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Abstract: Land cover change (LCC) studies are increasingly using deep learning (DL) modeling
techniques. Past studies have leveraged temporal or spatiotemporal sequences of historical LC data
to forecast changes with DL models. However, these studies do not adequately assess the association
between neighborhood size and DL model capability to forecast LCCs, where neighborhood size
refers to the spatial extent captured by each data sample. The objectives of this research study were to:
(1) evaluate the effect of neighborhood size on the capacity of DL models to forecast LCCs, specifically
Temporal Convolutional Networks (TCN) and Convolutional Neural Networks (CNN-TCN), and
(2) assess the effect of auxiliary spatial variables on model capacity to forecast LCCs. First, each model
type and neighborhood setting configuration was assessed using data derived from multitemporal
MODIS LC for the Regional District of Bulkley-Nechako, Canada, comparing subareas exhibiting
different amounts of LCCs with trends obtained for the full region. Next, outcomes were compared
with three other study regions. The modeling results were evaluated with three-map comparison
measures, where the real-world LC for the next timestep, the real-world LC for the previous timestep,
and the forecasted LC for the next year were used to calculate correctly transitioned areas. Across
all regions explored, it was observed that increasing neighborhood sizes improved the DL model’s
capabilities to forecast short-term LCCs. CNN–TCN models forecasted the most correct LCCs for
several regions while reducing error due to quantity when provided additional spatial variables. This
study contributes to the systematic exploration of neighborhood sizes on selected spatiotemporal DL
techniques for geographic applications.

Keywords: temporal convolutional networks; convolutional neural networks; long short-term memory;
temporal deep learning; spatiotemporal deep learning; CNN–TCN; CNN–LSTM; land cover change;
neighborhood size effects

1. Introduction

Land cover changes (LCCs) arise from human activities and environmental processes
that alter the condition of the Earth’s surface [1], contributing directly and indirectly to
environmental changes in regional and global systems [2]. The interconnection of LC with
local, regional, and global systems makes studying and forecasting LCCs a vital component
in fields such as geography [3] and climatology [4]. The proliferation of open LC datasets
has resulted in the increasing use of computational approaches such as deep learning (DL)
methods for classification and modeling tasks [5]. Neural networks of expanding breadth and
depth underpin DL algorithms, facilitating complex pattern recognition in remote sensing
data sources [6]. To forecast LC given a remotely sensed image timeseries, temporal DL
models called Recurrent Neural Networks (RNNs) and Temporal Convolutional Networks
(TCNs) can be used to obtain patterns from sequences.

Many research studies use timeseries data extracted from each cell or pixel comprising
historical raster GIS data layers to classify LC and to forecast LCCs presuming enough
data is available [7,8]. For example, TCNs were used to project vegetation cover with
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multitemporal remotely sensed data [8]. However, these research studies extracted tem-
poral sequences from each cell comprising the raster data layers, excluding consideration
of proximal LC dynamics. While temporal sequences provide historical information of
individual cells comprising a raster, influences occurring within the neighborhood of each
cell are also important for LCC modeling [9]. In order to extract spatial features from a
neighborhood in DL models, Convolutional Neural Networks (CNNs) are typically used to
process neighborhoods provided as a grid of cells at each timestep before extracting tempo-
ral patterns [5]. Models containing CNN and temporal DL techniques are often referred
to as “spatiotemporal” models and have been leveraged in past studies on land change
applications. For example, a model composed of LSTM layers is considered a temporal
model. Therefore, CNN and LSTM layers can be integrated to implement spatiotemporal
models, such as CNN–LSTM.

Constructing a dataset from a multi-temporal geographic data source for spatiotem-
poral DL models requires a neighborhood to be specified. Previous research studies have
used a variety of neighborhood settings for land change modeling and classification. For
instance, land change classification and forecasting applications involving datasets with
spatial resolutions of 30 meters used Moore neighborhoods spanning 3 × 3, 5 × 5, and
9 × 9 cells [10–12]. With finer spatial resolution training data samples, 9× 9 neighborhoods
were specified to classify LC with DL models [13]. With coarser spatial resolution data,
11 × 11 neighborhoods and below were found to better capture nearby land change inter-
actions [14]. Neighborhood dimensions not following the Moore neighborhood convention
also involved 10 × 10 [15], 32 × 32 [5], and 64 × 64 neighborhood settings [16] with 10
and 20 meter spatial resolution datasets. However, despite the range of neighborhood
dimensions investigated in previous studies, the impact of neighborhood dimensions on
DL models for the task of LCC forecasting is undetermined. While it is acknowledged that
neighborhoods encompassing hundreds or thousands of pixels from fine spatial resolution
data are commonly used in other applications such as change detection, the relationship
between neighborhood size and a model’s capacity to forecast LCCs is unknown.

Only a few studies have explored the influence of neighborhood sizes on the outcomes
of DL methods used for LC classification and modeling and were primarily selected for
reasons such as to operate within computational constraints [16], to maintain available
dataset qualities or formats [5], or to optimize overall accuracy measures [12]. They may
also be specified arbitrarily [11,17]. It becomes difficult to determine optimal neighborhood
settings from the current literature for the task of modeling LCC with DL. Thus, further
systematic exploration of the relationship between neighborhood size and capacity of
DL models to forecast LCCs is needed. Additionally, TCN and CNN–TCN models are
unexplored with neighborhood settings beyond cell-level sequences for LCC forecasting or
with other spatial drivers of LCC. Therefore, the main objectives this research study were to:
(1) evaluate the effect of neighborhood size on the capacity of DL models to forecast LCCs,
specifically TCN and CNN–TCN, and (2) assess the effect of auxiliary spatial variables
on model capacity to forecast LCCs. Preliminary outcomes were explored with respect to
datasets for the Regional District of Bulkley-Nechako in the province of British Columbia
(BC), Canada, where trends were first explored for subareas and the entire region. Next,
the findings obtained for the full region were compared with those obtained for three
separate regions in the province. Lastly, the influence of spatial variables was compared
across model and neighborhood configurations applied to all four regions. Experiments
conducted on the respective datasets used two temporal DL models (LSTM and TCN) and
two spatiotemporal models (CNN–LSTM and CNN–TCN). The purpose of using the LSTM
and CNN–LSTM models was to provide a baseline for comparing the TCN and CNN–TCN
model performance, because they are more commonly used. Outcomes were examined
using change-focused metrics. The specific details of the research work are outlined in the
next sections.



Remote Sens. 2022, 14, 4957 3 of 25

2. Methodology
2.1. Study Area and Datasets

The primary experimental study area used was the Regional District of Bulkley-
Nechako, located in northern BC (Figure 1). LCCs over the past two decades have been
characterized by a notable loss of forested areas in this region (Table 1). The spatiotemporal
LC dataset was obtained from the Terra and Aqua combined Moderate Resolution Imaging
Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) dataset [18] featuring yearly
temporal resolution data from 2001 to 2019. The Land Cover Type 1: Annual International
Geosphere–Biosphere Programme (IGBP) classification data layer featuring 17 LC classes
was used for this study. In particular, the IGBP raster product was provided at a 0.05◦

spatial resolution, which is approximately 463.31 m spatial resolution in the Bulkley-
Nechako region [19]. LC classes were aggregated based on previous research studies [20]
to produce eight classes including: (a) evergreen forests, (b) deciduous and mixed forests,
(c) shrublands, savannas, grasslands, and wetlands, (d) barren land, (e) permanent snow
and ice, (f) urban and built-up lands, (g) croplands, and (h) water bodies. To support the
exploration of trends across experiments, three alternative study areas were also considered
(Figure 2). These include the Regional District of Central Kootenay, the Northern Rockies
Regional Municipality, and the Cariboo Regional District, where the amount of change
between 2001 and 2019 differs from the primary experimental study area (Table 1).
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% Change −28.60% −0.16% 19.16% −5.56% 15.59% 0% −26.13% 58.10% 

Figure 1. 2001 land cover of the primary study area of the Regional District of Bulkley-Nechako,
BC. Data are displayed with the NAD 1983 BC Environment Albers projected coordinate system.
Subareas A, B, and C are subsets of the Regional District of Bulkley-Nechako involved in exploring
and identifying preliminary experimental trends in subsequent sections.
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Table 1. Area covered by each land cover class in 2001 and 2019 for (R1) the Regional District of
Bulkley-Nechako, (R2) the Regional District of Central Kootenay, (R3) the Northern Rockies Regional
Municipality, and (R4) the Cariboo Regional District.

