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Abstract: Multiclass geospatial object detection in high-spatial-resolution remote-sensing images
(HSRIs) has recently attracted considerable attention in many remote-sensing applications as a fun-
damental task. However, the complexity and uncertainty of spatial distribution among multiclass
geospatial objects are still huge challenges for object detection in HSRIs. Most current remote-sensing
object-detection approaches fall back on deep convolutional neural networks (CNNs). Nevertheless,
most existing methods only focus on mining visual characteristics and lose sight of spatial or semantic
relation discriminations, eventually degrading object-detection performance in HSRIs. To tackle these
challenges, we propose a novel hybrid attention-driven multistream hierarchical graph embedding
network (HA-MHGEN) to explore complementary spatial and semantic patterns for improving
remote-sensing object-detection performance. Specifically, we first constructed hierarchical spatial
graphs for multiscale spatial relation representation. Then, semantic graphs were also constructed by
integrating them with the word embedding of object category labels on graph nodes. Afterwards, we
developed a self-attention-aware multiscale graph convolutional network (GCN) to derive stronger
for intra- and interobject hierarchical spatial relations and contextual semantic relations, respec-
tively. These two relation networks were followed by a novel cross-attention-driven spatial- and
semantic-feature fusion module that utilizes a multihead attention mechanism to learn associations
between diverse spatial and semantic correlations, and guide them to endowing a more powerful
discrimination ability. With the collaborative learning of the three relation networks, the proposed
HA-MHGEN enables grasping explicit and implicit relations from spatial and semantic patterns, and
boosts multiclass object-detection performance in HRSIs. Comprehensive and extensive experimental
evaluation results on three benchmarks, namely, DOTA, DIOR, and NWPU VHR-10, demonstrate
the effectiveness and superiority of our proposed method compared with that of other advanced
remote-sensing object-detection methods.

Keywords: graph convolutional networks (GCNs); object detection; remote-sensing images; graph
learning; attention mechanism

1. Introduction

With the rapid development of remote-sensing sensors and space technology, many
high-spatial-resolution remote-sensing images (HSRIs) are available for satisfying specific
needs. A significant enhancement in the quality and quantity of remote-sensing imagery
has further broadened their wide range of applications, such as image segmentation [1],
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image classification [2], data fusion [3], and object detection [4]. As a fundamental and cru-
cial task for most remote-sensing-imagery-based applications, object detection has drawn
increasing attention, especially for practical applications based on optical HSRIs. The main
purpose of object detection is to assign each corresponding object to a category and regress
the correct location for each predicted object. Over the past few years, a large number of
object detection approaches have been explored, demonstrating their reasonable perfor-
mance [5,6]. Existing object detection approaches in optical remote-sensing imagery can be
divided into traditional and deep-learning-based object-detection approaches. Traditional
object detection methods usually begin with the generation of regions of interest (ROIs)
accompanied by implementations of imagery-pixel-based clustering and object detection
using traditional handcrafted image features.

With the rise of deep convolutional neural networks (CNNs), a series of deep-learning-
based approaches have emerged to address the problems of object detection in HSRIs
that also achieved remarkable achievements. These existing deep-learning-based object
detection methods can mainly be categorized into one- and two-stage object-detection
methods. Two-stage object-detection approaches usually start with decomposing the input
imagery into a set of object region proposals and then iteratively and optimally selecting the
most contributing region proposals as the preudoinstance-level labels. Lastly, the selected
object region proposals with the most contributions are fed into training the detectors for
object category prediction and location estimation.

Among two-stage detection approaches, faster R-CNN [7] can achieve outstanding
performance in HSRI object detection, taking advantage of the strength of CNNs to learn
powerful features with high discriminative ability from remote-sensing imagery. The major
innovation of faster R-CNN is introducing region proposal networks (RPNs) to extract
ROIs, which ensures the highly efficient operation of a uniform deep-learning-based object
detection framework. Although the above approach has achieved impressive detection
results, its execution is always slow for some practical HSRI-based engineering applications.
Different from two-stage approaches, the implementation of a one-stage approach can be
regarded as a single regression process to analyze the relations of the pixel values of the
input imagery with the set of neighborhoods and their variations, including object locations
and the corresponding category information. A one-stage object detection method generally
treats detection tasks as end-to-end regression problems of object location and category
information, and realizes bounding-box regression and category prediction by learning the
network models. This kind of detection approaches can achieve higher detection speed, but
they always have lower detection accuracy than that of two-stage object detection methods.

So far, most object detection explorations in remote-sensing images have been in-
spired by object detection in natural images [8,9]. Compared with natural images, HSRIs
generally have higher appearance ambiguity among the same or different categories of
geospatial objects, and more complexity and diversity on background information and
spatial distribution, as shown in Figure 1. In addition, HSRIs have multiscale implicitly
structured characteristics that consist of pixel clustering within the corresponding neigh-
borhoods into the object parts; then these series of pixel clusters are further grouped into
the objects and spatial distributions of different categories of geospatial objects in HSRIs.
Therefore, object detection is still a challenging task for several applications in the field of
remote-sensing imagery.
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Figure 1. Appearance ambiguities among multiclass remote-sensing objects. Ambiguity between the
object classes of (a) bridges and roads, (b) ground track fields and soccer fields, (c) basketball and
tennis courts, and (d) ships and large vehicles.

To tackle these challenges, in this paper, we present a novel hybrid attention-driven
multistream hierarchical graph embedding network (HA-MHGEN) that investigates by
utilizing hierarchical spatial relations with contextual semantic relations to improve remote-
sensing object-detection performance. Specifically, we first utilized the powerful general-
ization capacity of a region proposal network (RPN) to generate a set of region proposals;
this operation was equipped with a similar region feature encoding network to that of the
advanced faster R-CNN framework. Then, the hierarchical spatial graph construction mod-
ule is presented to model inherent inter- and intra-object spatial relations across multiscale
feature maps. A semantic graph construction module is also employed to characterize
implicit and diverse semantic relations among object category labels in which every graph
node could be regarded as an object category. The connectivity of each pair of semantic
graph nodes relies on the discrimination of correlations between object category labels. A
self-attention-driven hierarchical graph convolutional network was designed for capturing
rich inter- and intra-object contextual spatial relations among across multiscale feature
maps that are achieved from the input images via a pretrained backbone model. Further-
more, a semantic GCN operation is exploited to derive implicit global semantic relations
among the category labels. Subsequently, a novel cross-attention-driven semantic and
spatial fusion module is investigated to explore the complementarity between the learned
spatial and semantic features to utilize cross-attention to guide them between the spatial
and semantic modalities; it also enhances the discrimination ability of the fused features
to further improve object-detection performance. The main contributions of our work are
summarized as follows.

(1) We developed a hierarchical graph construction module to effectively model
multiscale spatial relation graphs that were implemented on the pre-extracted region
proposals of multiscale feature maps. Moreover, a category semantic graph construction
model is presented to characterize semantic relations among object category labels. These
two kinds of graph representations are then fed into the proposed HA-MHGEN, which
further enhances their representative and discriminative capacity.

(2) We propose a self-attention-driven hierarchical graph embedding network (SA-
HGEN) that enables capturing comprehensive intra- and interobject spatial and semantic
relations. The introduction of self-attention can promote SA-HGEN to adaptively focus on
more effective and important inter- and intra-object correlations across spatial and semantic
features, respectively. This series of derived spatial and semantic relation features are
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guided by the self-attention mechanism, providing higher discrimination for distinguishing
subtle differences between location-variable and complicated remote-sensing objects.

(3) To explore the complementarity between learned spatial and semantic features to
further enhance their discriminative ability for object detection, a novel cross-attention-
driven fusion module was designed for spatial and semantic graph feature fusion. This
mainly adopts the multihead attention mechanism to guide one graph modality to another,
which enables learning the optimal associations between semantic and spatial graph fea-
tures, and endows the fused features with more powerful discriminative ability, improving
object-detection performance.

Extensive experimental results on three benchmark datasets demonstrate the effective-
ness and superiority of our proposed HA-MHGEN framework. The remainder of this paper
is organized as follows. In Section 2, we briefly review several related works regarding
multiclass geospatial object detection in HRSIs, and introduce the attention mechanism and
graph convolutional networks (GCNs). Then, we present the details of HA-MHGEN in
Section 3. In Section 4, we compare HA-MHGEN with several state-of-the-art approaches
on three public benchmarks to indicate the effectiveness of the proposed method. In
Section 5, we provide a brief conclusion.

2. Related Work

As a fundamental and crucial part of HSRI analysis and processing, object detection
has gained increasing attention, and many object-detection approaches have been explored
in recent years. According to the manner of feature extraction and representation, these
existing methods can be categorized into traditional handcrafted-based and deep-learning-
based methods. In this section, we briefly review previous object-detection approaches in
HSRIs that have had two stages of developments, namely, low-level handcrafted-feature-
based and high-level deep-learning-based detection frameworks. In addition, we introduce
several recent advanced-learning models, including the attention mechanism and graph
convolutional networks (GCNs), and their achievements in the field of object detection
in HSRIs.

