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Abstract: Soil salinization is prominent environmental issue in arid and semi-arid regions, such as
Xinjiang in Northwest China. Salinization severely restricts economic and agricultural development
and would lead to ecosystem degradation. Finding a method of rapidly and accurately determining
soil salinity (SS) is one of the main challenges in salinity evaluation, saline soil development, and
utilization. In situ visible and near infrared (Vis-NIR) spectroscopy has proven to be a promising
technique for detecting soil properties since it can realize real-time, rapid detection of SS. However,
it still remains challenging whether Vis-NIR in situ spectroscopy can invert SS with high accuracy
due to the interference of environmental factors (e.g., light, water vapor, solar altitude angle, etc.)
on the spectral in the field. To fill this knowledge gap, we collected Vis-NIR in situ spectral and
lab-measured SS data from 135 surface soil samples in the Kongterik Pasture Nature Reserve (KPNR)
in the desert oasis ecotone of southern Xinjiang, China. We used genetic algorithm (GA), particle
swarm optimization (PSO), and simulated annealing (SA) algorithms to select the feature bands of SS.
Subsequently, we combined extreme learning machines (ELM), back-propagation neural networks
(BPNN), and convolutional neural networks (CNN) to build inversion models of SS. The results
showed that different feature bands selection methods could improve the Vis-NIR in situ spectral
prediction model accuracy. Either SS inversion models were built using full-band spectral data or
feature-band spectral data. Compared with the full-band (401–2400 nm) spectral modeling, the
validation set R2 of ELM, BPNN, and CNN models built selected feature bands selected by PSO,
GA, and SA, respectively, were improved by more than 0.06. The accuracy of predicting SS varied
widely among modeling methods. The accuracy of CNN model was obviously higher than that of
BPNN and ELM models. The optimal hybrid model for predicting SS constructed in this study is
SA-CNN model (R2 = 0.79, RMSE = 9.41 g kg−1, RPD = 1.81, RPIQ = 2.37). This study showed that
the spectral feature bands selection methods can reduce the influence of environmental factors on in
situ spectroscopy and significantly enhance the inversion accuracy of SS. The present study provided
that estimating SS using in situ Vis-NIR spectral is feasible.

Keywords: Vis-NIR in situ spectroscopy; soil salinity; feature bands selection method; deep learning;
inversion model

1. Introduction

Soil salinization poses a great threat to agricultural development and food security,
especially in arid and semi-arid regions, including areas of China [1,2]. Presently, salin-
ization affects more than 3% of the world’s soil resources [3]. The global area of primary
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salinized soils is about 9.55 × 108 hm2, and the area of secondary salinized soils is about
4.4 × 107 hm2 [4]. China has about 3.67 × 107 hm2 of salinized soils, which mainly occur
in the Northeast Plain, North China Plain, and Northcentral and Northwest China [5].
Xinjiang is located in the northwest of China and accounts for more than 50% of total saline
area in China. Therefore, dealing with the issue of soil salinization plays a critical role in
maintaining sustainable agricultural development and ecosystem functions in Xinjiang
and China. Currently, soil salinity (SS) is the principal method for determining soil salt
levels [6]. A rapid, accurate, and effective SS method is needed to assess and resolve soil
salination in China and elsewhere.

Traditional laboratory analysis approach for SS is time-consuming and difficult to
meet the requirements of SS monitoring at large spatial scale. In recent years, Vis-NIR
spectroscopy has provided an alternative means of rapidly obtaining information on soil
properties. Numerous scholars have used Vis-NIR indoor spectroscopy combined with
different modeling methods to construct soil property inversion models and obtained
high accuracy [7–9]. Although Vis-NIR indoor spectroscopy for soil inversion has the
advantage of high accuracy, it still cannot avoid the tedious work of soil sample collection,
air-drying, grinding, and sieving and still suffers from a large workload and relatively
long determination cycle. In contrast, the in situ spectroscopy method can omit the above
soil sample collection and processing process, which is faster and simpler than the indoor
Vis-NIR spectroscopy method [10]. This could significantly enhance the efficiency of soil
salinization detection.

Moreover, SS can strongly vary in both vertical and horizontal space, and the spatial
and temporal variation of SS is more pronounced especially in saline soils [11]. The high
spatial and temporal variability of SS introduces difficulty to traditional measuring methods
for obtaining SS in a time-sensitive and rapid manner, especially on a large spatial scale. In
contrast, the Vis-NIR spectroscopy-based soil near-ground sensor technology can measure
the in situ hyperspectral data of soil in a real time, low cost and quickly way.

However, when sensors are used to measure soil properties outdoors, we must over-
come the interference of the soil moisture and soil structure, Meanwhile, soil Vis-NIR
spectral are influenced by various environmental factors, such as cloud cover, atmospheric
water vapor, and light [10]. Among them, water vapor has the most influence on soil
spectra. Soil Vis-NIR spectral are strongly influenced by water vapor in the air. It can
produce strong noise in the absorption band of the spectrum near 1400 and 1900 nm, which
can seriously interfere with the spectral data [11]. Several studies have proposed that
preprocessing methods can effectively reduce spectral noise and can eliminate the effects
of some interfering factors [10]. It has also been shown that there is a high redundancy
of information between different spectral bands, and the feature band selection method
can eliminate irrelevant or redundant spectral features. Thus, the relations between soil
properties and spectral features could be better explored and minimize the interference
of irrelevant wavelengths as well as the influence of some environmental factors. How-
ever, whether the feature band selection methods can be applied to in situ hyperspectral
inversion of soil salinization remains to be proven by research.