Study
Region Year Evergreen

Forests

Deciduous
and Mixed

Forests

Shrublands,
Savannas,

Grasslands,
and Wetlands

Barren
Permanent

Snow
and Ice

Urban and
Built-Up

Lands
Croplands Water

Bodies

(R1)
Bulkley-
Nechako

2001 46,710.59 2383.57 20,373.90 802.61 314.69 16.74 230.54 2949.41
2019 33,772.89 1692.15 33,669.00 665.01 167.86 16.74 211.87 3586.52

% Change −27.70% −29.01% 65.26% −17.14% −46.66% 0% −8.10% 21.60%

(R2)
Central
Koote-

nay

2001 11,194.45 227.97 7759.48 525.48 71.48 23.61 108.62 698.07
2019 9250.07 227.75 9586.01 501.23 116.99 23.61 69.55 833.95

% Change −17.37% −0.09% 23.54% −4.62% 63.66% 0% −35.97% 19.46%

(R3)
Northern
Rockies

2001 26,927.21 14,911.48 39,286.83 1503.04 119.14 0.86 0.21 196.20
2019 32,664.82 12,936.62 35,361.15 1403.22 137.60 0.86 0.21 440.48

% Change 21.31% −13.24% −9.99% −6.64% 15.50% 0% 0% 124.51%

(R4)
Cariboo

2001 30,322.90 1603.93 43,009.01 2240.82 466.88 24.90 23.83 844.25
2019 21,650.69 1601.35 51,251.26 2116.32 539.65 24.90 17.60 1334.75

% Change −28.60% −0.16% 19.16% −5.56% 15.59% 0% −26.13% 58.10%

In addition to spatiotemporal LC data, seven static spatial variables were included
to capture drivers of LCCs. The selected variables capture a single snapshot of factors
related to accessibility and topography. Accessibility factors used in prior LCC applications
and adopted in this research study include the proximity to various features, including
proximity to population centers [21], roads [22], railways [23], lakes and rivers [24], and
coastal waters [25]. These were derived by computing the Euclidean distance from each
feature using the point and vector data layers available from Statistics Canada [26,27].
Topographic variables involved in prior LCC studies include elevation and slope [28]. The
ASTER Global digital elevation model was used to source the elevation data and derive the
slope data layer for this research study [29].

All datasets are reprojected to the NAD 1983 BC Environment Albers projected co-
ordinate system where planar area measurements are preserved. Spatial data layers are
resampled to or computed relative to the MODIS LC data, which has the coarsest spatial
resolution. Bilinear interpolation was used to resample the DEM. Edge effects were min-
imized by eliminating the influence of cells outside of the study region, with a 2.78 km
buffer from the edges of the study area [30].

2.2. Overview of Deep Learning Models

Four models were implemented in this research study, including two temporal DL models
(LSTM and TCN) and two spatiotemporal models (CNN–LSTM and CNN–TCN). All models
were implemented with Python 3.9.1 [31], the Keras API [32], and TensorFlow 2.5.0 [33]. The
open-source KerasTCN API was used to implement the TCN and CNN–TCN models [34].

2.2.1. Temporal Models (LSTM and TCN)

LSTM models are extensively used to model temporal patterns [35]. The development
of LSTM models occurred in response to the vanishing gradient problem that affected tra-
ditional RNN approaches for long timeseries data [36,37]. The unique features of an LSTM
unit include “gating” functions and internal memory cells which maintain, drop, or inhibit
the flow of information through an LSTM unit [38]. The main equations of an LSTM are ex-
pressed in previous studies [38]. The LSTM models specified in this research study feature
two LSTM layers with 32 and 128 units, respectively, that use the default tanh activation
function [11]. The layers are followed by a dropout regularization factor of 10% informed
by previous studies [11,39]. Dropout regularization inhibits networks from overfitting by
randomly dropping a specified percentage of neurons [40]. The fully-connected output



Remote Sens. 2022, 14, 4957 5 of 25

layer features 9 neurons to forecast the likelihood of each of the 8 LC classes. The activation
of the output layer is the Softmax function which is useful for multi-class forecasting and
classification problems [41]. Neighborhood inputs are provided as one-dimensional arrays
for each timestep, described in detail in Section 2.2.3.
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TCNs are also used to obtain long-term patterns from sequential data [42]. While
TCNs are used for extracting proximal temporal features, they also benefit from the highly
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parallelizable structure of CNNs, providing a less computationally intensive alternative to
LSTM models. The primary components of a TCN model include a one-dimensional, fully
convolutional network to extract temporal patterns and dilated causal convolutions, which
prevent the purging of historical information [43]. Dilations enable the receptive field to
expand exponentially, thus preserving longer-term information from sequential datasets.
The formulation of TCNs has been discussed in detail in prior research studies [42]. The
implemented TCN models are characterized by two layers featuring 32 and 128 filters,
respectively, using the ReLU activation function. Filters characterizing a TCN refer to a
vector of learnable weights. The dilations parameter setting is 1,2,4, and 8 [44], and the
kernel size is set to 2 [45]. The kernel refers to a matrix of weights that is multiplied with
each subset of the input sequence. To match the LSTM model implementation, a dropout
factor of 10% is applied before the output layer featuring the Softmax activation function.
Neighborhood inputs are provided as one-dimensional arrays for each timestep, described
in Section 2.2.3.

2.2.2. Spatiotemporal Models (CNN–LSTM and CNN–TCN)

In combinations of spatial and sequential DL techniques, spatial features are often
first extracted using Convolutional Neural Networks (CNNs). CNNs can be used to obtain
abstract spatial features from remotely sensed imagery [6]. The formulas describing CNNs
have been disseminated in previous research studies [12]. Through a combination of
convolutional layers and pooling layers, spatial patterns from a two-dimensional raster
or image can be extracted [46]. This makes a CNN a useful construct for extending the
spatial coverage of sequential DL models beyond per-cell timeseries to capture the states
of neighboring cells [9]. As such, CNNs facilitate the extraction of spatial relationships
present within a neighborhood at each timestep, while temporal relationships are captured
using a sequential DL approach. Such models are commonly used for video recognition
tasks (i.e., CNN–LSTM [47]) that require spatial dependencies to be first extracted before
obtaining temporal dependencies from samples of independent videos. However, in
geographic applications employing raster data layers, training datasets are populated by
extracting spatiotemporal neighborhoods or “patches” across the study area, where the
spatial coverage of each sample is specified by the neighborhood dimensions.