2.1. Traditional Handcrafted-Feature-Based Object-Detection Approaches

Many previous works regarding the object-detection problem mainly relied on the
low-level handcrafted features, such as SIFT, HOG, and BOW. For example, Li et al. [10] pro-
posed scale-orientation SIFT-based restriction criteria to solve feature-matching problems
between different remote-sensing images. Sirmacek et al. [11] combined SIFT features and
graph theory for building detection in remote-sensing imagery. SIFT was first adapted for
detecting possible building regions under different imaging conditions, and each detected
keypoint of the building regions could be regarded as the vertex of a graph. Then, building
detection results could be achieved by analyzing the connection relations of keypoint-based
graphs. Tao et al. [12] represented an airport by using a series of scale-invariant feature
transform (SIFT) keypoints, detecting it through an improved SIFT-based matching strategy;
object-detection results were achieved by using prior knowledge to select the most possible
candidate object regions. The HOG feature descriptor that enables to effectively extract
edge or local shape information has also been widely investigated for object detection.
For example, Dalal et al. [13] first proposed a HOG that represented the objects by using
the distributions of gradient intensities and orientations in spatially distributed object
regions. Xiao et al. [14] fused orientation normalization, feature space mapping, and an
elliptic Fourier transformation to obtain the rotational invariance of HOG; then, derived
combination-based HOG features were fed into the detector for remote-sensing object
detection. Cheng et al. [15] presented a detection framework called the collection of part
detectors (COPD) that adopted the feature pyramid strategy for extracting multilevel HOG
features for detection tasks. The BoW model is another famous handcrafted-based feature
descriptor for object detection. The BoW model regards every scene as the aggregation
of a series of unsorted regions that contain parts of the information of each category [16].
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The BoW descriptor and several of its variants have also been widely explored for remote-
sensing object detection. For example, Meynberg et al. [17] utilized the BoW model with
two alternative local features encoded as improved Fisher vectors for object detection in
remote-sensing imagery. Sun et al. [18] utilized a sliding window for searching for object
locations, and extracted each object feature representation by using the spare spatial coding
BoW (SSCBoW). Then, the set of SSCBOW-based features were incorporated with a linear
support vector machine (SVM) for object detection in remote-sensing imagery. Moreover,
several other types of handcrafted-based texture features were proposed for detection
tasks [19]. Although these existing handcrafted-based features have achieved impressive
performance for several specific object-detection tasks, there still exist certain limitations
for object detection in HSRIs, as they lack the capability to capture high-level semantic
information that is required to distinguish multiple categories of objects, especially in
situations when visual recognition tasks are more challenging.

2.2. Deep-Learning-Based Object-Detection Approaches

With the rapid development and remarkable achievements of deep-learning technol-
ogy, deep-learning-based object-detection approaches are receiving increasing attention.
In recent years, many advanced deep-learning-based object-detection approaches have
been developed in the field of HSRIs, and the most famous deep learning technology is the
convolutional neural network (CNN) model. Compared traditional handcrafted features
that are dependent on abundant human ingenuity, features of CNN models are directly
extracted from the pixel values of images by using a neural network. Furthermore, the
deep architecture of a CNN enables extracting more powerful features and capturing more
abstract characteristics, which significantly improves object detection in HSRIs [20,21].
Essentially, these state-of-the-art object-detection approaches are mainly divided into two
categories, two- and one-stage detection approaches. The former detection approaches
always divide their executions into two stages, the region proposal module and classifica-
tion. The latter type of detection methods exploit the implementation of object detection
as an end-to-end procedure that aims to simultaneously predict the bounding box, object
confidence, and probability of the corresponding object category.

For object-detection algorithms based on the two-stage strategy, Han et al. [22] pro-
posed a transfer-learning detection framework based on faster-RCNN for detecting multiple
categories of geospatial objects in HSRIs that mainly utilized a pretrained mechanism to
boost the efficiency of different traits by transfer learning from the natural-imagery domain
to the HSRI domain. Cheng et al. [23] presented an effective object-detection framework
that imposed a a rotation-invariant regularizer and a Fisher discrimination regularizer to
train CNN-based models. By combining these two regularizers to optimally learn the whole
network, learning features both had rotation-invariant characteristics and constrained the
CNN-based features to have a small within-class scatter, but large between-class sepa-
ration. Li et al. [24] developed a uniform CNN model-based detection method that was
incorporated with a region proposal network (RPN) and a local-contextual feature network.
Then, a dual-channel feature fusion subnetwork was proposed for tackling the problem
of the appearance ambiguity of multiple categories of geospatial objects. Deng et al. [25]
derived a novel CNN-based feature descriptor by adjusting the concatenated rectified
linear unit (ReLU) and the inception subnetwork. Then, a multiscale object region proposal
network was first adopted for possible object region generation from some intermediate
layers, and an object-detection layer followed by using a set of aggregated learning features.
For object-detection algorithms based on the one-stage strategy, Chen et al. [26] utilized
the strategy of transfer learning, a single deep CNN-based model, and limited labeled
training images for carrying out tasks of airplane detection in an end-to-end trainable way.
Wang et al. [27] developed a novel one-stage detection framework called the full-scale
object-detection network (FSoD-Net) whose architecture was composed of a multiscale
enhancement network backbone and scale-invariant regression layers (SIRLs) in a cascade
way. Zhang et al. [28] presented a semantic-context-aware network (SCANet) model that
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could execute multiscale geospatial object detection by fusing learned multiscale feature
representations and completely semantic context information. Kang et al. [29] developed a
detector on the basis of widely used proposal-free detection framework YOLOv2 with a
reweighted module that reassigned weights for the learning series of deep features with
the use of corresponding support images. Wang et al. [30] presented a uniform detection
method called the feature-merged single-shot detection (FMSSD) framework that exploited
the context information aggregation of multiscale feature maps to extract complete features
with high discriminative ability to improve object detection. Chen et al. [31] proposed
a refined single-stage detector that adopted an enhanced feature extraction network by
combining it with a bidirectional residual feature pyramid network and a multiscale fea-
ture fusion module in order to further boost remote-sensing object-detection performance.
Although these detection approaches are widely applied in the HSRIs and can achieve
impressive results, there are still several problems that are induced by shooting angles,
objection distribution, and imaging range, and they also hardly satisfy the increasing
demands of object-detection tasks in HSRIs.

2.3. Attention-Mechanism-Based Object-Detection Approaches

Attention mechanism-based approaches are gaining increasing attention to further
explore object detection in HSRIs. The focus was originally on machine translation to
automatically select the most relevant portions of a source sentence and predict correspond-
ing targeted words. For some computer visual tasks, such as classification [32], change
detection [33], and object detection [34], an attention mechanism is generally designed to
select important weights in the learned feature maps and strengthen feature description
by focusing on more important information. Introducing the attention mechanism into a
detection framework significantly boosts the accuracy and efficiency of object detection
in HSRIs. In the field of remote sensing, widely applied attention models are mainly the
spatial-attention, channel-attention, and spatial–channel hybrid attention models. For ex-
ample, Chen et al. [35] proposed a novel detector by integrating multiscale information with
the spatial- and channel-attention models, fusing features. The two former attention mech-
anisms enable effectively improving the detection performance of HSRIs. Yang et al. [36]
proposed the SCRDet detector for small-, cluttered-, and rotated-object detection. In its
implementation, SCRDet jointly learnt two attention models to suppress noise and focus on
extracting more object region features, which resulted in great detection performance for
small and densely arranged objects in remote-sensing imagery. Wang et al. [37] developed
an end-to-end multiscale visual attention network (MS-VAN) that adopted a skip-connected
encoder–decoder model to learn attention weights at different scales and then extract multi-
scale features for object detection. Lu et al. [38] proposed an novel one-stage attention-based
detector, attention and feature fusion SSD, which first designed a multilayer fusion module
in order to explore complete semantic information and extract multiscale features. Then, a
dual-path attention model was introduced into the learning process of the whole detection
framework to overcome problems induced by background noise and ensure the extraction
of key features for object detection.

