://doi.org/10.1016/j.scitotenv.2022.158474
http://doi.org/10.1016/j.ijdrr.2021.102724
http://doi.org/10.1016/j.scib.2021.01.012
http://doi.org/10.1080/20964471.2017.1405925

Remote Sens. 2022, 14, 4964 18 of 19

7. Yu, B.; Xu, C.; Chen, F.; Wang, N.; Wang, L. HADeenNet: A hierarchical-attention multi-scale deconvolution network for landslide
detection. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102853. [CrossRef]

8. Yu, B.; Yang, A.; Chen, F.; Wang, N.; Wang, L. SNNFD, spiking neural segmentation network in frequency domain using high
spatial resolution images for building extraction. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102930. [CrossRef]

9. Apache Hadoop. Available online: http://hadoop.apache.org/ (accessed on 18 July 2022).
10. Apache Spark. Available online: https://spark.apache.org/ (accessed on 18 July 2022).
11. Apache Flink. Available online: https://flink.apache.org/ (accessed on 18 July 2022).
12. Salloum, S.; Dautov, R.; Chen, X.; Peng, P.X.; Huang, J.Z. Big data analytics on Apache Spark. Int. J. Data Sci. Anal. 2016, 1,

145–164. [CrossRef]
13. Sahal, R.; Breslin, J.G.; Ali, M.I. Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive

maintenance use case. J. Manuf. Syst. 2020, 54, 138–151. [CrossRef]
14. Tao, D.; Yang, P.; Feng, H. Utilization of text mining as a big data analysis tool for food science and nutrition. Compr. Rev. Food Sci.

Food Saf. 2020, 19, 875–894. [CrossRef] [PubMed]
15. Saxena, D.; Chauhan, R.; Kait, R. Dynamic fair priority optimization task scheduling algorithm in cloud computing: Concepts

and implementations. Int. J. Comput. Netw. Inf. Secur. 2016, 8, 41. [CrossRef]
16. Abualigah, L.; Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud

computing environments. Clust. Comput. 2021, 24, 205–223. [CrossRef]
17. Chen, F.; Wang, N.; Yu, B.; Wang, L. Res2-Unet, a New Deep Architecture for Building Detection from High Spatial Resolution

Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1494–1501. [CrossRef]
18. Wu, Z.; Sun, J.; Zhang, Y.; Wei, Z.; Chanussot, J. Recent developments in parallel and distributed computing for remotely sensed

big data processing. Proc. IEEE 2021, 109, 1282–1305. [CrossRef]
19. Mahmud, M.S.; Huang, J.Z.; Salloum, S.; Emara, T.Z.; Sadatdiynov, K. A survey of data partitioning and sampling methods to

support big data analysis. Big Data Min. Anal. 2020, 3, 85–101. [CrossRef]
20. Oussous, A.; Benjelloun, F.-Z.; Lahcen, A.A.; Belfkih, S. Big Data technologies: A survey. J. King Saud Univ. Comput. Inf. Sci. 2018,

30, 431–448. [CrossRef]
21. Isah, H.; Abughofa, T.; Mahfuz, S.; Ajerla, D.; Zulkernine, F.; Khan, S. A survey of distributed data stream processing frameworks.

IEEE Access 2019, 7, 154300–154316. [CrossRef]
22. Bertolucci, M.; Carlini, E.; Dazzi, P.; Lulli, A.; Ricci, L. Static and dynamic big data partitioning on apache spark. In Parallel

Computing: On the Road to Exascale; IOS Press: Amsterdam, The Netherlands, 2016; pp. 489–498.
23. Geetha, J.; Harshit, N. Implementation and performance comparison of partitioning techniques in apache spark. In Proceedings

of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur,
India, 6–8 July 2019; IEEE: New York, NY, USA, 2019; pp. 1–5.

24. Kwon, Y.; Balazinska, M.; Howe, B.; Rolia, J. Skewtune: Mitigating skew in mapreduce applications. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data, Scottsdale, AZ, USA, 20–24 May 2012; pp. 25–36.