In this research study, CNN–LSTM and CNN–TCN were implemented to extract
spatial relationships within neighborhoods of each cell for each timestep. These spa-
tiotemporal DL models were implemented first with a single-branch input structure that
accepts the LC data sequences only, adapted from prior model implementations [48,49].
LC sequences were provided as input to a branch consisting of four CNN layers and
two 2× 2 max-pooling operations (Figure 3). The CNN layers feature 32, 32, 64, and 64 filters, re-
spectively, each followed with a ReLU activation function. Using multiple CNN layers and
expanded filter sizes facilitates the extraction of increasingly complex spatial features [50].
The CNN layers were each parameterized with a 3 × 3 kernel, zero-padding, and a stride
of one [11]. A 3 × 3 kernel size was specified given the sample input dimensions [51,52]
and to obtain local relationships of LC from sample neighborhoods [53]. Likewise, while in-
creasing kernel sizes may be beneficial for finer-scale spatial resolution data for the purpose
of extracting larger scale features [54], the coarser spatial resolution of the data and sample
input dimensions used in this research study are better suited to a smaller kernel size
for considering the local context of LC. The CNN operations were followed by a dropout
factor of 10%. The TimeDistributed functionality afforded by the Keras API enables these
operations to be applied to each timestep in the sequence of LC data provided [11]. This
facilitates the extraction of spatial features from each timestep. Outputs of this branch were
flattened, then provided as inputs to the sequential layers. For example, TCN layers are
shown in Figure 3 following the concatenation operation. In the CNN–LSTM approach, this
was replaced with LSTM layers with 32 and 128 units, respectively. The general structure
of the CNN–TCN model is inspired by a previous approach demonstrating how outputted
feature vectors from CNNs were provided as inputs to TCNs for a video classification



Remote Sens. 2022, 14, 4957 7 of 25

task [55]. However, the CNN–TCN model structure in this research study does not require
the advanced CNN component for the MODIS LC data. The CNN–TCN model was imple-
mented with TensorFlow and KerasTCN, with TCN layers parameterized the same as in
Section 2.2.1.
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2.2.3. Neighborhood Effects in Deep Learning Models

For each cell, the influence of neighborhood composition and changes within it are
referred to as the “neighborhood effect” [56]. In this research study, DL models were used
to obtain the strength of neighborhood effects and influential spatiotemporal patterns
from samples without user intervention. The spatial coverage of neighborhood effects is
controlled by specifying a neighborhood size, which is a highly influential parameter in
land change modeling endeavors [56–58]. It should be noted that the term “neighborhood”
is synonymous to spatiotemporal data “tiles” (i.e., [5]) or “patches” (i.e., [17,52]) prepared
for DL model training datasets described in some research studies. The terms “tiles” or
“patches” were previously used to refer to some M × M area obtained from an overall
study region, where M refers to the number of cells along the longest edge of the cell
neighborhood. This research study follows the Moore neighborhood convention, where
a target cell refers to the cell located at the center of the neighborhood. For example,
a 3 × 3 Moore neighborhood contains a target central cell and the eight surrounding
cells [58]. Moore neighborhoods contain N cells given a distance range parameter r, where
N = (2r + 1)2. The neighborhood sizes explored in this study and their respective surface
areas they cover given the spatial resolution of the dataset are presented in Table 2. The
neighborhood dimensions selected to explore with the DL models are based on previous
findings that showed that including cells 2.5 km to 3.5 km from the central cell captured
the characteristics of neighborhoods with 500 m spatial resolution data [14].

In this research study, the task of LCC forecasting was framed as a spatiotemporal
DL problem with respect to the CNN–LSTM and CNN–TCN modeling techniques. The
intended effect of including neighborhoods in DL models is to capture a range of influence
surrounding each cell by integrating information about state changes occurring near a
central cell. For CNN–LSTM and CNN–TCN models, neighborhoods surrounding each
target cell at each timestep are provided explicitly as the model’s input. For example,
these models accept spatiotemporal inputs in the form of T × M × M × C, where T
denotes the number of timesteps, M denotes the neighborhood dimension, and C denotes
the number of LC classes. For the temporal models, LSTM and TCN, the neighborhood
structure is not inherently preserved. In previous studies, the states of each neighboring
cell were explicitly provided as variables to LSTM models in the form of a one-dimensional
array for each timestep [11,17]. To provide neighborhoods of size 3 × 3 and larger to the
temporal models, the process of “flattening” neighborhood information to compatible one-
dimensional sequences was carried out. This means that the T×M×M× C spatiotemporal
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input sequence for each cell was transformed to a one-dimensional array with dimensions
T ×M ×M × C, where M ×M × C is the length of the input vector at each timestep.

Table 2. Surface area covered by a training sample with each neighborhood configuration. A Moore
neighborhood encompasses N cells given a range parameter r specifying the distance from the central
cell, where N = (2r + 1)2.

Range from Central
Cell (r)

Neighborhood
Size (M ×M)

# of Cells or Land Cover States Contributing
to Neighborhood Effects (N)

Spatial Coverage Considered for
Neighborhood Effects (km2)

0 1 × 1 1 0.21

1 3 × 3 9 1.93

2 5 × 5 25 5.37

3 7 × 7 49 10.52

4 9 × 9 81 17.39

5 11 × 11 121 25.97

2.2.4. Adding Spatial Variables

To accommodate both spatiotemporal LC data and static spatial variables, the previous
single-branch model was extended for the spatial variable input (Figure 4). This structure
was expanded from previous studies [48,49]. For the multi-branch model implementa-
tion used to add the spatial variables for the Case 3 experiments, the LC input branch
implementation is the same. The second branch of the model uses convolutional layers
to extract spatial relationships from the seven spatial variables of each training sample.
Six convolution layers, 2 × 2 max-pooling operations, and dropout regularization were
used to process the auxiliary spatial features (Figure 4). The number of filters parameter-
izing each CNN layer of this branch was 32, 32, 64, and 64, respectively. Outputs of the
spatial input branch were flattened and combined with outputs from the LC data branch
using the concatenation operation. The activation function of all CNN layers is ReLU and
the output layer with 9 neurons uses the Softmax function.
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2.3. Overview of Experiments

The LSTM, TCN, CNN–LSTM, and CNN–TCN models were explored in three ex-
perimental cases. Real-world multi-temporal MODIS LC data and static spatial variables
were used to forecast one year of LCCs for the selected study regions. LSTM and CNN–
LSTM models were used as a baseline to compare TCN and CNN–TCN models, as the
former are more common in geographic applications. Case 1 considered the LC data of
the Regional District of Bulkley-Nechako (R1) to explore whether trends in the model’s
capacity to forecast LCCs for three subareas is similar to that observed for the full region
from which they were extracted from (Figure 1). Next, Case 2 explored the respective
models on separate study regions, including the Regional District of Central Kootenay (R2),
the Northern Rockies Regional Municipality (R3), and the Cariboo Regional District (R4)
(Figure 2). Outcomes from Case 1 and the additional regions were compared to identify
recurring trends. Lastly, Case 3 explored the effect of the spatial variables branch across
model types and neighborhood sizes.

The temporal resolution of the models was one year. A “rolling-window” forecasting
scheme used a specified interval to train the model, while the interval is advanced by one
year to test the model by evaluating its capacity to project the next timestep [59]. The LCC
modeling task was framed as a multi-class forecasting task, where each cell was assigned
the most likely LC type according to the per-class probabilities produced by the model.
Training datasets are formed in the same way as previous work [20]. The training datasets
for each study region and subarea were comprised of 17 timesteps of annual LC data, where
(t0, t1, . . . , t16) are used for the training data sequences and t17 providing the training label,
with 20% of the training dataset withheld for validation purposes. The test dataset input
sequences span (t1, t2, . . . , t17), with t18 being the forecasted LC data. The first timestep
t0 was supplied with LC data for 2001. Therefore, the training datasets include LC data
from 2001 to 2018, where 2001 to 2017 were used as input for model training and the 2018
LC data layer providing the training label. Sequences from 2002 to 2018 were then used to
forecast the 2019 LC of BC. Training data samples of size T ×M ×M × C were obtained
for every cell in the study area, excluding those within the specified distance from study
region boundaries to manage edge effects (Section 2.1). This means that every cell with
its surrounding neighborhood provides a sample within the training dataset. Each model
type and neighborhood configuration were provided the same training datasets for the
respective regions.