2.4. Graph Convolutional Networks in Remote-Sensing Vision Applications

The operations of CNN are generally executed on regular structured data regions that
lack the ability to explore the implicitly structural characteristics underlying the data. To ad-
dress this drawback, graph convolutional networks (GCNs) have been proposed that enable
directly carrying out graph convolutions on graph nodes and their spatial neighbors. As an
extension of traditional CNNs, GCNs have been extensively investigated in various visual
object tasks. For instance, Yang et al. [39] proposed the DSGCN method that first utilized a
remarkable two-stage mask-RCNN [40] detection framework to iteratively detect and select
high-quality proposals, and construct subgraphs. Then, a GCN-D network was exploited
for cluster detection. Shi et al. [41] developed an adaptive GCN that could learn the multiple
topological relations of graph-structured data across different GCN layers in an end-to-end
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manner; then, the set of learned graph-based features could effectively enhance the accuracy
of active recognition. He et al. [42] proposed a novel object-detection framework consisting
of a GCN-based relation inferring module and a self-adopted attention module that could
enhance the discriminative ability of object features by aggregating the geometric and
visual relationships, and efficiently improve object-detection performance. Due to the pow-
erful feature representation capacity of GCNs, they are also widely applied in the field of
remote sensing. Compared with natural images, remote-sensing imagery has more complex
content, especially HSRIs, for which it is hard to mine the intrinsic relationships hidden in
diverse imagery information. In this situation, thanks to the ability of GCNs to effectively
capture spatial relations from complex contextual patterns from HSRIs and the performance
for some visual tasks in HSRIs was improved. For instance, Chaudhuri et al. [43] presented
a Siamese graph convolutional network (SGCN) for remote-sensing image retrieval tasks
that utilized a graph correlation-based metric to measure the similarity between a pair
of remote images, producing satisfactory results. Khan et al. [44] proposed a multilabel
remote-sensing scene-recognition method based on GCNs that first mainly utilized a region
adjacency graph (RAG) to obtain a series of discriminative graph-based features from
remote-sensing images, explore more complete semantic information for remote-sensing
scenes, and enhance performance for multicategory scene recognition. Although GCNs
have had remarkable success in some remote-sensing applications, there still exist potential
limitations for HSRI-based visual tasks, such as object detection. The main reason is that
these approaches generally ignore exploration for diverse-type and multiple-scale graph
relations in HSRIs, which cannot further improve object-detection performance.

3. Proposed Method

The goal of the proposed HA-MHGEN is to enhance the performance of multi-
class geospatial object detection by exploring abundant semantic and spatial information.
Figure 2 depicts the whole scheme of the HA-MHGEN framework. A hierarchical spatial
graph model and a semantic graph model were constructed. The former graph charac-
terizes multiscale spatial relation features on the basis of proposed regions on multiscale
feature maps that are acquired from a backbone network in the faster R-CNN architec-
ture. The latter graph was adopted for global semantic correlation representation among
object category labels. After that, the series of constructed spatial graphs are imported
into self-attention-driven multistream embedding GCNs for intra- and interobject spatial
contextual relation discrimination and reasoning. The constructed semantic graphs are
also fed into another GCN for implicitly intrinsic semantic relation learning. Then, the two
kinds of deduced relation features follow a novel cross-attention module for learning the
association between spatial and semantic information that provides complementarity to
them in order to further enhance the discrimination ability of the fused features. Lastly, the
learned features are fed into the regression and classification layers for multiclass remote-
sensing object detection. The design and implementation details of the subnetworks of our
proposed HA-MHGEN are introduced in the following subsections.
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Figure 2. The whole architecture of the proposed HA-MHGEN for remote-sensing object detection.
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3.1. Hierarchical Spatial Graph and Semantic Graph Construction

(1) Hierarchical Spatial Graph Construction
Given an arbitrary input image I = {I1, I2, . . . , IN}, we first employed a region

proposal network to generate a series of candidate object proposal regions R = {r(c)i ,
i = 1, 2, 3, . . . , N, c = 1, 2, 3.} with various sizes. i denotes the number of proposals in each
channel feature map, and c is the channel number of feature maps. Next, we adopted
RoIAlign to extract the visual features of the generated object proposal on multiscale fea-
ture maps, which aims to project the acquired varying-size visual features into fixed-size
features. On the basis of these postprocessed visual features crossing multiscale feature
maps with fixed-dimensional representations, we first constructed a hierarchical graph
G(V , E) to represent the contextual intra- and interobject spatial and appearance relations.
The layer number of our proposed hierarchical graph was empirically set to c = 3. Then,
we could build the hierarchical graph from the two following perspectives:

(a) Nodes: Let X(c) = (x1
c , x2

c · · · x
p
nc) denote the set of post-processed proposal features

by the RoIAlign algorithm, where xp
c ∈ RN , p is the number of object proposal feature in

the c-th feature map, N is the feature dimension. Specifically, each proposal region feature
corresponded to a fixed-form feature vector xp

nc = [ox, oy, w, h], where (ox, oy) denotes the
spatial coordinate of the top-left point of each proposal region, h/w is the aspect ratio of
each proposal region. The nodes of the three-layer hierarchical graph G(V , E) can thus be
defined as V = {V(c), c = 1, 2, 3.}, where V(c) denotes the collection of graph nodes at the
c-th feature map, and each node v(p)

c ∈ V(c) corresponds to a pre-extracted object proposal
that is assigned postprocessed CNN-based features xp

c .
(b) Edges: The spatially connected relations of each pair of graph nodes among

different feature maps are controlled by edge term E = {E(w), E(b)}, where E(w) represents
the edges within each feature channel, and E(w) denotes the edges that cross different
channels of feature maps. In each feature layer, each edge ew

ij ∈ Ew connects nodes vw
i

and vw
j if they either are neighbors or have the same adjacency nodes. Among different

feature layers, each edge ea
ij ∈ Ea denotes the spatially connected relation between nodes

va
i and va

j that are acquired from different layers of feature maps. The connections of the
pairs of graph nodes are governed by edge weights that indicate the spatial relations of
object region proposals. The adjacency matrix that consists of the calculated inter- and
intrafeature layer edge weights can be constructed with the following formulation:

Aspa
ij = exp

(
−
∥∥xi − xj

∥∥
2

δ

)
, (1)

where Aspa
ij denotes the adjacency matrix of hierarchical graph G, and δ is a hyperparameter

that was empirically set to δ = {0.2, 0.8, 0.4} in the following experimental verification on
three datasets.

(2) Semantic Graph Construction The exploitation of semantic graphs provides an
effective way of capturing statistical correlations among pairs of object category labels.

(a) Nodes: To construct semantic graph Gsem(Vsem, Esem), we first adopted Word2Vec [45]
to transform each object label into the corresponding semantic feature vector. The
collection of these word embeddings of the object category labels can be denoted
as S(i) = (s1, s2 · · · sk, i = 1, 2, . . . , k), where si ∈ RN . We regarded each feature vector
of the semantic embedding as a graph node, and the node collection is represented as
vi

sem = (s1, s2 · · · sp, i = 1, 2, . . . , k), where vi
sem ∈ V k.

(b) Edges: The collected semantic relations between pairs of object category labels rely
on their co-occurence relations that are leveraged to depict the likelihood of each pair of
object categories appearing simultaneously in the same image. In this situation, a semantic
edge is denoted as Esem{vi

sem, vj
sem} = esem{P(vi

sem, vj
sem)}, which is acquired by calculating

the conditional probability P(vi
sem, vj

sem) that labels i and j would occur together in the same
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image. For acquiring adjacency matrix Asem
ij , we first computed the number of occurrences

of object category label pairs in the dataset in order to obtain occurrence matrix M ∈ RN×N ,
where N is the number of object categories, and Mij denotes the number of times that labels
i and j occur together. Then, we calculated the number of times that a single label i occurs
in dataset Qi. After that, the formulation of conditional probability of label pairs is denoted
by Pi→j = Mij/Qi, where Pi→j and indicates the probability that label i occurs when label j
does, and Pi→j is not equal to Pj→i. On the basis of the conditional probability of the label
pairs, we could obtain semantic adjacency matrix Asem

ij as follows:

Asem
ij =

{
1, if Pi→j ≥ η

0, otherwise
; (2)

where η is a threshold that is used to filter out noisy edges if a pair of category labels
never co-occur in the dataset. Threshold η was empirically set to δ = {0.4, 0.6, 0.4} in the
following experiments on the three datasets.

3.2. Hierarchical Spatial and Semantic Relation Learning

With hierarchical spatial matrix Aspa
ij and semantic adjacency matrix Asem

ij , constructed
graph-structured feature matrices are deeply investigated by the self-attention driven GCN
network to completely learn semantic and spatial relations. For capturing comprehensive
spatial and semantic relations, we first constructed the GCN on the constructed spatial
and semantic graphs in order to acquire the set of basic spatial and semantic relation
graph units.

(1) Spatial Relation Learning Module
Generally, the operation of a GCN can be regarded as the generation of the GCN to

the graph domain, which could effectively enhance relation representation among derived
graph-structured features. In this paper, we applied a spectral GCN to relation learning.
For the given graph-structured feature vector xp

c ∈ RN , the spectral graph convolution was
equivalent to the product of xc and filter kernel gθ , θ ∈ RN [46]. The matrix-vector form of
GCN operation can thus be formulated as follows:

xc ∗ gθ = Gθ(L)xc; (3)

where Gθ denotes a diagonal matrix whose elements are the parameterized eigenvalues via
function θ, L is the normalized Laplacian that can be denoted as L = IN − D−1/2 AD−1/2,
A is the corresponding adjacency matrix, and D is the corresponding degree matrix. Accord-
ing to the Chebyshev expansion of the graph Laplacian [47], the first-order approximation
of the above formulation can be defined as follows:

xc ∗ gθ ≈ θ
(

IN + D−1/2 AD−1/2
)

xc; (4)

Then, the generalized operation of the matrix form on each graph convolutional layer
can be formulated as follows.