25. Data Skew. Available online: https://www.ibm.com/docs/en/psfa/7.2.1?topic=appliance-data-skew (accessed on 18 July 2022).
26. Guo, H. Big Earth data: A new frontier in Earth and information sciences. Big Earth Data 2017, 1, 4–20. [CrossRef]
27. Hansen, M.C.; Wang, L.; Song, X.-P.; Tyukavina, A.; Turubanova, S.; Potapov, P.V.; Stehman, S.V. The fate of tropical forest

fragments. Sci. Adv. 2020, 6, eaax8574. [CrossRef] [PubMed]
28. Ma, Y.; Wu, H.P.; Wang, L.Z.; Huang, B.M.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and

opportunities. Future Gen. Comp. Syst. 2015, 51, 47–60. [CrossRef]
29. Costa, G.A.; Bentes, C.; Ferreira, R.S.; Feitosa, R.Q.; Oliveira, D.A. Exploiting different types of parallelism in distributed analysis

of remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1298–1302. [CrossRef]
30. Sun, J.; Zhang, Y.; Wu, Z.; Zhu, Y.; Yin, X.; Ding, Z.; Wei, Z.; Plaza, J.; Plaza, A. An efficient and scalable framework for processing

remotely sensed big data in cloud computing environments. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4294–4308. [CrossRef]
31. Yu, J.; Chen, H.; Hu, F. SASM: Improving spark performance with adaptive skew mitigation. In Proceedings of the 2015 IEEE

International Conference on Progress in Informatics and Computing (PIC), Nanjing, China, 18–20 December 2015; IEEE: New
York, NY, USA, 2015; pp. 102–107.

32. Tang, Z.; Zhang, X.; Li, K.; Li, K. An intermediate data placement algorithm for load balancing in spark computing environment.
Future Gener. Comput. Syst. 2018, 78, 287–301. [CrossRef]

33. Liu, G.; Zhu, X.; Wang, J.; Guo, D.; Bao, W.; Guo, H. SP-Partitioner: A novel partition method to handle intermediate data skew in
spark streaming. Future Gener. Comput. Syst. 2018, 86, 1054–1063. [CrossRef]

34. Tang, Z.; Lv, W.; Li, K.; Li, K. An intermediate data partition algorithm for skew mitigation in spark computing environment.
IEEE Trans. Cloud Comput. 2018, 9, 461–474. [CrossRef]

35. Xiujin, S.; Yueqin, Q. An algorithm of data skew in spark based on partition. In Proceedings of the 2020 International Conference
on Computers, Information Processing and Advanced Education (CIPAE), Ottawa, ON, Canada, 16–18 October 2020; IEEE: New
York, NY, USA, 2020; pp. 217–222.

36. Wang, K.; Khan, M.M.H.; Nguyen, N.; Gokhale, S. A model driven approach towards improving the performance of apache
spark applications. In Proceedings of the 2019 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), Madison, WI, USA, 24–26 March 2019; IEEE: New York, NY, USA, 2019; pp. 233–242.

http://doi.org/10.1016/j.jag.2022.102853
http://doi.org/10.1016/j.jag.2022.102930
http://hadoop.apache.org/
https://spark.apache.org/
https://flink.apache.org/
http://doi.org/10.1007/s41060-016-0027-9
http://doi.org/10.1016/j.jmsy.2019.11.004
http://doi.org/10.1111/1541-4337.12540
http://www.ncbi.nlm.nih.gov/pubmed/33325182
http://doi.org/10.5815/ijcnis.2016.02.05
http://doi.org/10.1007/s10586-020-03075-5
http://doi.org/10.1109/JSTARS.2022.3146430
http://doi.org/10.1109/JPROC.2021.3087029
http://doi.org/10.26599/BDMA.2019.9020015
http://doi.org/10.1016/j.jksuci.2017.06.001
http://doi.org/10.1109/ACCESS.2019.2946884
https://www.ibm.com/docs/en/psfa/7.2.1?topic=appliance-data-skew
http://doi.org/10.1080/20964471.2017.1403062
http://doi.org/10.1126/sciadv.aax8574
http://www.ncbi.nlm.nih.gov/pubmed/32195340
http://doi.org/10.1016/j.future.2014.10.029
http://doi.org/10.1109/LGRS.2017.2709700
http://doi.org/10.1109/TGRS.2018.2890513
http://doi.org/10.1016/j.future.2016.06.027
http://doi.org/10.1016/j.future.2017.07.014
http://doi.org/10.1109/TCC.2018.2878838