In all experimental cases, the LSTM, TCN, CNN–LSTM, and CNN–TCN models were
run with neighborhood dimension settings of 1 × 1, 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11.
In Cases 1 and 2, the model configurations trained with LC data only (Figure 3) are referred
to as LSTMM×M, TCNM×M, CNN–LSTMM×M, and CNN–TCNM×M where M refers to the
neighborhood size setting (Table 2). For Case 3, models trained with LC data and the static
spatial variables are referred to as CNN–TCNM×M (LC+SVs) (Figure 4).

2.4. Model Assessment

Change-focused measures provide a means to compare the model output with the
real-world data for areas that have undergone LCCs. These were selected because measures
including overall accuracy and traditional Kappa statistics are impacted by the prevalence
of non-changing areas, along with other issues that conceal the true nature of map agree-
ment [60,61]. Therefore, three-map comparison measures have been used to differentiate
changed and persistent areas by comparing an initial map representing the real-world
LC states at time t0, a reference map representing the real-world LC at time tn, and the
forecasted LC map for time tn [60]. Measures that involve three-map comparison include
Figure of Merit (FOM), Producer’s Accuracy (PA), and User’s Accuracy (UA), as expressed
in previous work [62–65] and in Appendix A. FOM indicates the ratio of correctly fore-
casted changes versus the total amount of real-world and projected changes. Derived from
components of FOM (Table A1), PA expresses the area forecasted correctly as changed
versus the real-world changed areas, while UA expresses the amount of correctly changed
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area versus the real-world changed areas. FOM, PA, and UA measures were selected for
the purpose of determining the model’s capacity to forecast LCCs, providing the primary
means of quantifying model performance for full region experiments in Cases 1 and 2.

To investigate the types of spatial errors associated with each forecast, the total error
or disagreement between real-world change and forecasted change can be explored with
respect to error due to quantity (EQ) and error due to allocation (EA), as expressed in prior
works [64–66] and in Appendix A. EQ indicates the difference in forecasted and real-world
changed area, while EA indicates the amount of area allocated incorrectly as changed
or to the wrong LC class. Both are expressed in terms of disagreeing area. The EQ and
EA measures provide a disaggregated view of projected changes compared to FOM, PA,
and UA, highlighting instead the disagreement in quantity and spatial disagreement of
observed versus forecasted changes. Further descriptions and interpretation of the selected
measures are included in Table A1. The EQ and EA measures were used to assess the
impact of spatial variables added to models in Case 3. Additionally, simulation maps
exhibiting correctly changed or persistent areas along with different types of forecasting
errors were used to support the visual assessment of outcomes associated with the best
performing models for each full study region, selected according to the highest FOM values
found across Cases 2 and 3.

The initial reference year selected for a three-map comparison determines areas flagged
as changed. The measures were computed using the 2018 LC data as the initial map, the
2019 LC data as the reference map, and the forecasted 2019 LC data in the three-map
comparison evaluation measures. The goal was to show the model’s capacity to forecast
changes overall for the one-year interval. This means that though the models output the
probability of each LC class for each cell in a study region, the correctly forecasted changes
for each class were summed to attain the overall change measures used in this research
study. Thus, the change from each LC class was treated the same way. The surface area
that underwent transitions between 2018 and 2019 is shown in Table 3.

Table 3. Summary of the total changed area across all LC classes for each experimental study region
between 2001–2019, and 2018–2019. The change summaries are a summation of net change area for
each LC class from the real-world LC data between 2001 and 2019, and 2018 and 2019.

Case Study Region Changed Area between
2001 and 2019 (km2)

Changed Area between
2018 and 2019 (km2)

1

Subarea A 1 365.35 (17.02%) 66.33 (3.09%)
Subarea B 1 661.15 (30.80%) 138.88 (6.47%)
Subarea C 1 1150.36 (53.59%) 187.61 (8.74%)

Full Regional District of Bulkley-Nechako 23,452.10 (31.79%) 4317.00 (5.85%)

2
Regional District of Central Kootenay 4015.83 (19.49%) 310.40 (1.51%)

Northern Rockies Regional Municipality 12,000.71 (14.47%) 1940.51 (2.34%)
Cariboo Regional District 17,611.03 (22.42%) 2932.67 (3.73%)

1 Subareas A, B, and C are subsets of the Full Regional District of Bulkley-Nechako (Figure 1).

3. Results
3.1. Case 1: Regional District of Bulkley-Nechako Experiment Results
3.1.1. Subarea Experiment Results

Trends across neighborhood sizes and DL models were explored for three subareas
within the Regional District of Bulkley-Nechako (R1). Subarea A underwent the least
amount of change, while Subarea C underwent the most amount of change (Table 3). For
Subarea A, the highest FOM measure was 9.7%, associated with forecasts from LSTM7×7
(Figure 5a). For this subarea, there was no distinctive trend in FOM values versus neighbor-
hood size increments. For Subarea B, the top FOM value (10.6%) was associated with the
CNN–TCN9×9 model (Figure 5b). For outcomes obtained for Subarea B, the overall trend
observed was that the top FOM values increase until the 9 × 9 neighborhood specification.
For Subarea C, the highest FOM value (9.4%) was associated with the TCN7×7 model



Remote Sens. 2022, 14, 4957 11 of 25

(Figure 5c). The FOM values generally increase as neighborhood dimensions increase until
the 9 × 9 neighborhood dimensions. The exceptions to this trend are the TCN5×5 and
TCN7×7 models, where FOM values are distinctively higher at 5.8% and 9.4%, respectively
(Figure 5c).
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District of Bulkley-Nechako.

The LSTM, TCN, CNN–LSTM, and CNN–TCN models also showed different trends
with respect to each subarea. With Subarea A, FOM measures indicated inconsistent
model performance. The exception was the LSTM models, which produced the highest
FOM values for many of the neighborhood sizes (Figure 5a). The CNN–LSTM1×1 and
TCN9×9 models produced the only FOM values that surpassed LSTM model performance
for Subarea A. Considering Subareas B and C, the highest performing models varied
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between LSTM, TCN, and CNN–TCN. For Subareas A and B, which exhibited low to
moderate amounts of LCCs, the LSTM models attained the highest FOM values with 1 × 1,
3 × 3, 5 × 5, and 7 × 7 neighborhood dimensions. For Subareas B and C, which exhibited
moderate to large amounts of LCCs, the CNN–TCN models obtained the highest FOM
values with 9 × 9 and 11 × 11 neighborhoods.

3.1.2. Entire Regional District of Bulkley-Nechako Experiment Results

Following the application of the respective models to various subareas of the Regional
District of Bulkley-Nechako, new models were trained using the LC for the full study region
to determine whether subarea trends continued for the larger extent. For the full study
region, 31.8% of the LC differed between 2001 and 2019, and 5.6% differed between 2018
and 2019 (Table 3). Therefore, the percentage of changed area characterizing the full study
region is most similar to that observed for Subarea B. The largest FOM and PA values were
3.0% and 3.2%, respectively, obtained with CNN–TCN9×9 (Figure 6a,b). Meanwhile, the
highest UA was 41.7%, obtained by CNN–LSTM3×3, indicating that more of its forecasted
changes were at correct real-world locations (Figure 6c).