Xc
l+1 = AXc

lW l ; (5)

where Xc
l+1 and Xc

l denote the input in the l-th layer of GCN and the output in the l + 1-th
layer of GCN, respectively, and W l represents the learned weight matrix. After that, the
operation of each GCN layer can be expressed as a nonlinear function:

Xc
l+1 = LeakyReLU

(
AXc

lW l
)

; (6)

where LeakyReLU is the nonlinear operation with the negative input slope being equal
to 0.01, which was adopted to normalize the final hierarchical spatial relation. For the
constructed spatial adjacency matrix in each channel of feature map Aspa

ij(c), where c is the
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channel number of feature map with c = 1, 2, 3, graph propagation in the multiple-layer
GCN for the deduction of corresponding spatial relations can be derived as follows:

Xc(spa)
l+1 = LeakyReLU

(
Aspa

ij(c)Xc(spa)
lWc(spa)

l
)

; (7)

where Xc(spa)
l and Xc(spa)

l+1 denote the input and output of each spatial graph convo-
lutional layer, respectively, and Wc(spa)

l is the corresponding learned spatial relation
weight matrix.

Similar to spatial graph relation propagation by using a GCN, we performed the GCN
operation on the constructed semantic graph, and took semantic adjacency matrix Asem

ij
as the input; the derived semantic graph relation could be achieved with the following
multilayer GCN propagation:

Xc(sem)
l+1 = LeakyReLU

(
Asem

ij(c)Xc(sem)
lWc(sem)

l
)

; (8)

where Xc(sem)
l and Xc(sem)

l+1 denote the input and output of each spatial graph convo-
lutional layer, respectively, and Wc(sem)

l is the corresponding learned spatial relation
weight matrix.

(2) Self-Attention-Driven Spatial and Semantic Relation Module
To acquire the hierarchical spatial relationships across different feature scales (feather

channels) and the contextual semantic relations, we first utilized the self-attention model [48]
to capture the explicit relations between multiscale spatial graph feature maps. Then, this
self-attention mechanism was also applied in order to deduce contextual semantic graph
features. Such a self-attention model not only effectively captures explicit spatial rela-
tionships across multiple spatial scales, but also exploits implicitly contextual semantic
relations between different kinds of remote-sensing objects. The internal operation of the
self-attention mechanism is shown in Figure 3.

(a) Self-Attention-Driven Hierarchical Spatial Relation Learning
According to the obtained spatial relation features from the GCN, the multiscale spatial

feature concatenation can be denoted as Xs
c(spa) ∈ RN×M×s. In the operation of the self-

attention module, we first squeezed the spatial feature into a graph node descriptor Hs
spa ∈

RN×M×1 along the node feature dimension, which was implemented by performing a
standard 1D convolutional operation and the sigmoid activation function; this propagation
could be formulated as follows:

Hs
spa = Sigmoid

(
Conv1×1

(
Xs

c(spa)

))
(9)

where Hs
spa denotes the squeezed node features. Then, spatial attention weight matrix

As
spa ∈ RN×M×1 could be acquired by performing normalization along the feature channel

dimension to ensure that the attention weights sum up to 1; this operation can be defined
as follows:

As
spa =

Hs
spa

∑c
s=1 Hs

spa
(10)

where s ∈ [1, C] are the indices of feature channel dimension; we empirically set C = 3
as the number of the spatial feature channels (or feature spatial scale). We then adopted
element-wise multiplication between the derived attention weight matrix and the spatial
feature vectors in order to obtain attention weighted hierarchical spatial feature vectors
Hs′

spa, which are defined as follows:

Hs′
spa =

3

∑
s=1

Hs
spa ⊗As

spa (11)
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where ⊗ denotes the Hadamard product. By using the self-attention mechanism on the
multiscale spatial graph learning process, we allowed the self-attention-driven GCN to
deduce the complete intra- and interobject channel-wise hierarchical spatial relations.

Figure 3. The internal operation of the self-attention mechanism for hierarchical spatial and contextual
semantic relation learning.

(b) Self-Attention-Driven Contextual Semantic Relation Learning
Similar to the hierarchical spatial graph learning process, we could also capture the

contextual semantic relations between different kinds of objects. Specifically, for semantic
concatenation Xs

c(sem)
∈ RN×M×s, we also squeezed the semantic features into a graph

node descriptor, and then executed a standard 1D convolutional operation and the sigmoid
activation function in order to obtain the semantic graph node descriptor as follows:

Hs
sem = Sigmoid

(
Conv1×1

(
Xs

c(sem)

))
(12)

where Hs
sem denotes the squeezed node features. Afterwards, the semantic attention weight

matrix As
sem ∈ RN×M×1 could be acquired by performing normalization along the feature

channel dimension to ensure that the attention weights sum up to 1; this operation can be
defined as follows:

As
sem =

Hs
sem

∑c
s=1 Hs

sem
(13)

Then, we could also obtain attention weighted contextual vectors with the follow-
ing operation:

Hs′
sem =

3

∑
s=1

Hs
sem ⊗As

sem (14)

where Hs′
sem are the contextual semantic feature vectors.

(3) Cross-Attention-Driven Spatial and Semantic Relation Learning
To further explore the interactions of inter- and intraobject spatial and semantic re-

lations, we adopted the multihead attention module to learn the cross-relation feature
representations between the spatial and semantic graph relation branches, as shown in
Figure 4.
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Figure 4. Architecture of the multihead attention mechanism for cross-modality relation fusion.

(a) Multihead attention module
The operation of the multihead attention mechanism [49] is mapping a series of queries

and key-value pairs to the weighted sum form of inputted values. Specifically, for given
features E, we first adopted the linear projection for computing three embedded feature
terms in the i-th head; this operation can be defined as the following formulation:

Qi = EWQ
i , Ki = EWK

i , Vi = EWV
i ; (15)

where queries Qi, keys Ki and value Qi denote the three input terms with dimensions
dk, dk, dv, respectively. WQ

i , WK
i , WV

i ∈ Rd×d are trainable parameter matrices. After that,
we calculated the i-th attention weight matrix Ai ∈ R(N+1)×(N+1) of the corresponding
input features as follows:

Ai = softmax

(
QiK>i√

dk

)
Vi; (16)

where > denotes the matrix transpose operation. On this basis, the multihead attention
matrix could be acquired by first performing an attention function on multiple linear
projections of the queries, keys, and values in a parallel way. Then, these values are
concatenated and once again projected. The calculated operation of the multihead attention
can be defined as follows:

MultiHead (Q, K, V) = Concat (A1, . . . , Ah)W
o; (17)

where Wo denotes the weight matrix in linear output function of the multihead attention
module, and h is the number of attention heads.

(b) Spatial and Semantic Relation Fusion with the Multihead Attention Module
Due to the advantage of the multihead attention model for mining interactions between

cross-modal information, we adopted it for spatial and semantic relation fusion. Specifically,
for the derived spatial relation feature concatenation XSpa and semantic relation feature
concatenation XSem, we first defined the parallel attention layers as l. Then, we utilized
linear projections to transform each spatial and semantic feature into the corresponding
multihead query, key, and value as follows:

Qspa
i = Xspa

i WQ
i , Ksem

i = Xsem
i WK

i , Vsem
i = Xsem

i WV
i ; (18)

where XSpa ∈ RM× N
h , XSem ∈ RM× N

h are divided by spatial feature XSpa and semantic
feature XSem in the feature channel direction, respectively. WQ

i ∈ R d
l ×

dk
h , WK

i ∈ R d
l ×

dk
h ,
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WV
i ∈ R d

l ×
dv
h denote the projection weight matrix. We empirically set dk = dv = d for

each of these weight matrices, and i ∈ {1, · · · , l} is the number of the attention layers.
Then, the output of the i-th attention layer can be defined as follows:

Headi(Q
spa
i , Ksem

i , Vsem
i ) = softmax

(
QSpa

i
(
KSem

i
)>

√
dk/l

)
VSem

i

= softmax

(
XSpa

i WQ
i
(
XSem

i WK
i
)>

√
dk/h

)
XSem

i WV
i ;

(19)

After that, intramodality information from spatial and semantic relations can be
obtained with the following formulation:

HSpa→Sem
c = Concat ( Head 1, . . . , Head l)W

O (20)

where WO ∈ Rdv×d denotes the weight matrix in a linear function, and HSpa→Sem
c is the final

intermodality feature representation of the spatial and semantic relations. Similar to the
above cross-modality fusion process from spatial to semantic relation, the transformation
from a semantic into a spatial relation can also be defined as in the following formula:

Qspa
i = Xsem

i WQ
i , Kspa

i = Xspa
i WK

i , Vsem
i = Xspa

i WV
i ; (21)

Headi(Qsem
i , Kspa

i , Vspa
i ) = softmax

QSem
i

(
KSpa

i

)>
√

dk/l

VSpa
i

= softmax

XSem
i WQ

i

(
XSpa

i WK
i

)>
√

dk/h

XSpa
i WV

i ;

(22)

The intramodality information from semantic and spatial relations could thus also be
acquired with the following formulation:

HSem→Spa
c = Concat ( Head 1, . . . , Head l)W

P; (23)

where WP is the corresponding weight matrix in a linear function, and HSem→Spa
c denotes

the final intermodality feature representation of the semantic and spatial relations. Lastly,
the joint feature representation Hcross

c of the spatial and semantic relations can be achieved
with the following formula:

Hcross
c = Conv

(
Concat

(
HSpa→Sem

c , HSem→Spa
c

))
(24)

where Concat denotes the concatenation operation in the feature direction, and Conv is
a standard 1D convolutional operation. Now, we summarize the self-attention-driven
hierarchical spatial relation features, contextual semantic features, and their cross-modality
relation features using a global max-pooling layer that can be defined as follows:

H f = Concat
(

Hs′
spa, Hs′

sem, Hcross
c

)
(25)

where H f denotes the fused relation features of the spatial and semantic relations, and their
intramodality relation features.