The models and algorithms used are another critical factor which would affect the
accuracy of spectral inversion of soil properties. Among different algorithms, the artificial
neural network models (ANN), support vector regression (SVR) models, and partial least
squares regression (PLSR) models have proven to be able make accurate predictions for
SS [8,12,13]. Zhang et al. developed a PLSR model and a principal component regression
(PCR) model for SS and soil spectral reflectance using different spectral treatments. The
model accuracy between the two was compared, and the results showed that the PLSR
model outperformed the PCR model [14]. Mahajan et al. found that SVR, PLSR, and
PCR models were more robust than MARS and RF models in soil property prediction
models [8]. The use of the back-propagation neural network (BPNN) method to predict
soil properties has been widely used in many recent studies. Meanwhile, the extreme
learning machines (ELM) method is also gradually applied in soil property studies. ELM is
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a superior modeling method compared to other algorithms as it can reduce the time for
feature extraction and prediction and improve learning efficiency. Khosravia et al. used
ELM and BPNN to better predict Pb and Zn in soil with R2 of 0.87 and 0.81, respectively [15].
Although ELM techniques have been widely used in many fields, less research has been
conducted on the application of SS monitoring [16]. To select the best salinity inversion
model, many researchers have also compared multiple models [11,17,18], but no uniform
results have been obtained. For conventional prediction models, the main difficulty in
extracting useful information from Vis-NIR spectra depends on the amount of data and
data dimensionality [19]. Conventional Vis-NIR spectral data require pre-processing to
improve the model prediction accuracy, such as denoising, dimensionality reduction,
spectral transformation and other processes. During these processes, there is a risk of
introducing false information and eliminating valid information [19]. In contrast, the
convolutional neural network (CNN) method is an end-to-end approach that avoids these
processing procedures. It mines only the target information from the raw spectral data
and is a superior approach for predicting soil properties [20]. Padarian et al. constructed
inversion models for various soil properties using PLSR, Cubist, and CNN methods. Their
results showed that CNN models outperformed PLSR and Cubist models [21].

In summary, this study mainly intended to explore the potential of field in situ spec-
troscopy for estimating SS. We took the KPNR in the desert oasis ecotene of South Xinjiang,
China as the study area, and we introduced the feature band selection method into the
study of in situ spectral estimation of SS. Three band selection algorithms, PSO, GA, and
SA, were used to extract the characteristic spectral information of SS and combined with
ELM, BPNN, and CNN methods, respectively, to build SS inversion models. The specific
aims of this study are: (1) to reduce invalid information and noise in the in situ spectra
using feature band selection methods; (2) to compare the accuracy of different modeling
approaches for the estimation of SS; (3) to establish a combinatorial model for predicting SS
with high accuracy using in situ spectroscopy.

2. Material and Methods
2.1. Study Area

The study area is located in the KPNR in Wensu County, Aksu Region, southern
Xinjiang, China, and it is a typical desert oasis ecological zone that is a sparsely vegetated
transition between barren desert and a fairly vegetated moist oasis [22]. The KPNR is
at southern foot of the Tianshan Mountains and the northern edge of the Taklamakan
Desert, spanning 61 km from east to west and 93 km from north to south. The elevation
decreases from northwest to southeast. The area belongs to the middle and distal part of
the alluvial fan. Different soil salinization conditions exist in the study area. The degree of
soil salinization increases and then decreases from south to north and shows an increasing–
decreasing–increasing trend from west to east [23]. The mean annual evaporation in the
study area is 1331.56 mm; the mean annual precipitation is 47.21 mm, with precipitation
mainly concentrated in May–October, which accounts for about 97% of the yearly precipita-
tion. The average sunshine time is 3000 h, which is typical of a warm temperate continental
arid climate. The study area has very abundant light and heat resources, but the soil has
poor water retention capacity, low precipitation, strong evaporation, low vegetation cover,
and natural vegetation dominated by salt-tolerant plants [24]. The geographical location of
the study area is from 80◦53′ to 81◦10′E longitude and 40◦52′ to 41◦10′N latitude (Figure 1).