3.2. Case 2: Comparison with Alternative Regions

To explore the transferability of outcomes attained in Case 1 for the Regional District
of Bulkley-Nechako (R1), three other regions were considered. These include the Regional
District of Central Kootenay (R2), the Northern Rockies Regional Municipality (R3), and
the Cariboo Regional District (R4). FOM values obtained with respect to models trained
with each dataset generally increased as neighborhood size expanded (Table 4). Many of
the highest amounts of correctly forecasted changes were associated with neighborhood
specifications of 7× 7, 9× 9, and 11× 11, as indicated by FOM and PA (Tables 4 and 5). This
follows a similar trend to those observed in Case 1. However, the same drop-off of FOM
and PA values after CNN–TCN9×9 was not observed for the alternative regions (R2-R4).
Instead, CNN–TCN11×11 attained higher FOM and PA measures, which were also some of
the highest for each of the alternative regions (Tables 4 and 5). For the temporal models, a
similar decrease in FOM values obtained after LSTM9×9 followed the observed trend in
Figures 5b,c and 6a. Trends across UA values were also similar to those observed in Case 1,
where smaller neighborhoods of 1 × 1, 3 × 3, and 5 × 5, were associated with the highest
UA values in R4, R2, and R3, respectively (Table 6). While the UA measures indicated that
a higher proportion of forecasted changed areas intersected with real-world changed areas
with several configurations using smaller neighborhoods, this measure is also swayed by
correct forecasts of persistence (Table A1). Meanwhile, the PA measures indicate that more
correctly changed area with less persistent area forecasted incorrectly was attained with
the larger neighborhood settings of 7 × 7, 9 × 9, and 11 × 11 for all regions.

Table 4. Figure of merit (FOM) values obtained for (R1) the Regional District of Bulkley-Nechako,
(R2) the Regional District of Central Kootenay, (R3) the Northern Rockies Regional Municipality, and
(R4) the Cariboo Regional District.

Figure of Merit (%)

Region M ×M LSTM TCN CNN–LSTM CNN–TCN

R1

1 × 1 0.25 0.54 0.25 0.51
3 × 3 1.39 1.39 1.00 1.04
5 × 5 1.83 1.58 1.25 2.14
7 × 7 2.04 1.90 1.67 1.53
9 × 9 2.44 1.46 1.92 3.01

11 × 11 1.95 2.27 2.44 1.72
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Table 4. Cont.

Figure of Merit (%)

Region M ×M LSTM TCN CNN–LSTM CNN–TCN

R2

1 × 1 1.82 1.65 1.14 1.03
3 × 3 3.36 3.00 2.09 2.89
5 × 5 4.31 4.15 2.65 3.56
7 × 7 4.33 4.61 2.53 3.28
9 × 9 5.11 3.79 4.73 3.79

11 × 11 4.52 3.86 4.14 4.24

R3

1 × 1 0.05 0.42 0.08 0.22
3 × 3 1.62 2.18 1.00 1.40
5 × 5 2.32 2.23 1.38 1.37
7 × 7 3.19 3.25 1.53 1.92
9 × 9 3.09 2.88 2.10 2.47

11 × 11 2.55 2.79 2.31 3.65

R4

1 × 1 0.60 0.65 0.49 0.59
3 × 3 3.73 3.52 2.98 3.33
5 × 5 4.60 4.28 5.76 5.40
7 × 7 5.93 5.89 6.66 6.11
9 × 9 7.29 6.86 5.97 6.50

11 × 11 6.87 7.37 6.43 7.02

Table 5. Producer’s accuracy (PA) values obtained for (R1) the Regional District of Bulkley-Nechako,
(R2) the Regional District of Central Kootenay, (R3) the Northern Rockies Regional Municipality, and
(R4) the Cariboo Regional District.

Producer’s Accuracy (%)

Region M ×M LSTM TCN CNN–LSTM CNN–TCN

R1

1 × 1 0.25 0.55 0.25 0.51
3 × 3 1.43 1.42 1.01 1.06
5 × 5 1.89 1.62 1.28 2.22
7 × 7 2.11 1.97 1.73 1.57
9 × 9 2.55 1.50 2.00 3.20

11 × 11 2.02 2.40 2.59 1.80

R2

1 × 1 1.91 1.74 1.19 1.07
3 × 3 3.62 3.17 2.19 3.07
5 × 5 4.86 4.55 2.84 3.96
7 × 7 4.93 5.22 2.79 3.74
9 × 9 5.79 4.29 5.53 4.57

11 × 11 5.08 4.43 5.10 5.55

R3

1 × 1 0.05 0.45 0.08 0.22
3 × 3 1.66 2.27 1.02 1.44
5 × 5 2.40 2.30 1.41 1.40
7 × 7 3.37 3.41 1.58 1.98
9 × 9 3.25 3.01 2.19 2.59

11 × 11 2.66 2.93 2.48 4.06

R4

1 × 1 0.60 0.66 0.49 0.59
3 × 3 3.91 3.70 3.11 3.52
5 × 5 4.89 4.51 6.37 5.96
7 × 7 6.47 6.48 7.43 6.80
9 × 9 8.21 7.67 6.65 7.43

11 × 11 7.56 8.43 7.30 8.44
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Table 6. User’s accuracy (UA) values obtained for (R1) the Regional District of Bulkley-Nechako, (R2)
the Regional District of Central Kootenay, (R3) the Northern Rockies Regional Municipality, and (R4)
the Cariboo Regional District.

User’s Accuracy (%)

Region M ×M LSTM TCN CNN–LSTM CNN–TCN

R1

1 × 1 28.02 27.03 29.82 25.12
3 × 3 36.42 35.75 41.68 38.66
5 × 5 36.96 36.10 34.40 35.82
7 × 7 35.77 35.08 32.95 35.79
9 × 9 34.69 31.69 32.03 31.96

11 × 11 33.78 27.71 29.30 26.67

R2

1 × 1 28.99 22.81 20.75 19.23
3 × 3 30.58 35.00 28.40 31.70
5 × 5 26.88 31.26 27.36 25.58
7 × 7 25.56 27.86 20.21 20.15
9 × 9 29.67 23.75 23.92 17.57

11 × 11 28.10 22.52 17.20 14.72

R3

1 × 1 30.77 6.27 16.28 21.02
3 × 3 38.76 35.29 35.27 33.15
5 × 5 40.26 40.51 38.78 40.38
7 × 7 36.65 38.67 32.35 34.20
9 × 9 37.23 37.64 32.65 33.88

11 × 11 36.07 35.11 24.67 25.44

R4

1 × 1 56.25 40.83 56.41 38.77
3 × 3 43.75 41.80 42.09 37.48
5 × 5 43.24 44.15 37.43 35.92
7 × 7 40.77 39.00 38.74 36.89
9 × 9 39.06 38.99 36.17 33.76

11 × 11 42.62 36.38 34.64 28.93

3.3. Case 3: Spatial Variables Experiment Results

In Case 3, the model configurations trained with LC data only (Figure 3) from Case 2
were compared with models trained with the addition of spatial variables (Figure 4) for
the four separate study regions (R1-R4). For R1, the highest FOM was 4.1%, obtained
by CNN–TCN9×9(LC+SVs) (Table 7). This exceeded the largest FOM obtained in Case 2
(3%), which was obtained with CNN–TCN9×9 (Figure 6a, Table 4). R2 was associated with
several anomalous outcomes. For instance, while many model and neighborhood size con-
figurations for R2 benefitted from the addition of spatial variables, the highest FOM (5.1%)
obtained by LSTM9×9 in Case 2 was not surpassed. Likewise, this region showed the singu-
lar instance (CNN–LSTM9×9) where CNN–LSTM did not attain an improved FOM value
given the spatial variable input. Meanwhile, TCN9×9(LC+SVs) and CNN–TCN9×9(LC+SVs)
attained the highest FOM values for R3 and R4, respectively. Across all four study regions
and all model types, the overall trends of FOM values increasing with neighborhood size
observed in Case 2 continued, with the auxiliary input of static spatial variables providing
common drivers of LCC.