3.3. Objective Function of HA-MHGEN

Intrinsically, the proposed HA-MHGEN is a two-stage object-detection approach. We
optimized a novel objective loss function that was specifically designed for multiclass
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geospatial object detection. The objective loss function of HA-MHGEN is composed of
classification loss, localization loss, and margin-based ranking loss. The overall multitask
loss function can be defined as follows:

L = LCls + αLLoc + βLMR (26)

where LCls denotes classification loss, LReg is object localization loss, and LMR is RPN loss.
α and β denote two hyperparameters that can be regarded as the two-weight decaying
coefficients of regularization terms. The main role of these two hyperparameters is to
control the trade-offs of the three regularization terms in the overall multitask loss function
during the learning process.

For the task of object classification, we adopted the cross-entropy loss function to
force the predicted object categories to be aligned with the ground-truth categories; the
classification loss formula is defined as follows:

Lcls =
1

Ncls
∑
n
−yn logHn; (27)

where yn denotes the ground-truth object classification label, N is the number of object
categories, andHn represents the final classification score for each object category that can
be calculated with a softmax function:

Hn =
eHn

f

∑N
n=1 eHn

f
(28)

whereHn is the final classification possibility of object category n, and ∑N
n=1Hn = 1.

For the task of object localization, we utilized smooth L1 loss to penalize misalignments
between the predicted object proposal and ground-truth regions. Smooth L1 loss [50] is
defined as follows:

Smooth L1(x) =

{
0.5x2, if x < 0
|x| − 0.5, otherwise

(29)

where x denotes the difference between the predicted IoU score and the true IoU value
between the predicted object proposal and ground-truth regions. The general process
of object proposal region localization can be regarded as bounding-box regression from
a predicted object box to a nearby ground-truth one, whose formulation can be defined
as follows:

bx =
(
o′x − ox

)
/w, by =

(
o′y − oy

)
/h

bw = log
(
w′/w

)
, bh = log

(
h′/h

) (30)

where bx, by, bw and bh are the set of box regression parameters, where (o′x, o′y) denotes the
spatial coordinate of the top-left point of each predicted proposal region, and h′ and w′ are
the corresponding width and height of the predicted object proposal region, respectively.
(ox, oy) denotes the spatial coordinate of the top-left point of each object ground-truth region,
and w and y are the corresponding width and height of the ground-truth one, respectively.

In addition, we introduce margin-based ranking loss LMR for predicting the similarity
of the pre-extracted region proposals to the ground-truth ones whose formulation is defined
as [51]:

LMR =
P

∑
i=1

{
xi

nc ×max{m+ − si, 0}
+
(
1− xi

nc

)
×max{si −m−, 0}+ ∆i

}

∆i =
P

∑
j=i+1


[

xi
nc = xj

nc

]
×max

{∣∣si − sj
∣∣−m−, 0

}
+
[

xi
nc 6= xj

nc

]
×max

{
m+ −

∣∣si − sj
∣∣, 0
}


(31)
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where xi
nc represents the feature vector of the i-th object proposal region, and P is the

number of pre-extracted object proposal regions in the RPN. si is a classification score that
denotes the foreground probability with regard to the i-th predicted object proposal region.
m+ and m− indicate the upper and lower limits of the desired probabilities, respectively.

4. Experiments

In this section, we first introduce the datasets that were used for the experimental
verifications: DIOR, NWPU VHR-10, and DOTA. Then, we evaluate the performance of the
proposed method on the three public benchmark datasets above and compare our proposed
object-detection method with 11 state-of-the-art object-detection methods to demonstrate
its effectiveness and superiority.

4.1. Datasets and Evaluation Metrics

(1) Dataset Description
DOTA: A multiscale optical remote-sensing dataset that was released by the re-

searchers of Wuhan University (WHU) [52]. This dataset contains 2806 images that were col-
lected from various remote-sensing sensors and platforms, including the Google Earth ser-
vice, and the GF-2 and JL-1 satellites; the dimensions of each image range from 800 × 800
to 4000 × 4000 pixels. The DOTA dataset comprises 188,282 object instances that exhibit
various characteristics regarding scale, orientation, and shape among 15 categories of
geospatial objects. These fully annotated object categories are airplanes, baseball diamonds
(BD), bridges, ships, ground field tracks (GFTs), small vehicles (SVs), large vehicles (LVs),
tennis courts (TCs), basketball courts (BCs), storage tanks (STs), soccer ball fields (SBFs),
roundabouts (RAs), swimming pools (SPs), harbors, and helicopters (HCs). This dataset
was split into three parts, the training, validation, and testing sets; it randomly selected
half of the total images as the training set, one-sixth as the validation set, and one-third as
the testing set.

DIOR: A large-scale publicly available benchmark dataset for remote-sensing object
detection that was published by Northwestern Polytechnic University in 2020 [53] . DIOR
contains 23,463 optical remote-sensing images and 192,472 instances covering 20 object
categories. All images in the dataset were collected from Google Earth; the spatial resolu-
tions ranged from 0.5 to 30 m, and each image was resized to 800 × 800 pixels. The sizes of
object instances in DIOR have a wide range of variations regarding spatial resolutions and
large variability among inter- and intracategory object instances. Its object categories are
airplanes, airports, baseball fields (BFs), basketball courts (BCs), bridges, chimneys, dams,
expressway service areas (ESA), expressway toll stations (ETSs), harbors (HBs), golf courses
(GCs), ground track fields (GTFs), overpasses (OPs), ships, stadiums (STMs), storage tanks
(STs), tennis courts (TCs), train stations (TSs), vehicles, and windmills (WMs). DIOR was
divided into three subsets, namely, the training, validation, and testing sets. To ensure
that the three subsets had similar distributions, we randomly selected 11,725 images as the
trainval set; the training set contained 5862 images, the validation set had 5863 images, and
the remaining 11,738 images were the testing set.

NWPU VHR-10: Another optical remote-sensing object-detection dataset that is a ten-
category geospatial object-detection dataset that was labeled by Northwestern Polytechnic
University in 2014. Its ten object categories are airplanes, ships, storage tanks (STs), baseball
diamonds (BDs), tennis courts (TCs), basketball courts (BCs), ground track field (GTFs),
harbors, bridges, and vehicles. This dataset is consists of multisource and multiresolution
remote-sensing images. The total number of the whole dataset’s images is 800, of which
715 were collected from Google Maps with a spatial resolution range from 0.5 to 2 m, and
the remaining 85 were pan-sharpened color-infrared images with a spatial resolution of
0.08 m that were collected from Vaihingen. Among the 800 images, 650 included at least
one object to be detected. The remaining 150 images were mainly composed of background
information with no object to be detected.
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(2) Evaluation Metrics
To evaluate our proposed detection approach, the average precision (AP) score [54] was

adopted to assess the multiple categories’ object detection in optical remote-sensing imagery.
AP calculation is usually dependent on an assessment indicator called the intersection over
union (IoU), which is used for estimating whether a detected object is correct. The IoU is
the overlap ratio between the predicted bounding boxes and the corresponding ground
truths. The IoU evaluates the degree of coincidence between the bounding box Sgt of the
ground truth and the predicted bounding box Sp on the basis of the Jaccard index. The
formulation of the IoU is defined as follows:

IoU =
area

(
Sp ∩ Sgt

)
area

(
Sp ∪ Sgt

) ; (32)

where area
(
Sp ∩ Sgt

)
denotes the intersectional area between predicted bounding box Sp

and ground truth Sgt, area
(
Sp ∪ Sgt

)
is the union area of Sp and Sgt. During the imple-

mentation of the training procedure, the selection of correctly detected results relies on the
given threshold of the IoU. If the IoU value is larger than 0.5, the predicted bounding boxes
are true positives (TPs), while predicted bounding boxes with an IoU value smaller than
0.5 are false positives (FPs). Detection precision is thus defined as follows:

Precision =
TP

TP + FP
; (33)

where TP indicates the number of correctly detected objects, and FP represents the number
of objects in which the predicted results were not matched with any bounding boxes of
the ground truths. To assess the performance of the detection model, the percentage of the
total true objects correctly detected by the detection model is also needed. Therefore, recall
is defined as follows:

Recall =
TP

TP + FN
; (34)

where FN represents the number of objects that were not detected.