Remote Sens. 2022, 14, 4964 19 of 19

37. Fu, Z.; Tang, Z.; Yang, L.; Li, K.; Li, K. ImRP: A Predictive Partition Method for Data Skew Alleviation in Spark Streaming
Environment. Parallel Comput. 2020, 100, 102699. [CrossRef]

38. Huang, Z.; Wei, W.; Xie, G. Load Balancing Mechanism Based on Linear Regression Partition Prediction in Spark. J. Phys. Conf.
Ser. 2020, 1575, 012109. [CrossRef]

39. Guo, W.; Huang, C.; Tian, W. Handling data skew at reduce stage in Spark by ReducePartition. Concurr. Comput. Pract. Exp. 2020,
32, e5637. [CrossRef]

40. Li, J.; Zhang, C.; Zhang, J.; Qin, X.; Hu, L. MiCS-P: Parallel Mutual-information Computation of Big Categorical Data on Spark. J.
Parallel Distrib. Comput. 2022, 161, 118–129. [CrossRef]

41. Shen, Y.; Xiong, J.; Jiang, D. SrSpark: Skew-resilient spark based on adaptive parallel processing. In Proceedings of the 2020 IEEE
26th International Conference on Parallel and Distributed Systems (ICPADS), Hong Kong, China, 2–4 December 2020; IEEE: New
York, NY, USA, 2020; pp. 466–475.

42. Wang, S.; Jia, Z.; Wang, W. Research on Optimization of data balancing partition algorithm based on spark platform. In
Proceedings of the International Conference on Artificial Intelligence and Security, Jaipur, India, 9–10 December 2021; Springer:
Cham, Switzerland, 2021; pp. 3–13.

43. Yin, R.; He, G.; Wang, G.; Long, T. 30-meter Global Mosaic Map of 2018. Sci. Data Bank 2019, 4. [CrossRef]
44. Chen, F.; Zhang, M.M.; Guo, H.D.; Allen, S.; Kargel, J.S.; Haritashya, U.K.; Watson, C.S. Annual 30m dataset for glacial lakes in

High Mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 2021, 13, 741–766. [CrossRef]
45. HashPartitioner. Available online: https://spark.apache.org/docs/2.3.1/api/scala/index.html#org.apache.spark.HashPartitioner

(accessed on 18 July 2022).
46. RangePartitioner. Available online: https://spark.apache.org/docs/2.3.1/api/scala/index.html#org.apache.spark.RangePartitioner

(accessed on 18 July 2022).
47. Shuffle Operations. Available online: https://spark.apache.org/docs/latest/rdd-programming-guide.html (accessed on 18

July 2022).
48. Image Clipping Function. Available online: https://geotrellis.io/ (accessed on 18 July 2022).
49. Wang, N.; Chen, F.; Yu, B.; Wang, L. A Strategy of Parallel SLIC Superpixels for Handling Large-Scale Images over Apache Spark.

Remote Sens. 2022, 14, 1568. [CrossRef]

http://doi.org/10.1016/j.parco.2020.102699
http://doi.org/10.1088/1742-6596/1575/1/012109
http://doi.org/10.1002/cpe.5637
http://doi.org/10.1016/j.jpdc.2021.12.002
http://doi.org/10.11922/sciencedb.865
http://doi.org/10.5194/essd-13-741-2021
https://spark.apache.org/docs/2.3.1/api/scala/index.html#org.apache.spark.HashPartitioner
https://spark.apache.org/docs/2.3.1/api/scala/index.html#org.apache.spark.RangePartitioner
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://geotrellis.io/
http://doi.org/10.3390/rs14071568

	Introduction
	Methods
	Seed Point Planning
	Vertical Direction Adjustment
	Horizontal Direction Adjustment

	Experimental Design
	Image Data
	Comparative Partition Methods
	Evaluation Metircs for Partitions
	Testing Applications
	Parametric Setups

	Results
	Image Segmentation Testing
	Data Shuffle Testing
	Image Clipping Testing
	Partition Layout

	Discussion
	Conclusions
	References