Considering the error types associated with the respective model and neighborhood
configurations, EQ generally decreased with neighborhood size across models explored in
both Case 2 and 3 (Table 8). However, the addition of spatial variables was observed to
reduce the EQ for many model types and neighborhood size combinations (Table 8). This
means that the amount of real-world changed area and amount of forecasted changed area
is typically closer than many of the shown forecasts that were produced with models trained
using only the LC data. Meanwhile, EA increased overall as neighborhoods expanded
for each model and study region (Table 9), with less distinct patterns between models
trained with and without the auxiliary spatial variables. This suggests that while quantity
disagreement is reduced with neighborhood size increments and the static spatial variables,
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the precise allocations of the greater quantities of changed areas are not necessarily being
allocated to the correct real-world locations. This can be observed in the simulation maps
where areas are forecasted incorrectly as changed or as the wrong change (Figure 7).

Table 7. Figure of Merit (FOM) values obtained for (R1) the Regional District of Bulkley-Nechako,
(R2) the Regional District of Central Kootenay, (R3) the Northern Rockies Regional Municipality, and
(R4) the Cariboo Regional District. “LC+SV” refers to the model configuration provided the added
spatial variables input (Figure 3), with differences between FOM values in Case 2 shown under the
respective “Diff” columns for each model type. Values in bold and with * indicate the FOM is highest
for the region across Cases 2 and 3.

Effect of Adding Spatial Variables on Figure of Merit (%)

LSTM TCN CNN–LSTM CNN–TCN

Region M ×M LC+SV Diff. LC+SV Diff. LC+SV Diff. LC+SV Diff.

R1

1 × 1 0.29 +0.04 0.64 +0.10 0.86 +0.61 1.02 +0.51
3 × 3 1.29 −0.10 1.41 +0.02 1.70 +0.70 2.38 +1.34
5 × 5 1.86 +0.03 1.33 −0.25 3.51 +2.26 3.28 +1.14
7 × 7 2.26 +0.22 1.76 −0.14 3.44 +1.77 3.40 +1.87
9 × 9 2.44 +0.00 2.40 +0.94 3.87 +1.95 4.10 * +1.09

11 × 11 1.7 −0.25 1.74 −0.53 3.28 +0.84 3.56 +1.84

R2

1 × 1 1.96 +0.14 3.00 +1.35 1.49 +0.35 2.50 +1.47
3 × 3 3.73 +0.37 3.63 +0.63 3.00 +0.91 2.90 +0.01
5 × 5 4.15 −0.16 2.33 −1.82 3.53 +0.88 3.33 −0.23
7 × 7 4.08 −0.25 4.74 +0.13 3.15 +0.62 3.12 −0.16
9 × 9 5.03 −0.08 3.90 +0.11 4.23 −0.50 3.92 +0.13

11 × 11 4.9 +0.38 3.59 −0.27 4.25 +0.11 4.64 +0.40

R3

1 × 1 0.24 +0.19 0.73 +0.31 0.87 +0.79 1.37 +1.15
3 × 3 1.71 +0.09 1.90 −0.28 1.56 +0.56 2.33 +0.93
5 × 5 2.29 −0.03 1.79 −0.44 1.84 +0.46 2.20 +0.83
7 × 7 2.29 −0.90 2.59 −0.66 2.06 +0.53 2.68 +0.76
9 × 9 3.08 −0.01 3.51 * +0.63 2.71 +0.61 3.07 +0.60

11 × 11 2.72 +0.17 3.11 +0.32 3.12 +0.81 3.39 −0.26

R4

1 × 1 0.6 0.00 0.95 +0.30 1.14 +0.65 1.79 +1.20
3 × 3 3.9 +0.17 3.45 −0.07 4.92 +1.94 4.86 +1.53
5 × 5 5.64 +1.04 5.28 +1.00 6.06 +0.30 5.40 +0.00
7 × 7 6.81 +0.88 6.69 +0.80 7.03 +0.37 5.24 −0.87
9 × 9 6.83 −0.46 6.86 0.00 7.32 +1.35 7.40 * +0.90

11 × 11 6.72 −0.15 6.87 −0.50 7.04 +0.61 7.17 +0.15

Table 8. Area associated with error due to quantity (EQ) values obtained for (R1) the Regional
District of Bulkley-Nechako, (R2) the Regional District of Central Kootenay, (R3) the Northern
Rockies Regional Municipality, and (R4) the Cariboo Regional District. “LC Only” refers to models
considering the LC data as the only input (Figure 2), while “LC+SV” refers to models provided the
added spatial variables input (Figure 3). The lowest EQ values for each model type and region are
indicated in bold and with *. ±indicates if LC+SV added or reduced EQ.

Effect of Adding Spatial Variables on Error due to Quantity (km2)

LSTM TCN CNN–LSTM CNN–TCN

M ×M LC Only LC+SV LC Only LC+SV LC Only LC+SV LC Only LC+SV

R1

1 × 1 4280 4279 (−) 4235 4221 (−) 4283 4214 (−) 4236 4175 (−)
3 × 3 4153 4160 (+) 4150 4156 (+) 4214 4114 (−) 4203 4025 (−)
5 × 5 4102 4089 (−) 4130 4166 (+) 4162 3872 (−) 4056 3894 (−)
7 × 7 4070 4041 (−) 4079 4105 (+) 4098 3865 (−) 4135 3898 (−)
9 × 9 4006 4001 (−) 4119 3994 (−) 4057 3830 * (−) 3896 3758 * (−)

11 × 11 4065 3950 * (−) 3953 3891 * (−) 3947 3839 (−) 4035 3801 (−)
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Table 8. Cont.

Effect of Adding Spatial Variables on Error due to Quantity (km2)

LSTM TCN CNN–LSTM CNN–TCN

M ×M LC Only LC+SV LC Only LC+SV LC Only LC+SV LC Only LC+SV

R2

1 × 1 842 832 (−) 837 785 (−) 853 850 (−) 855 816 (−)
3 × 3 798 776 (−) 822 773 (−) 835 813 (−) 815 804 (−)
5 × 5 742 758 (+) 773 805 (+) 812 776 (−) 764 777 (+)
7 × 7 731 712 * (−) 736 729 (−) 783 763 (−) 739 759 (+)
9 × 9 729 691 (−) 743 726 (−) 700 717 (+) 674 676 (+)

11 × 11 744 639 (−) 729 649 * (−) 645 597 * (−) 573 549 * (−)

R3

1 × 1 3567 3549 (−) 3318 3371 (+) 3554 3469 (−) 3535 3390 (−)
3 × 3 3424 3405 (−) 3346 3385 (+) 3471 3420 (−) 3421 3312 (−)
5 × 5 3364 3362 (−) 3376 3413 (+) 3445 3390 (−) 3452 3343 (−)
7 × 7 3256 3349 (+) 3265 3281 (+) 3405 3372 (−) 3372 3254 (−)
9 × 9 3270 3246 (−) 3297 3227 (−) 3343 3291 (−) 3308 3206 (−)

11 × 11 3316 2969 * (−) 3282 2997 * (−) 3222 3124 * (−) 3018 2974 * (−)

R4

1 × 1 3822 3794 (−) 3803 3747 (−) 3830 3678 (−) 3806 3590 (−)
3 × 3 3521 3489 (−) 3525 3504 (−) 3579 3382 (−) 3503 3341 (−)
5 × 5 3431 3275 (−) 3474 3289 (−) 3210 3235 (+) 3229 3251 (+)
7 × 7 3257 3136 (−) 3225 3093 (−) 3130 3080 (−) 3157 3291 (+)
9 × 9 3060 2989 (−) 3109 3063 (−) 3160 2882 * (−) 3023 2868 (−)

11 × 11 3187 2934 * (−) 2976 2803 * (−) 3061 2905 (−) 2752 * 2807 (+)

Table 9. Area associated with error due to allocation (EA) obtained for (R1) the Regional District of
Bulkley-Nechako, (R2) the Regional District of Central Kootenay, (R3) the Northern Rockies Regional
Municipality, and (R4) the Cariboo Regional District. “LC Only” refers to models considering the
LC data as the only input (Figure 2), while “LC+SV” refers to models provided the added spatial
variables input (Figure 3). ±indicates if LC+SV added or reduced EA.