4.2. Implementation Details and Parameter Analysis

In the experiment, we selected the classical faster R-CNN as the baseline model, which
was integrated with ResNet-101 [55], pretrained on ImageNet [56] for a series of basic
feature extraction. To construct the spatial relation graph, the input number of object region
proposals that were generated on each image was set to 256, and the IoU threshold of the
nonmaximal suppression (NMS) operation was set to 0.7 in order to remove redundant
bounding boxes. Then, the ROI align operation was utilized to boost region-proposal-
based feature processing. For multicategory object label representation in the branch of
semantic relation network, Word2Vec with 300 dimensions was adopted for semantic
label feature embedding. During the training process, we utilized the stochastic gradient
descent (SGD) algorithm to optimize the parameters of the proposed HA-MHGEN, and
after each decay step, it was divided by 10. For the DOTA, DIOR, and NWPU VHR-10
datasets, the overall iterations were all set to 150k. The momentum of SGD was set to
0.9 with weight decay of 0.0005, and the batch size was fixed to 16. The dropout rate
was set with a probability of 0.3, which was employed to prevent the overfitting problem.
In the stage of cross-attention-driven spatial and semantic fusion, the number of heads
in the multihead attention module was set to 4. The upper and lower limits of margin
probabilities m+ and m− in the loss function were lastly set to 0.7 and 0.3, respectively.
The proposed HA-MHGEN was implemented on the Pytorch 1.4.0 framework with two
GeForce GTX1080ti GPUs.

In the training process, learning rate η, and the two hyperparameters of regularization
α and β played a more important role in optimizing HA-MHGEN. The combinations of the
above three parameters can effectively result in the final detection performance.
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During the training process of our proposed MA-MHGEN model, learning rate η
and the two hype-parameters α and β in the overall loss function were three important
parameters that could affect object-detection performance. For different datasets, we set
different optimal parameter combinations. Then, we first investigated how object detection
is affected by different parameter combinations on the validation sets of the three datasets.
In our work, the initial learning rates were set to η = {0.0005, 0.001}, which were reduced
by multiplying them by 0.1 every 50 epochs. Training stopped after the final epochs or once
there was no improvement on the corresponding validation sets. The two hyperparameters
were set to α = {0.01, 0.02, 0.03, 0.04, 0.05} and β = {0.01, 0.02, 0.03, 0.04, 0.05}. Figure 5
shows the corresponding training and validation loss curves of the HA-MHGEN on the
aforementioned three datasets, and Figure 6 indicates the object results that are measured in
terms of mean AP (mAP) under different parameter settings on the three datasets. Figure 6
shows that the highest detection performance on the DOTA validation set was 78.32%,
which was obtained with η = 0.001, α = 0.05, and β = 0.01. Then, the best detection
result on the DIOR validation set was 74.72%, which was acquired from the parameter
combination of η = 0.0005, α = 0.04, and β = 0.02. The greatest detection performance
on NWPU VHR-10 was 93.39%, which was achieved with the combination of η = 0.001,
α = 0.02, and β = 0.04. On the basis of the above experimental verifications, we empirically
adopted the above set of optimal parameter combinations for the following experiments on
the three datasets.

Figure 5. Training errors and validation errors using the proposed HA-MHGEN on three public
datasets. (a) Training errors on three public datasets. (b) Validation errors on three public datasets.

In our work, relation learning and discrimination were dependent on the spatial and
semantic graph relation matrices, and the connection between each pair of graph nodes
was governed by an edge weight that reflected their relationship. In a relation learning
process, stronger relationships of spatial or semantic graph nodes can deduce better relation
feature representation, and can further improve object-detection performance. Then, we
also investigated how object detection was affected by spatial and semantic graph edge
parameters δ and µ. We also verified their relation on the validation set of the three
datasets above. Figure 7 reports the object results based on the mAP under different
parameter settings on the three datasets. Figure 7 shows that these two hyperparameters
moderately affected the object-detection results, and the best results were obtained with
δ = 0.2, µ = 0.4 on DOTA, δ = 0.8, µ = 0.6 on DIOR, and δ = 0.4, µ = 0.4 on NWPU
VHR-10. Consequently, we empirically set the three parameter combinations above for the
following experimental verifications.
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(a) (b) (c)

(d) (e) (f)

78.32%

72.57%

72.63%
92.74%

74.72%

93.39%

Figure 6. Multiclass object-detection results in terms of mAP values over all object categories on
three public datasets under different parameter combinations. (a) Learning rate η = 0.0005 on DOTA.
(b) Learning rate η = 0.001 on DOTA. (c) Learning rate η = 0.0005 on DIOR. (d) Learning rate
η = 0.001 on DIOR. (e) Learning rate η = 0.0005 on NWPU VHR-10. (f) Learning rate η = 0.001 on
NWPU VHR-10.

(a) (b) (c)

74.72%

78.32%

93.39%

Figure 7. Selection of parameters δ and µ based on object-detection performance in terms of mAP
values over all object categories on three public datasetS under different parameter combinations.
(a) Selection of parameters δ and µ on DOTA. (b) Selection of parameters δ and µ on DIOR. (c) Selection
of parameters δ and µ on NWPU VHR-10.

During the implementation of MA-MHGEN, the layer number of the hierarchical
graph was also a critical parameter to be considered. Therefore, we also analyzed its
influence on object-detection performance using the validation sets of the above datasets.
Keeping other settings unchanged, the number of hierarchical graph layers varied in the
set of {1, 8}; the overall mAP values that were obtained from the three datasets are shown
in Figure 8. mAP was decreased if the number of hierarchical graph layers was higher
than 3. The best performance of MA-MGGEN on the three datasets was also under the
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condition that the graph layer number was set to 3. Therefore, we empirically set c = 3 in
the following experimental verifications.

Figure 8. Object-detection performance using different hierarchical graph layers on three datasets.

4.3. Comparisons and Analysis Using Different Network Configurations

To investigate the impact of different relation modules explored by HA-MHGEM, we
adjusted various network configurations to examine their detection performance. Five
types of configurations were adopted for experimental comparison and analysis: the spatial
relation module (Spa-Ra), semantic relation module (Sem-Ra), self-attention-driven spatial
relation module (SA-Spa-Ra), self-attention-driven semantic relation module (SA-Sem-Ra),
and the multihead attention driven spatial and semantic relation module (MH-SS-Ra).
Table 1 indicates the detailed quantitative evaluation results in terms of mAP values, which
were achieved by using the above network configurations. For the DOTA dataset, the mAP
values of Spa-Ra and Sem-Ra were boosted by 4.68% and 2.26% compared to the mAP
values of SA-Spa-Ra and SA-Sem-Ra, respectively. This demonstrates the effectiveness of
the self-attention model in improving spatial- and semantic-relation reasoning.

Table 1. Performance of multiclass object detection on the DOTA, DIOR, and NWPU VHR-10 datasets
that was achieved with different configurations of HA-MHGEN in terms of mAP values (%).

HA

-MHGEN

Configuration DOTA DIOR NWPU VHR-10

Spa-Ra Sem-Ra SA-Spa-Ra SA-Sem-Ra MH-SS-Ra mAP mAP mAP

X - - - - 69.34 67.92 86.35
X X - - - 72.13 69.15 89.78
X X X - - 74.02 71.42 90.47
X X X X - 74.39 72.35 91.96
X X X X X 78.32 74.72 93.39

The multihead attention module (MH-SS-Ra) for cross-modality relation fusion and
discrimination achieved 4.3% and 3.93% better mAP values compared to the configurations
of SA-Spa-Ra and SA-Sem-R, respectively. This indicates the superiority of the cross-
relation reasoning using the multihead attention mechanism. For the more challenging
DIOR dataset, MH-SS-Ra also achieved the best overall detection accuracy (74.72%), which
showed improvements of 6.8%, 5.57%, 3.3% and 2.37% compared to the configurations of
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Spa-Ra, Sem-Ra, SA-Spa-Ra, and SA-Sem-Ra, respectively. For NWPU VHR-10, detection
performance using MH-SS-Ra in terms of mAP value was further improved, achieving
7.04%, 3.61%, 2.92%, and 1.41% compared with the configurations of Spa-Ra, Sem-Ra,
SA-Spa-Ra, and SA-Sem-Ra, respectively. These series of comparison results effectively
demonstrate the advantage of hybrid attention for diverse relation discrimination among
hierarchical spatial graphs and contextual semantic graphs, which also further boosts
multiclass object-detection performance in HRSIs.