2.2. Soil Sample Collection and Analysis

Soil samples were collected from 13 October to 15 October 2021, with clear, cloudless
weather and no rainfall during the sampling period. We collected samples mainly on both
sides of the road (S215) that crosses the KPNR in the northwest–southwest direction, with
a small number of samples in the southwest–northeast direction through the central area
of the KNPR. Soil samples were collected at approximately 500 m intervals. A total of
135 surface (0–20 cm) soil samples were collected from the study area. Considering the



Remote Sens. 2022, 14, 4962 4 of 16

surface roughness of saline soils, there may be light leakage due to using contact probes,
and the limited measurement range using contact probes makes it difficult to collect enough
soil samples. Therefore, samples were selected in the bare soil area where the ground was
relatively flat and measured using the non-contact fiber optic probe that comes with the
instrument. The spectrometer probe was 1 m above ground level and measured vertically
downward with a field of view of 25◦. Soil samples were collected within a diameter of
44 cm and an area of 0.15 m2 using the vertical downward direct point of the probe as
the center of the circle. Location information of the sampling points is recorded using
a handheld global positioning system (GPS). After measuring the soil spectrum, about
500 g of soil was collected at a depth of 0–20 cm within the spectral determination field
of view, and the soil samples were placed in sealed bags, numbered, and brought back
to the laboratory. They were then ground and passed through a 2 mm sieve after natural
air-drying to determinate the SS (water-soluble salts) with a soil–water ratio of 1:5. The
determination method uses the residue-drying mass method. The SS was used as the
dependent variable and the in situ spectral reflectance as the predictor.
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2.3. In Situ Spectral Data Acquisition and Pre-Processing

In situ Vis-NIR spectroscopy of soil samples was measured using a FieldSpec4 geo-
physical spectrometer from ASD, USA [8]. The band width or sampling intervals of the
Spectrometer were 1.4 nm and 2 nm in the 350–1000 nm and 1000–2500 nm wavelength
ranges, respectively. The instrument is warmed for at least 30 min before the spectroscopic
measurement to ensure that it operates in optimal condition. Vis-NIR in situ hyperspectral
data acquisition was performed at 13:00–15:00. The sky was clear and cloudless during
the time period of the spectral acquisition, and the light was intense [25]. Acquisition of
spectral samples was performed using a pistol-type fiber optic handle accompanying the
equipment, with the light source being sunlight. Dark current calibration of the instrument
prior to spectral measurement, whiteboard calibration, and optimization. For spectral
measurements, soil spectral profiles were collected at the center point of the probe vertically
downward and in the surrounding direction, respectively. Every soil sample collected has
ten spectral curves, and the average value of the spectral reflectance is taken as the spectral
value of the soil sample and positioned using GPS. Vis-NIR in situ spectroscopies were
removed from the edge bands of 350–400 nm and 2401–2500 nm with low signal-to-noise
ratio and high noise, and the remaining bands were retained. Then, the Savitzky–Golay
9-point smoothing process was also performed. Figure 2 shows the in situ raw spectral
profiles in the field.
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2.4. Feature Bands Selection

The Vis-NIR spectral contain information of thousands of bands, but most of them
show strong covariance. Feature band selection methods can reduce redundant information.
It helps to reduce the complexity of prediction model building and try to make the model
prediction more accurate. Therefore, we chose three methods—PSO, GA, and SA—for
extracting the feature bands of SS separately and comparing their differences.

Particle swarm algorithm (PSO) is an intelligent optimization algorithm. Suppose
that there are N particles forming a population in a D-dimensional space. Where the
position and velocity information of particle I in the population is denoted as Xi = (Xi1,
Xi2, . . . , XiD)Z, Vi = (Vi1, Vi2, . . . , ViD)Z, i = 1, 2, . . . , N. Calculate all the fitness-valued
particles and find the optimal solution. Update the speed and position information based
on Equations (1) and (2).

Vz+1
i = ωVz

i + c1r1(Pz
i − Xz

i ) + c2r2

(
Pz

g − Xz
g

)
(1)

Xz+1
i = Xz

i + Vz+1
i (2)
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Vi represents the speed of the particle, r1 and r2 are random values between 0 and 1,
and Xi is the current position of the particle. ω is a non-negative inertia coefficient. c1 and c2
are learning coefficients used to adjust the individual extremes Pi and Pg, respectively [26].
In this study, PSO was used for bands selection. We set the number of particle populations,
acceleration coefficients c1 and c2, and the maximum number of iterations to 50, 2, and
100, respectively.

The simulated annealing algorithm (SA) is widely known as a meta-heuristic algorithm.
It is generated from the physical annealing process of solids in metallurgy [27]. SA starts
with a higher initial temperature. Then, the temperature is gradually reduced until the
temperature reaches the equilibrium condition. At each temperature, multiple searches are
performed, and each search generates a new solution via random perturbation. In each
step, we will randomly select a feature subset based on the current optimal feature subset.
If it works better, then we will adopt it and update the current optimal feature subset. If it
does not, we will probably accept it depending on the current temperature. Accepting a
subset of poorly performing features with a certain probability is crucial for SA algorithms
because it helps prevent the algorithm from falling into a local optimum. With iterations,
the SA algorithm converges on a good and stable final result. We set the initial temperature
of SA to 1000, the cooling rate α to 0.95, the maximum number of iterations to 100, and the
number of runs to 50.