Effect of Adding Spatial Variables on Error due to Allocation (km2)

LSTM TCN CNN–LSTM CNN–TCN

M ×M LC Only LC+SV LC Only LC+SV LC Only LC+SV LC Only LC+SV

R1

1 × 1 52 50 (−) 118 137 (+) 46 132 (+) 118 194 (+)
3 × 3 205 201 (−) 212 197 (−) 119 255 (+) 137 371 (+)
5 × 5 266 291 (+) 234 184 (−) 199 567 (+) 331 545 (+)
7 × 7 311 350 (+) 306 268 (−) 289 588 (+) 228 527 (+)
9 × 9 402 410 (+) 267 428 (+) 347 617 (+) 565 735 (+)

11 × 11 330 578 (+) 521 690 (+) 517 651 (+) 409 699 (+)

R2

1 × 1 83 100 (+) 97 173 (+) 74 73 (−) 73 122 (+)
3 × 3 140 176 (+) 100 183 (+) 92 119 (+) 117 137 (+)
5 × 5 231 203 (−) 173 147 (−) 126 179 (+) 202 181 (−)
7 × 7 251 292 (+) 236 247 (+) 186 212 (+) 255 220 (−)
9 × 9 240 313 (+) 240 270 (+) 303 279 (−) 371 364 (−)

11 × 11 223 416 (+) 265 423 (+) 420 509 (+) 556 592 (+)

R3

1 × 1 5 27 (+) 474 344 (−) 27 140 (+) 55 260 (+)
3 × 3 176 206 (+) 288 231 (−) 127 186 (+) 197 343 (+)
5 × 5 242 249 (+) 226 184 (−) 150 226 (+) 137 292 (+)
7 × 7 389 273 (−) 367 383 (+) 219 245 (+) 255 431 (+)
9 × 9 369 416 (+) 332 422 (+) 299 355 (+) 340 494 (+)

11 × 11 319 983 (+) 367 897 (+) 519 651 (+) 815 920 (+)

R4

1 × 1 31 87 (+) 66 154 (+) 26 276 (+) 65 397 (+)
3 × 3 379 428 (+) 387 434 (+) 324 552 (+) 444 635 (+)
5 × 5 483 698 (+) 425 700 (+) 812 740 (−) 805 762 (−)
7 × 7 709 866 (+) 772 957 (+) 890 953 (+) 882 698 (−)
9 × 9 969 1139 (+) 912 999 (+) 890 1298 (+) 1102 1318 (+)

11 × 11 765 1251 (+) 1120 1485 (+) 1038 1279 (+) 1567 1451 (−)
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Figure 7. Simulation maps of forecasts with the highest FOM for each region: (a) the Regional
District of Bulkley Nechako forecasted by CNN–TCN9×9(LC+SVs), (b) the Regional District of Central
Kootenay forecasted by LSTM9×9, (c) the Northern Rockies Regional Municipality forecasted by
TCN9×9(LC+SVs), and (d) the Cariboo Regional District forecasted by CNN–TCN9×9(LC+SVs).

4. Discussion
4.1. Influence of Neighborhood Size

Overall, the general trend across Cases 1–3 was that increasing neighborhood dimen-
sions improved the model’s capacity to forecast changes. While UA measures associated
with smaller neighborhood settings (3× 3 and 5× 5) in Cases 1 and 2 were typically higher,
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UA values associated with larger neighborhoods were also affected by more numerous
persistent cells forecasted incorrectly as changed. Meanwhile, the FOM and PA measures in-
dicated more real-world changed areas were forecasted correctly with larger neighborhood
specifications of 7 × 7, 9 × 9, and 11 × 11 across the comparison of full region forecasts
explored in Cases 2 and 3. The highest FOM values were obtained with 9× 9 neighborhood
specifications for each full region.

In Case 1, it was observed that influence of neighborhood size increased within areas
exhibiting greater amounts of LCCs. For example, FOM values for Subareas A and C mostly
increased with neighborhood size until the 9 × 9 neighborhood specification. With fewer
LCCs in Subarea A, the effect of neighborhood sizes was less dramatic. It is also suspected
that the LC classes characterizing Subarea A introduced challenges, as imbalances of LC
classes and changes are open problems for LCC forecasting with DL [67]. It has also been
stated that when real-world maps contain a small percentage of changed areas, it becomes
increasingly challenging to forecast correct changes [68]. Thus, further work is needed to
explore the size and composition of training datasets, the number of per-category samples
available, and expanded neighborhood sizes to improve the forecasting of scarcer changes.

In Case 2, the trend of increasing FOM values was also maintained. The outcomes
obtained for the study regions compared in Case 2 aligned with the initial hypothesis
that expanding neighborhood sizes would improve the capacity of all DL model types to
forecast changes. In Case 3, this trend was not affected by the addition of spatial variables.

4.2. Influence of Model Selection

In Case 1, it was observed that LSTM models yielded high FOM values for low to
moderately changed subareas (A and B), while TCN and CNN–TCN models yielded higher
FOM values for moderate to highly-changed subareas (B and C) of the Regional District of
Bulkley-Nechako (R1). The LSTM models forecasted more real-world LCCs with smaller
neighborhood specifications, aligning with findings from previous research that showed
LSTMs benefited from small neighborhoods [17]. A similar trend of LSTM benefitting
from small neighborhood dimensions more than other model types was observed in
Cases 2 and 3 for the Regional District of Central Kootenay (R2), where the amount of
change was less than the other full study regions (Tables 3, 4 and 7). This may be indicative
that the LSTM models may be suitable for smaller study areas exhibiting sparse or lesser
amounts of changes.

In Cases 1–3, it was observed that CNN–LSTM and CNN–TCN generally benefitted
from larger neighborhood settings, including 7 × 7, 9 × 9, and 11 × 11. For example, FOM
values obtained for Subareas B and C in Case 1 with CNN–TCN9×9 and CNN–TCN11×11
were higher than those obtained with LSTM. In Cases 2 and 3, the highest FOM measures
were obtained with CNN–TCN9×9 (R1) and CNN–TCN11×11 (R3). TCN models also rou-
tinely obtained FOM, PA, and UA measures comparable to LSTM models in Cases 1 and 2.
For example, the TCN models also yielded some of the highest FOM values with the
TCN5×5 and TCN7×7 for Subarea C of Case 1 and R3 of Case 2. This suggests TCN and
CNN–TCN models are viable alternatives to LSTM and CNN–LSTM for forecasting LCCs.
Consistent improvements in FOM were observed for TCN and CNN–TCN for R2, R3, and
R4 of Cases 2 and 3. However, the inconsistent behavior of TCN and CNN–TCN for the
full Regional District of Bulkley-Nechako (R1) with increasing neighborhood size requires
further consideration. For example, while the CNN–TCN9×9 model yielded the highest
FOM and PA in Case 1 for the full region, CNN–TCN7×7 and CNN–TCN11×11 models
showed distinctly reduced values for these metrics. Given that the Regional District of
Bulkley-Nechako (R1) exhibited the highest amount of changed area among the four study
regions, future work involving TCN and CNN–TCN models may benefit from differentiat-
ing real-world changes from classification errors to improve the training datasets of areas
that exhibit more numerous LCCs.
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4.3. Influence of Spatial Variables