4.4. Quantitative and Qualitative Comparison and Analyses

To verify that our proposed HA-MHGEN was superior to other state-of-the-art ap-
proaches, we selected several advantageous CNN- and GCN-based object-detection ap-
proaches for quantitative and qualitative comparison and analysis. These comparative
approaches consisted of two-stage object detectors faster R-CNN [7] and FPN [57], one-
stage object detectors Yolo-v3 [58], FMSSD [30], and RetinaNet [59], anchor-free detectors
FCOS [60] and SRAF-Net [61], typical keypoint-based detection methods CornerNet [62]
and CenterNet [63], and representative GCN-based detection methods MGCN [64] and
STGCN [65]. Several experiments were carried out on the DOTA, DIOR, and NWPU
VHR-10 datasets. Then, we individually analyzed these comparative results on the three
public benchmark datasets above.

4.4.1. Comparison and Analysis on the DOTA Dataset

The DOTA dataset consists of 15 categories of object instances with complicated visual
diversity and high appearance ambiguity; different kinds of geospatial remote-sensing
objects also have complex spatial distributions and underlying spatial relations. Thus, the
dataset is very suitable for the detection performance verification of remote-sensing objects
with explicit and implicit relation characteristics. On the DOTA dataset, we employed the
proposed HA-MHGEN and several state-of-the-art detection approaches, and obtained
a series of quantitative experimental results that are reported in Table 2. Our proposed
HA-MHGEN achieved higher detection indices of 78.32% than those of other state-of-the-
art detection approaches, either classical two- or one-stage object detectors. Compared to
classical two-stage methods faster R-CNN and FPN, the overall detection performance of
mAP using HA-MHGEN achieved an improvement of 22.54% (78.32% versus 55.78%) and
6.32% (78.32% versus 72%), respectively. The main reason is that faster R-CNN only adopts
the last feature layer of the backbone for object proposal region extraction, which failed
to accurately predict and localize for some small objects with dense spatial distribution.
Although the FPN adopts multiscale feature layers for region proposal extraction, it also
ignores implicit spatial relations for object detection, which also results in some unsatisfying
detection results. Comparing it with famous one-stage detection approaches in terms of
mAP, namely, with RetinaNet, Yolo-v3, and FMSSD, the proposed HA-MHGEN achieved
an improvement of 15.05% (78.32% versus 63.27%), 12.65% (78.32% versus 65.67%) and
5.89% (78.32% versus 72.43%), respectively. In general, the regression and prediction layer
of the above existing one-stage detectors cannot always afford an abundant receipt field
for distinguishing multiclass objects with a large-scale spatial span. Thus, these methods
also cannot provide satisfactory object-detection results. We also ran some recent anchor-
free-based one-stage detectors on DOTA for quantitative comparisons, namely, CornerNet,
FCOS, SRAF-Net, and CenterNet. Compared with these anchor-free-based detection
approaches, our HA-MHGEN outperformed CornerNet,FCOS, SRAF-Net, and CenterNet
by 22.54% (78.32% versus 55.78%), 15.63% (78.32% versus 62.69%), 12.59% (78.32% versus
65.73%) and 4.38% (78.32% versus 73.94%) in terms of mAP, respectively. Technically,
it is always hard for the pre-extracted object proposal regions of one-stage detectors to
overcome the overfitting problem of continuous object scale representation within a large-
scale spatial span. In addition, due to complex background interference and diverse object
appearance ambiguity discrimination challenges in optical remote-sensing scenes, these
anchor-free-based approaches cannot achieve the desirable detection performance.
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To further indicate the superiority of our method, we also compared it with recent
GCN-based detection approaches MGCN and STGCN. Table 2 Lines 11 to 13 indicate
that HA-MHGEN improved the overall detection performance by 1.61% (78.32% versus
76.61%) and 1.48% (78.32% versus 76.84%) compared with MGCN and STGCN, respectively.
Table 2 shows that MGCN achieved more better detection results for airplanes and ships,
mainly because MGCN considers the background information around the objects for
graph construction and spatial relation discrimination. Then, it can overcome the visual
homogeneity between object and background information, and achieve better detection
accuracy for the object categories of airplanes and ships. Nevertheless, the overall detection
performance was still worse than that of our method. In addition, Figure 9 shows the ROC
curves of all comparative approaches for object detection, which also demonstrates the
better detection performance of our proposed method. The effectiveness and robustness of
the proposed HA-MHGEN framework is conclusively indicated by the comprehensive and
convincing experimental results.

Table 2. Comparisons with state-of-the-art object-detection approaches in terms of AP (%) and mAP
(%) on the DOTA dataset.

Methods Airplane BD Bridge Ship GTF BC SV LV TC ST SBF RA SP Harbor HC mAP

CornerNet 67.85 78.94 53.59 27.08 68.05 63.75 31.39 46.52 87.96 53.57 62.46 69.79 43.06 58.79 23.94 55.78
Faster R-CNN 76.15 63.70 29.60 67.70 54.86 50.10 67.70 62.59 86.89 67.33 55.84 40.91 43.64 65.71 48.34 56.13

FCOS 88.81 71.63 56.35 68.92 40.86 67.31 49.37 74.58 89.56 70.77 44.63 70.97 42.71 66.90 36.97 62.69
RetinaNet 72.99 68.17 65.96 68.59 76.22 62.33 25.51 62.78 84.20 51.31 57.78 80.87 57.81 65.96 48.50 63.27

Yolo-v3 93.91 68.78 45.93 85.56 51.92 66.82 50.12 60.67 93.88 83.47 52.45 45.01 55.85 74.03 56.68 65.67
SRAF-Net 88.93 72.76 50.10 83.77 45.93 70.32 59.51 75.69 93.00 67.08 55.63 62.69 47.36 71.45 41.80 65.73

FPN 88.70 75.10 52.60 84.50 59.20 81.30 69.40 78.80 90.60 82.60 52.50 62.10 66.30 76.60 60.10 72.00
FMSSD 89.11 81.51 48.22 76.87 67.94 82.67 69.23 73.56 90.71 73.33 52.65 67.52 80.57 72.37 60.15 72.43

CenterNet 97.37 78.56 49.39 90.30 53.39 66.11 62.16 80.24 94.58 85.75 64.86 69.02 75.63 78.86 66.82 73.94
MGCN 98.13 82.74 56.15 90.46 57.14 67.98 66.85 83.76 96.17 86.98 65.78 72.54 78.19 80.62 67.26 76.71
STGCN 90.42 79.87 63.39 86.42 76.54 80.08 77.46 87.87 86.83 82.45 68.19 69.43 65.08 81.41 57.17 76.84

Our Method 94.57 81.07 61.76 88.67 78.16 81.98 79.15 88.62 88.79 82.13 69.87 70/17 67.67 83.15 58.98 78.32

Figure 9. Comparisons of ROC curves using different detection methods on the DOTA dataset.

On the basis of a series of quantitative comparison results, our proposed HA-MHGEN
demonstrated superiority in multiclass geospatial object detection. Figure 10 demonstrates
visual object-detection results using the proposed HA-MHGEN framework on the DOTA
dataset. Figure 10 shows that the proposed method allowed for successfully detecting
most of the objects in all the unseen categories of objects in the DOTA dataset. There were
also still some false detections and missing detections that are marked with red and blue
dashed bounding boxes, respectively. For example, as shown in Figure 10d, the SP object
category was leaked, and Figure 10h shows a false detection in which a rectangular rooftop
was predicted as a large vehicle (LV). We will continue to address these deficiencies in
future work.



Remote Sens. 2022, 14, 4951 22 of 31

Figure 10. Visualization of multiclass object-detection results by using the proposed HA-MHGEN
on the DOTA dataset; red and blue dashed lines denote missing and false detections, respectively.
(a) Airplane. (b) Ship. (c) TC, BD, and BC. (d) SP. (e) BD and GTF. (f) LV and SV. (g) Bridge. (h) SV,
LV, and RA. (i) Harbor and ship. (j) SBF, SP, BD, and TC. (k) ST. (l) Airplane.

4.4.2. Comparisons and Analysis on the DIOR Dataset

The DIOR dataset consists of more object categories and object instances than those
of the DOTA dataset; thus, different intra- or interobject classifications have greater inter-
ference for appearance discriminants. Underlying spatial or contextual semantic relations
between remote-sensing objects are also hard to decouple and distinguish. To further
verify the effectiveness of our proposed HA-MHGEN, we adopted a more challenging
optical remote-sensing object-detection dataset, DIOR, for experimental comparisons and
analysis. Table 3 shows that our proposed HA-MHGEN achieved better object-detection
performance than that of some classical two-stage approaches including faster R-CNN and
the FPN, and boosted famous one-stage detectors such as Yolo-v3, FCOS, and FMSSD.