Genetic algorithm (GA) is one of the most popular algorithms for feature selection [28].
This algorithm was first proposed by John holland in the United States, is a computational
model of biological evolutionary process that simulates the mechanism of natural selection
and genetics of Darwinian biological evolution, and is a method of searching for the
optimal solution by simulating the natural evolutionary process. The main operators
include selection, crossover, and mutation. Starting from an arbitrary initial population,
the population evolves to an increasingly better region of the search space by generating
a group of individuals better suited to the environment through selection, crossover and
mutation operations. In this way, the population evolves from generation to generation,
finally finding the optimal solution to the problem. In this study, the number of iterations
of the GA is set to 100, the variance probability to 0.05, and the crossover probability to 0.1.

2.5. Model Establishment and Accuracy Evaluation

The ELM is one of the feed-forward neural network models. Compared with tradi-
tional neural network algorithms, the only variable to set for ELM is the number of hidden
layer neurons in the network. The input weights and hidden layer deviation values of the
network are randomly generated. The learning process only calculates the output weights.
Good generalization performance and fast learning are its advantages [29]. In this paper,
the ELM model function we used was the Sigmoid. We determined the number of implicit
neurons in the ELM model that are suitable for SS. Although ELM has good generalization
ability, the model stability can be affected because of the redundant information variables
of the input. Therefore, we used three feature band selection algorithms, thus obtaining an
ELM model that stably predicts salinity information.

The BPNN is considered the most commonly used prediction method and consists
of input layer, hidden layer, and output layer. Parameters must be determined based on
the inputs and outputs when building it. For example, the weights between neurons in the
input, hidden, and output layers; the learning rate; the activation function; the initialization
threshold for the hidden layer; and the threshold for the output layer [30]. The model
has the advantages of simple structure and high predictive power and can meet the need
for estimating and inverting SS from hyperspectral data [31]. In this study, when we
used BPNN models and CNN predictions, we used 30% of the modeling set randomly for
internal validation to avoid overfitting. The best model parameters after several training
sessions with full-band spectral data were used as parameters for all BPNN models in
the study, where the number of implied layers was 10, the learning rate was 0.0001, and
1000 iterations were performed.
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The CNN is an end-to-end supervised neural network, which is a representative deep
learning algorithm. The earliest CNN was developed by LeCun in 1989. It was used to
classify handwritten digital images, and then developed by other scholars to different
domains. It is usually made up of one or more convolutional, pooling, and fully connected
layers. The convolution operation extracts different features from the input layer. The
hyperparameters of the convolution layer include filter size (F), stride(S), and padding (P).
Filter size (F) is the convolution kernel. The stride (S) is the size of the distance of each slide
of the convolution kernel. Zero padding (P) means adding an appropriate number of zeros
to the edges of the input [32]. Pooling is also commonly called subsampling. When building
a convolutional neural network, it is often used after the convolutional layer. Pooling is
used to reduce the feature dimensionality of the convolutional layer output, effectively
reducing the network parameters while preventing overfitting. The fully connected layer
was reconstructed to extract features for mapping to the final output [33]. Malek et al.
and Hong et al. explored a 1D-CNN network model for spectral regression [34,35]. We
refer to the network architecture they built and propose our CNN model. In this study,
we train the CNN models built on different datasets several times, adjust the values of the
hyperparameters at each training, and finally use the parameters of the optimal training
model they produce as the final hyperparameters.

In this paper, we constructed a 1D-CNN constructure (Table 1). Figure 3 provides the
constructure of the proposed CNN. There are six trainable layers (three convolutional layers
and three fully connected layers) in this network. First, the input layer is the spectral data,
and it has 2000 bands ranging from 401 to 2400 nm. Here, we perform smoothing treatment
on the spectral data to avoid the interference of spectral noise. Then, normalization is
performed to finally obtain the spectral data that we use. The second layer is a convolutional
layer with a kernel size of 10, 10 filters, a stride of 1, and a padding of the same value.
Subsequent convolutional layers have 21 filters and 42 filters, and other parameters are
unchanged. The maximum pooling layer has a kernel size of 1 and a stride of 2. The output
of the convolutional layer is passed to the pooling layer, and the ReLU function is chosen
as the activation function. Layers 5, 6, and 7 are fully connected layers with sizes of 20,
10, and 1, respectively. The activation function is chosen as the ReLU function, with a
random dropout of 50% of the number of neurons (dropout (0.5)). The batch size of the
network is 50, the maximum number of iterations is 2400, and the learning rate is set to
0.0001. Meanwhile, in this study, we obtain a new dataset after feature band selection
for full-band spectral data. However, the input spectral dimensions are different for the
feature band dataset, and in order to obtain optimal results, we adjust the parameters and
hyperparameters of the network on the basis of the full-band CNN model to build a CNN
model based on different feature band selection methods.

Table 1. Sequence and description of the layers used in the CNN structure.