In Case 3, FOM measures indicated adding spatial variables improved the capacity to
forecast LCCs while simultaneously reducing the quantity of error (EQ) for most models
and neighborhood settings. This suggests that the addition of spatial variables reduced
biases toward persistent areas, aligning with the expectation that adding the static spatial
data of LC drivers would benefit the ability of models to forecast LCCs. The effect of
adding spatial variables was generally consistent for CNN–LSTM and CNN–TCN models.
However, the additional spatial variables had a lesser effect on LSTM’s capacity to forecast
changes with respect to all study regions (Table 7). The increases of FOM and decreases of
EQ were also observed as neighborhood sizes expanded, indicating the spatial variables
did not cause deviation from the trends observed in Cases 1 and 2. However, reducing the
disagreement between quantities of projected and observed changed areas simultaneously
increased allocation errors (EA) in many model configurations with the additional spatial
variables. Likewise, there were still many changed areas forecasted incorrectly as persistent
observed in the simulation maps (Figure 7). The increases of EA with neighborhood size
correspond with a previous research study which illustrated that models considering neigh-
borhood effects are not always associated with more precise allocations of changes [56].
Despite the inverse behavior of EQ and EA measures, both are equally important to evalu-
ating LCC model forecasts [63]. This necessitates further work to improve the allocation
of changed areas. Future work may also consider the effect of adding spatiotemporally
varying drivers of LCCs, such as distance to roads as infrastructure changes over time.

5. Conclusions

This research study demonstrated that increasing neighborhood size generally in-
crease model capacity to forecast LCCs in study areas exhibiting moderate amounts of
changes. The key models examined were temporal convolutional networks (TCNs) and
CNN–TCNs. Overall, increasing neighborhood sizes generally improved change-focused
measures. LSTM showed better capacity to forecast LCCs with smaller neighborhoods
in low to moderately changed areas, while CNN–TCN exhibited the highest capacity to
forecast LCCs with 9 × 9 and 11 × 11 neighborhoods in moderate to largely changed areas.
TCN and CNN–TCN obtained similar change-focused measures as LSTM and CNN–LSTM
models for various settings, suggesting these models are a viable choice for LCC modeling
tasks in future research studies. Overall, adding spatial variables was generally beneficial
for the CNN–LSTM and CNN–TCN models, with improvements observed across in model
capacity to forecast LCCs. Likewise, adding the static spatial variables as inputs to the
CNN–LSTM and CNN–TCN models reduced errors due to quantity across most neighbor-
hood dimensions explored for each study region. However, the benefits of adding spatial
variables were less for the LSTM models.

It is acknowledged that outcomes of this research study hinge upon the datasets
selected for this work. For instance, the amount of change forecasted by a model depends
upon the amount of change observed in the data used to develop it [62]. Future work can
consider exploring the impact of spatial resolution and neighborhood specifications on
DL model capacity to forecast LCCs, as these settings may impact LCC modeling with
DL techniques. In addition, the selection of the initial map used in three-map comparison
measures should be carefully considered for evaluating DL models’ capacities to forecast
LCCs, especially with rolling-window forecasting techniques. For instance, the duration of
LC class persistence should be explicitly considered, as a one-year forecast may not aptly
capture more dynamic areas exhibiting changes over longer time periods. Future work
may also consider evaluation strategies to determine how well sequential components of
the models capture changes that occur at varying temporal scales. From all EQ and EA
measures obtained, it is observed that work is still required to improve model capacity
to forecast realistic quantities and allocations LCCs simultaneously before attempting to
forecast LC for multiple years. Likewise, the gains and losses of each LC class should be
explicitly considered in future research studies.
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With the smallest neighborhood dimensions, LCC projections were often little better
than utilizing the previous timestep as the forecasted map. However, increasing neighbor-
hood size reduced errors due to quantity of LCCs, suggesting future models and training
schemes should first consider neighborhood effects prior to using DL models for forecast-
ing LCCs. Integrating further consideration of the unique characteristics of geographic
data may also improve change-focused measures and reduce allocation errors. The re-
sults collectively indicate that future LCC modeling studies should investigate adequate
neighborhood sizes with respect to new datasets, quantities of observed changes, and
model specifications.
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Appendix A

To compute the change-focused measures in this research study, three-map compar-
ison metrics are selected. Given an initial map, a reference real-world map for the next
timestep, and a forecasted map of the next timestep, three-map comparison measures
consider changed locations explicitly by computing the differences between the initial and
reference real-world maps. The measures, formulations, and interpretations are included in
Table A1, where each are comprised of the following components as expressed in previous
work [62,63]:

• A = amount of area that underwent real-world change but was forecasted incorrectly
as persistent.

• B = amount of area that underwent real-world change and was forecasted correctly
as changed.

• C = amount of area that underwent real-world change but was forecasted incorrectly
to the wrong land cover class.

• D = amount of area that was remained persistent in the real-world but was forecasted
incorrectly as changed.

https://lpdaac.usgs.gov/products/mcd12c1v006
https://asterweb.jpl.nasa.gov/gdem.asp
https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-2016-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-2016-eng.cfm
https://open.canada.ca/data/en/dataset/ac26807e-a1e8-49fa-87bf-451175a859b8
https://open.canada.ca/data/en/dataset/ac26807e-a1e8-49fa-87bf-451175a859b8
https://open.canada.ca/data/en/dataset/57d5ffae-3048-4a19-9b4c-eab12f6322c5
https://open.canada.ca/data/en/dataset/57d5ffae-3048-4a19-9b4c-eab12f6322c5
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Table A1. Equations of measures used in model assessment.

Measure Equation Description and Interpretation Reference

Figure of Merit
(FOM) FOM = B

(A + B + C + D)
× 100

Measure of overlap between real-world and forecasted
changes. It provides the ratio of correctly forecasted

changes (B) versus the union of projected and reference
changes. FOM values assume values from 0-100%,

where 0% indicates complete disagreement between
real-world and forecasted changes, and 100% indicates

perfect agreement between real-world and
forecasted changes.

[62,64,65]

Producer’s Accuracy
(PA) PA = B

(A + B + C) × 100

Measure indicating the proportion of correctly changed
area (B) versus all real-world changes observed. PA
values closer to 0% indicate few correctly forecasted
areas versus the observed real-world changes, while
values closer to 100% suggest that high amounts of

observed real-world changes were forecasted correctly.

[62,63]

User’s Accuracy
(UA) UA = B

(B + C + D)
× 100

Measure indicating the proportion of correctly changed
area (B) versus all forecasted changes produced by the
model. UA values closer to 0% suggest few correctly
forecasted areas versus all projected changes, while

values closer to 100% suggest that high amounts of the
projected changes intersected with their real-world

change locations.

[62,63]

Error due to Quantity
(EQ) EQ = |D− (A + C)|

Measure of error associated with the amount of changed
area forecasted. EQ is expressed as the difference

between amounts of area that have undergone changes.
If low amounts of changed areas are forecasted

compared to the real-world reference data, the EQ will
be high. If a model forecasted similar amounts of

changed areas to that observed in the real-world, the EQ
will be low.

[64–66]

Error due to Allocation
(EA) EA = 2×min(D, (A + C))

Measure of error associated with the locations of
changed area forecasted. EA is expressed as the area
that has been wrongly allocated. If many changes are

forecasted at incorrect locations, the EA will be higher. If
forecasted changes are allocated to the right locations,

then EA will be lower.

[64–66]
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