Layer Type Kernel Size Filters Activation

1 Input — — — — — —
2 Conv1 10 × 1 10 ReLU
3 Maxpooling1 1 × 1 — — — —
4 Conv2 5 × 1 21 ReLU
5 Maxpooling2 1 × 1 — — — —
6 Conv3 2 × 1 42 ReLU
7 Maxpooling3 1 × 1 — — — —

8 Fully-
connected1 — — — — ReLU

9 Fully-
connected2 — — — — ReLU

10 Output — — — — ReLU
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The following metrics were used for model evaluation: coefficient of determination
(R2), root mean square error (RMSE), relative analysis error (RPD), and the ratio of per-
formance to the interquartile range (RPIQ). R2 is used to measure the prediction accuracy
of the fitted model. RMSE is used to measure the difference between the predicted and
observed values of the fitted model [36]. RPD explains the performance of the model. For
RPD, when RPD < 1.4, the model is not valid; when 1.4 ≤ RPD < 1.8, the model has average
predictive power; when RPD ≥ 1.8, the model has good predictive power [37]. For RPIQ,
when RPIQ ≥ 2.2, the model has good predictive ability; 1.7 ≤ RPIQ < 2.2, the model has
average predictive ability; RPIQ < 1.7 indicates low model reliability.

R2 =
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − yi)

2 (3)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(4)

RPD =
SDyi

RMSE
(5)

RPIQ =
Q3−Q1

RMSE
(6)

3. Results
3.1. Descriptive Statistics of SS

Table 2 provides the descriptive statistics of SS in the study area. To ensure the
robustness and generalization ability of the model, the sample data set (n = 135) was
divided into a calibration set of 90 samples and a validation set of 45 samples using the
Kennard–Stone (K-S) algorithm [38]. The maximum SS in all samples was 109.24 g kg−1,
the minimum was 27.01 g kg−1, and the average value was 68.74 g kg−1, all of which were
heavily salinized [39]. There were varying degrees of salinization in the study area, and
the overall salinity content was high. The SS was highly banded throughout the study
area. The maximum soil salt in the calibration set was 109.24 g kg−1, and the minimum
was 27.01 g kg−1. The maximum SS in the validation set was 109.18 g kg−1, and the
minimum was 28.07 g kg−1. The distribution of SS in the calibration and validation sets
was relatively uniform with little variation. The coefficients of variation were 26.71–26.90%,
which were medium variability. This indicates that the variability is not significant in the
spatial distribution of SS.
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Table 2. Descriptive statistics of SS (g kg−1).

Dataset Number Mean Max Min SD CV (%)

Calibration 90 68.72 109.24 27.01 18.40 26.77
Validation 45 68.78 109.18 28.07 18.50 26.90

Entire 135 68.74 109.24 27.01 18.36 26.71

3.2. Feature Band Selection Based on the Different Methods

The feature bands selection method is important in regression analysis to improve
model prediction and enhance model robustness. It can minimize the effect of uncorrelated
or noisy variables by taking into account the interaction information between effective
spectral variables. In this study, we selected the characteristic wavelengths of SS of PSO,
GA, and SA. The 401–2400 nm band of Vis-NIR in situ spectroscopy was selected as the
full wavelength for the feature bands selection. Figure 4 presented the distribution of
the characteristic wavelengths selected by PSO, GA, and SA. In this study, 41 feature
variables were screened using the PSO method. Using GA, the corresponding 52 best
wavelengths were obtained as input variables after 100 iterations. With the SA method,
70 characteristic wavelengths for SS were finally selected. These wavelengths were then
used as new datasets to construct ELM, BPNN, and CNN prediction models. GA and
PSO have the same characteristics, and they both belong to global optimization techniques.
Both algorithms search in the global solution space and focus their search on the high-
performance part [40]. However, the results show that compared to PSO and GA methods,
SA can retain more useful information.
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Using the CARS method, 15 SS-characteristic bands focus on 400–962 nm were selected
by Zhu et al. [41]. Wang et al. reported that the reflectance spectral curves of salt content of
three typical salt kinds in the west of China were relatively similar, and all three salt types
were distributed in the range of 400–2400 nm [1]. Mahajan revealed that soil salts exhibit
specific absorption properties at wavelengths of 427, 487, 950, 1414, 1917, 2206, 2380, and
2460 nm [8]. Sidike et al. found that saline soils exhibit absorption properties in the visible
(400–770 nm) and near infrared (900–1030 nm, 1270–1700 nm, 1900–2150 nm, 2150–2310 nm,
2320–2400 nm) spectra with significant absorption properties [42]. However, there were
some differences in the bands selected by PSO, GA, and SA in this paper. However, the
characteristic bands selected by the three methods are basically consistent with the results
of Sidike et al. [42]. As presented in Figure 4, no feature bands in the 1350–1420 nm and
1820–1940 nm ranges, which were highly disturbed by water vapor in the atmosphere,
were screened out. It is well known that the spectral features were highly correlated with
moisture in the ranges of 1350–1420 nm and 1820–1940 nm. After processing the soil
Vis-NIR in situ spectral data using the feature band selection method, no feature bands
highly correlated with moisture were filtered out. This indicates that the feature band
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selection method could effectively reject the interference of atmospheric water vapor on the
soil salt inversion. In this study, the SS-sensitive wavelengths covered most of the spectrum.
After processing by the three algorithms, the number of rejected wavelengths reached more
than 90%. It can obviously reduce the amount of model inputs and improved the efficiency
of model operations. However, there were differences in the selection of SS-characteristic
wavebands by different selection methods.

3.3. Predictive Regression Models

Feature band selection method is an effective means to improve model prediction
accuracy. To promote the accuracy of the model performance and decline the interference
of atmospheric water vapor, we used characteristic band modeling. The Table 3 presented
the prediction results of the SS models with the datasets selected by different feature
band selection methods and the full band dataset. All the feature band selection methods
substantially improved the model prediction capability compared with full-band modeling
(Table 3). The R2 of ELM, BPNN, and CNN models built by the feature bands selected by
PSO, GA, and SA, respectively, were all improved by more than 0.06. This indicates that
the feature selection methods could effectively eliminate the redundant information of the
spectra, select effective feature bands, and make the prediction accuracy of the models more
accurate. Among the three feature bands selection methods, SA had the largest promotion
in model accuracy, followed by GA and PSO.

Table 3. Comparison of prediction accuracy of different SS models (g kg−1).

FEA Model
Calibration Validation

R2 RMSE R2 RMSE RPD RPIQ

ELM 0.50 13.21 0.46 13.57 1.25 1.40
R BPNN 0.59 11.96 0.51 12.86 1.32 1.46

CNN 0.63 11.40 0.57 11.62 1.46 1.49
ELM 0.64 11.24 0.55 11.90 1.42 1.63

GA BPNN 0.70 10.44 0.60 11.26 1.51 1.79
CNN 0.76 9.85 0.68 11.00 1.54 1.82
ELM 0.59 12.25 0.52 12.69 1.34 1.48

PSO BPNN 0.68 11.05 0.61 11.18 1.52 1.75
CNN 0.73 10.25 0.65 11.06 1.53 1.81
ELM 0.65 11.13 0.57 11.61 1.46 1.66

SA BPNN 0.71 10.97 0.63 11.16 1.52 1.85
CNN 0.84 8.64 0.79 9.41 1.81 2.37

The PSO-ELM model (validation set R2 = 0.52, RPD = 1.34) built based on the dataset
selected by PSO showed the worst performance for predicting SS effectively in this study.
Wei et al. found that the PSO-BPNN model was significantly higher than the BPNN model,
indicating that PSO can significantly improve the model’s accuracy [43]. The PSO-BPNN
model in this study was significantly higher than the BPNN model, which is consistent
with Wei’s findings. The inversion accuracy of the CNN model was significantly higher
than that of the BPNN and ELM models for both the SS inversion models built using full-
band spectral data and feature-band spectral data. The optimal hybrid models (Figure 5)
established by different modeling methods combined with the feature bands selection
method was SA-ELM, SA-BPNN, and SA-CNN models, respectively. Among them, the
SA-CNN hybrid model (R2 = 0.79, RMSE = 9.41 g kg−1, RPD = 1.81, RPIQ = 2.37) had the
highest accuracy and can accurately invert SS.
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4. Discussion
4.1. Source of Uncertainty of Predicting SS Using Field In Situ Spectroscopy

The accuracy of in situ spectroscopy predicting of salinity is affected by many factors,
and thus, its predictive power still has room for improvement. The sources of uncertainty
are mainly soil moisture content, light factor, SS type, water vapor in the atmosphere, and
vegetation cover [25,44–48]. Ben-Dor et al. predicted soil properties by using the PLSR
method—soil moisture, organic matter, carbonate, and iron oxide are some of them—and
the results showed that in situ Vis-NIR spectroscopy has good potential for characterizing
soil properties [49]. Janik et al. performed in situ spectroscopic measurements under dry
conditions in summer and autumn. They found that in situ measurements under dry
conditions exhibited greater potential [50]. Some researchers have also developed EPO-
PLSR models for different soil types to predict soil moisture content by reducing the effect
of soil type through the external parameter orthogonalization (EPO) algorithm [51]. Wang
et al. confirmed that the spectral of different salinization types of soils differ significantly.
The differences due to different salinization types are even greater than the differences due
to different salt contents [52]. The samples in this study were collected in autumn, which
is a dry season with little precipitation and low soil moisture content. In particular, the
surface soil was very dry with a moisture content of less than 10%; thus, soil moisture has
little effect on in situ spectroscopy.

In current research, the sampling time was chosen from 13:00 to 15:00, during which
the sunlight shines directly on the ground and there is no shadow and sufficient light, which
has less influence on the spectral acquisition. In this study, soil samples were collected
from the same study area, which caused less impact on the in situ spectroscopy. The
vegetation cover rate in the study area is low. Although there were a few salt-tolerant
plants growing, the in situ spectral collection was performed in the bare soil area, which
effectively avoided the effect from the difference in vegetation cover. Atmospheric water
vapor is identified as the most influential factor on model prediction. The SS inversion
model, which was established by filtering the characteristic bands of SS through the feature
bands selection method, can predict SS better. It is proven that the redundant information
and error information in Vis-NIR in situ spectroscopy, including the noise generated by
atmospheric water vapor and the anomalous spectral bands, can be reduced by the feature
bands selection method.

4.2. Performance Comparison of Different Feature Band Selection Methods

Selecting effective spectral feature bands is a key step to ensure the accuracy of SS
prediction models, but different feature band selection methods have different effects
on model performance. The feature bands selection algorithm can remove redundant
information [53]. Our results revealed that SA was better than GA and PSO, and the R2

of the combined SA-CNN model reached 0.79, and the RPD was1.81, which could better
predict the SS. In contrast, the R2 of the models constructed by the feature bands selected
by GA and PSO were both lower than 0.65 and the RPD were both lower than 1.55. The
PSO obtains an effective subset of variables by establishing a suitable objective function.
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With these subsets of variables, a highly accurate model with good robustness can be
obtained [38]. Based on this, we concluded that the PSO method is as appropriate of a
method as the PSO-CNN model (validation set R2 = 0.65) developed in this study and that
it still yielded acceptable results for predicting SS content. The wave modeling selected
using different feature bands selection methods all obviously improved the predictive
power of these models. However, our results indicated that the predictive ability of the
model built by PSO was significantly inferior to that of GA and SA, mainly because the PSO
algorithm converges quickly when the weights are not added, and premature convergence
tends to fall into local optimal solutions [54]. In contrast, GA and SA have strong global
search capability and are able to obtain optimal solutions. Therefore, based on the three
feature bands selection methods, GA and SA perform better.

4.3. Comparison of ELM, BPNN, and CNN Estimation Models

The ELM is a spectral prediction model and commonly shows strong predictive
power [38]. However, in this study, the prediction ability of ELM is not as good as that
of the CNN model. In general, the model input parameters are the key factors affecting
the prediction accuracy of the model. Since the input parameters of ELM are randomly
generated (possibly zero), this may cause negative effects on the hidden layer neurons. To
achieve the desired accuracy, ELM usually requires many hidden layer neurons. However,
the use of a large number of hidden layer neurons can increase the complexity of the
network and reduce the generalization ability of the model [26], which is probably the main
reason for the poor prediction results of the model in this study.

The BPNN method shows great advantages in its capability of capturing nonlinear
relationships, adaptability, and generalization ability [55]. Here, the BPNN method was
able to predict soil salt content better. In its optimal model, SA-BPNN, its prediction set
R2 reached 0.63, which basically met our requirement for in situ spectroscopy predicting
soil salt content. Deep learning methods have achieved great success in recent years. It
is considered an effective regression tool in quantifying soil properties [56]. Xiao et al.
constructed a salt detection model using the CNN-GRC-ELM method. The R2 of the CNN-
GRC-ELM model was 0.90, and the RMSE was 1.55 g kg−1. This proved that it could
achieve feasible online fast salt content detection [57].

Moreover, the CNN showed good prediction performance in this study, with R2 of 0.79
for SA-CNN. The deep learning method outperformed the machine learning method among
the three modeling methods and was able to predict SS more accurately. However, the ELM
and BPNN methods can still be used to construct SS inversion models and combining with
other methods may be able to better improve model prediction accuracy. The transferability
of CNN models across the globe has been analyzed in several studies. Nonetheless,
considering the spatial heterogeneity of SS types and the influence of uncertainties in in situ
spectral predictions, a highly accurate CNN model may exhibit poor model effectiveness
when migrating to other regions [33,58]. For the SA-CNN method, it is limited by various
uncertainties of in situ measurements, and although we use the SA method to attenuate
their influence on SS prediction, we cannot completely eliminate their interference; we must
make improvements based on the SA-CNN method, such as adding a residual module to
the CNN model. A major problem of SA is that when the initial temperature is too high,
the convergence the speed is slow, so it is more appropriate to reduce the initial parameters
and take the subset of the result notification from multiple runs as the optimal features.
In the future, we will consider comparing CNN methods to other deep learning methods,
such as LSTM, DBN, GRU, etc. We will study it to a deeper extent from two perspectives,
such as contact and non-contact. Later, we will explore this method for modelling in situ
spectral of different SS content gradients on this basis, and we will further explore the
method of in situ spectroscopy for predicting SS with higher accuracy.
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4.4. Interpretability of the Selected Bands and Limitations of the Study

In in situ spectroscopy, soil moisture is a major influence when using contact mea-
surement methods, and it has been demonstrated that EPO, DS, and PDS algorithms can
remove soil moisture interference very well [59]. However, when using non-contact mea-
surement methods, in addition to soil moisture, environmental factors also become a major
influence factor. In this study, we collected soil samples during the dry season, a period
when the surface soil is very dry and the soil moisture content is below 10%, effectively
avoiding the influence of soil moisture on in situ spectral data. In data acquisition, en-
vironmental factors (atmospheric water vapor, light) become the main factors affecting
the spectral data. It is well known that the feature bands selection method can remove
noise and reduce the interference of invalid information, and in this study, we applied the
feature band selection method to select SS features that are not sensitive to environmental
factors, effectively eliminating the influence of environmental factors on in situ spectral
prediction SS. Saline soils exhibit absorption properties in the 400–770 nm, 900–1030 nm,
1270–1700 nm, 1900–2150 nm, 2150–2310 nm, and 2320–2400 nm bands [42]. Mahajan et.al
found that soil salts exhibited specific absorption characteristics at wavelengths of 427, 487,
950, 1414, 1917, 2206, 2380, and 2460 nm [8]. In this study, the characteristic bands of soil
salts obtained by using the feature bands selection method are similar to Mahajan and are
also expressed in these bands. The shortcomings of this study are that we are limited by
the traffic conditions; the spatial distribution of the collected samples is not uniform, and
the samples we collected mainly occurred on both sides of the road (S215) that crosses the
KPNR in the northwest–southwest direction, with a small number of samples crossing
the central area of the KNPR in the southwest–northeast direction, and some high or low
salt samples were not collected, which may be beyond our model’s prediction range. The
dominant soil type in the study area is saline soil, so different soil types would also have
less impact. In this study, good results have been achieved for high-salinity saline soils in
desert areas, and further tests are necessary for low- and medium-salinity soils.

5. Conclusions

Our results showed that different feature bands selection methods were effective in fil-
tering out redundant SS feature bands and improving the accuracy of Vis-NIR in situ spectral
modeling. Compared with full-band modeling, the absolute R2 of the ELM, BPNN, and CNN
models established by the feature bands selected by PSO, GA, and SA, respectively, were im-
proved by 0.06, 0.09, and 0.11, respectively. Among the three feature band selection methods,
SA outperforms than others two methods. Among the three methods used for predicting
SS, the CNN model has the highest prediction accuracy. The optimal combination of the
feature band selection method and the modeling method is SA-CNN, and the hybrid model
has R2 = 0.79, RMSE = 9.41 g kg−1; RPD = 1.81, RPIQ = 2.37 is used for predicting SS, which
can invert the SS.

Author Contributions: All authors contributed in a substantial way to the manuscript. Methodology,
M.X. and Y.W.; formal analysis, Q.J. and Y.W.; data curation, Y.W.; writing—original draft preparation,
Y.W.; writing—review and editing, J.P.; conceptualization, Z.S.; investigation, Y.H. and Y.W.; project
administration, J.P.; funding acquisition, J.P.; visualization, B.H. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by grants from the National Science Foundation of China
(Grant Nos.42261016, 42071068 and 41061031), the Tarim University President’s Fund (Grant Nos.
TDZKCX202205, TDZKSS202227), the National Key Research and Development Program of China
(Grant Nos. 2018YFE0107000), the Open foundation from Key Laboratory of Environment Reme-
diation and Ecological Health (Zhejiang University), Ministry of Education (EREH202206), Chi-
nese Universities Scientific Fund (Grant Nos. ZNLH201904), Program of China Geological Survey
(Grant Nos. ZD20220127), and Tarim University Graduate Research Innovation Program (Grant
Nos. TDGRI202116).

Institutional Review Board Statement: Not applicable.



Remote Sens. 2022, 14, 4962 14 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Q.; Li, P.; Chen, X. Modeling salinity effects on soil reflectance under various moisture conditions and its inverse application:

A laboratory experiment. Geoderma 2012, 170, 103–111. [CrossRef]
2. Haj-Amor, Z.; Araya, T.; Kim, D.-G.; Bouri, S.; Lee, J.; Ghiloufi, W.; Yang, Y.; Kang, H.; Jhariya, M.K.; Banerjee, A.; et al. Soil

salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification:
A review. Sci. Total Environ. 2022, 843, 156946. [CrossRef]

3. Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [CrossRef]
4. Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20.

[CrossRef]
5. Liu, L.-P.; Long, X.-H.; Shao, H.-B.; Liu, Z.-P.; Ya, T.; Zhou, Q.-Z.; Zong, J.-Q. Ameliorants improve saline-alkaline soils on a large

scale in northern Jiangsu Province, China. Ecol. Eng. 2015, 81, 328–334.
6. Peng, J.; Ji, W.; Ma, Z.; Li, S.; Chen, S.; Zhou, L.; Shi, Z. Predicting total dissolved salts and soluble ion concentrations in

agricultural soils using portable visible near-infrared and mid-infrared spectrometers. Biosyst. Eng. 2016, 152, 94–103. [CrossRef]
7. Hu, B.; Chen, S.; Hu, J.; Xia, F.; Xu, J.; Li, Y.; Shi, Z. Application of portable XRF and VNIR sensors for rapid assessment of soil

heavy metal pollution. PLoS ONE 2017, 12, e0172438. [CrossRef] [PubMed]
8. Mahajan, G.R.; Das, B.; Gaikwad, B.; Murgaonkar, D.; Desai, A.; Morajkar, S.; Patel, K.P.; Kulkarni, R.M. Monitoring properties

of the salt-affected soils by multivariate analysis of the visible and near-infrared hyperspectral data. Catena 2021, 198, 105041.
[CrossRef]

9. Bai, Z.; Xie, M.; Hu, B.; Luo, D.; Wan, C.; Peng, J.; Shi, Z. Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and
Spectral Feature Bands Selection in Southern Xinjiang, China. Sensors 2022, 22, 6124. [CrossRef] [PubMed]
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