The table also shows that our HA-MHGEN achieved relatively high performance
for some objects with diverse spatial distribution, such as airplanes with 88.93% mAP
and ships with 86.14% mAP, and also on some large-scale objects with high appearance
ambiguity with the complex background, such as bridges with 52.34% mAP, TCs with
89.53% mAP, BCs wth 92.08% mAP, and GCs with 86.78% mAP. In this situation, FMSSD
leveraged contextual information in multiscale and the same feature maps, which enabled
to guide the network to pay more attention to some objects with different multiscales, and
then achieved relatively good object-detection performance. Nevertheless, this method
only considers multiscale visually contextual information and ignores multiscale spatial
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information between objects, which also results in some unsatisfactory detection results.
In addition, compared with some recent anchor-free-based approaches, such as recent
keypoint-based methods CornerNet, CenterNet, and SRAF-Net, there were improvements
of 13.12% (74.72% versus 61.60%), 10.62% (74.72% versus 64.10%) and 5.02% (75.55% versus
69.70%) in terms of mAP, respectively.

Among the above methods, by introducing scene-relevant information into the feature
discriminative process, SRAF-Net achieved relatively better detection performance. How-
ever, it also produced some unsatisfactory results for some objects whose appearances had
more homogeneity with the background, such as GTF and ST. We also compared the pro-
posed HA-MHGEN with graph-based methods MGCN and STGCN. As illustrated in Lines
10 to 12 of Table 3, the proposed HA-HMGEN achieved improvements of 1.15% (74.72%
versus 73.57%) and 0.99% (74.72% versus 73.57%) compared with MGCN and STGCN, re-
spectively. It is obvious that our method achieved comparable and even superior detection
performance. The effectiveness and superiority of our method for object detection can be at-
tributed to HA-MHGEN having self-attention-based spatial- and semantic-relation-driven
hybrid attention modules that allow for learning powerful spatial and semantic feature
representation, and hierarchical spatial and semantic relation discrimination enhancement
to effectively boost detection performance for multiclass remote-sensing objects with high
appearance ambiguity and complex spatial distribution. Figure 11 also shows the ROC
curves of all the compared approaches for object detection, which also demonstrates the
superiority of our proposed HA-MHGEN model.

Figure 11. Comparisons of ROC curves using different detection methods on the DIOR dataset.

We further show visual detection on the challenging DIOR dataset to qualitatively
demonstrate the effectiveness of the proposed HA-MHGEN. Figure 8 shows that most
of the multiclass remote-sensing objects could be accurately and tightly localized by the
predicted bounding boxes. Objects with high appearance ambiguity and adjacent locations
were accurately detected, which further indicates the effectiveness of our proposed HA-
MHGEN for remote-sensing object detection. In addition, there were some unsatisfactory
detection results. For example, as shown in Figure 12e,h, the object category of VE was
missing, and Figure 12n shows a false detection in which a road was predicted as bridge.
In future work, we will continue to overcome these drawbacks.
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Table 3. Comparisons with state-of-the-art object-detection approaches in terms of AP (%) and mAP (%) on the DIOR dataset.

Methods Airplane BF Bridge GTF Ship STM TC BC ST Harbor Airport ESA Chimney Dam VE GC TS OP ETS WM mAP

Faster
R-CNN 51.40 62.20 27.00 61.80 56.10 41.80 73.90 80.70 39.60 43.70 61.60 53.40 74.20 37.30 34.30 69.60 44.70 49.00 45.10 65.30 53.60

Yolo-v3 67.50 65.80 34.20 68.90 86.80 40.30 83.90 86.80 67.80 54.30 54.70 55.70 73.50 34.30 49.10 67.30 32.30 51.70 49.60 73.60 59.90
FCOS 73.60 84.30 32.10 17.10 51.10 71.40 77.40 46.70 63.10 73.20 62.00 76.60 52.40 39.70 71.90 80.80 37.20 46.10 58.40 82.70 60.00
Center

-Net 64.00 65.70 34.80 66.00 81.30 53.50 80.90 86.30 63.70 45.30 66.30 60.80 73.10 41.10 46.30 73.00 44.10 53.30 54.20 78.80 61.60

Retina
-Net 63.40 83.30 48.20 59.10 72.00 82.40 90.10 78.40 80.70 47.60 47.80 53.20 67.90 49.40 47.70 66.30 55.00 45.70 73.60 92.00 63.40

Corner
-Net 68.50 85.20 46.90 16.80 34.50 89.10 84.70 78.40 40.00 68.60 77.10 73.90 76.90 60.20 45.00 79.10 52.30 58.90 74.80 70.10 64.10

FPN 54.00 63.30 44.80 76.80 71.80 68.30 81.10 80.70 53.80 46.40 74.50 76.50 72.50 60.00 43.10 76.00 59.50 57.20 62.30 81.20 65.10
SRAF
-Net 88.40 92.60 83.80 16.20 59.40 80.90 87.90 90.60 55.60 76.40 76.50 86.80 83.80 58.60 53.20 82.80 90.60 58.00 66.80 91.00 69.70

FMSSD 85.60 75.80 40.70 78.60 84.90 76.70 87.90 89.50 65.30 62.00 82.40 67.10 77.60 64.70 44.50 80.80 62.40 58.00 61.70 76.30 71.10
MGCN 87.19 73.97 52.34 80.13 86.14 79.15 89.24 91.09 68.13 68.65 85.92 72.09 79.23 66.16 47.33 83.16 66.19 53.89 67.45 73.98 73.57
STGCN 88.13 72.54 49.76 85.32 86.76 77.91 88.15 90.12 70.16 69.73 83.17 74.11 79.57 67.98 44.54 85.90 67.23 54.17 68.12 71.25 73.73

Our
Method 88.93 77.13 52.34 81.51 87.24 78.09 89.53 92.08 72.23 71.42 85.17 74.17 75.32 71.23 46.87 86.78 69.18 52.46 71.86 70.98 74.72
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Figure 12. Visualization of multiclass object-detection results by using the proposed HA-MHGEN
on the DIOR dataset; red and blue dashed lines denote missing and false detections, respectively.
(a) Airplane and ST. (b) Ship. (c) ST. (d) WM. (e) VE. (f) Airport. (g) GC. (h) BF, TC and GTF. (i) VE
and ETS. (j) Dam. (k) Chimney. (l) Harbor. (m) TS. (n) Bridge.

4.4.3. Comparisons and Analysis on the NWPU VHR-10 Dataset

In order to verify the generalization of the proposed HA-MHGEN, we also constructed
another group of comparative experiments on the NWPU-VHR-10 dataset. The series of
quantitative results that were produced by our method and the compared methods are
reported in Table 4. Among all methods, the proposed HA-MHGEN was the only detection
approach that surpassed 87%, and it obtained the best AP value for some large-scale objects,
such as bridges (98.68%) and harbors (97.65%). Our proposed spatial and semantic hybrid
attention could thus effectively focus on large-scale objects and suppress interference
information of complex backgrounds.

Although Yolo-v3, RetinaNet, FMSSD, and FCOS utilize a multiscale regression layer
and multiscale anchor-based initialization, our method also achieved better detection
accuracy. Specifically, the overall detection accuracy of HA-MHGEN in terms of mAP was
22.07% higher than that of Yolo-v3, 15.26% higher than that of RetinaNet, 2.99% higher than
that of FMSSD, and 1.25% than that of FCOS. The main reason is that it is hard for these
one-stage methods to address the problem of anchor initialization with diverse visual and
spatial scale changes, and then they always results in some leak detection cases for densely
spatial arranged remote-sensing objects. In addition, compared with two-stage approaches
faster R-CNN and FPN, our method achieved improvements of 12.45% (93.39% versus
80.94%) and 3.31% (93.39% versus 90.08%) in terms of mAP, respectively. Furthermore,
the overall performance of our method was 4.89% higher than that of STGCN and 2.31%
more than that of MGCN. Figure 13 shows a comparison of ROC curves by using the
object-detection approaches, also indicating the superiority of our proposed HA-MHGEN.
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Table 4. Comparisons with state-of-the-art object-detection approaches in terms of AP (%) and mAP
(%) on the NWPU VHR-10 dataset.

Methods Airplane Ship BD BC TC ST Vehicle Bridge Harbor GTF mAP

CornerNet 72.10 53.67 44.13 83.16 67.79 56.51 77.25 92.67 49.17 99.96 69.64
CenterNet 73.09 71.97 87.41 73.37 65.12 59.91 55.75 53.76 75.48 95.27 71.11

Yolo-v3 92.50 62.90 59.48 47.99 64.08 56.12 72.59 59.48 70.06 92.17 71.32
RetinaNet 99.56 78.16 99.55 65.18 83.37 82.29 71.91 40.25 65.66 95.38 78.13

Faster R-CNN 97.83 78.66 89.99 58.80 80.85 90.68 73.09 63.33 80.68 95.47 80.94
SRAF-Net 94.59 83.80 53.99 92.38 88.39 72.84 89.21 96.95 63.53 98.95 83.45

STGCN 95.76 94.82 93.45 86.92 85.83 95.03 87.39 73.41 84.86 87.62 88.50
FMSSD 99.70 89.90 98.20 96.80 86.00 90.30 88.20 80.10 75.60 99.60 90.40

FPN 100 90.86 96.84 95.05 90.67 99.99 90.19 50.86 93.67 100 90.80
MGCN 98.36 92.15 99.16 97.24 86.87 91.02 89.86 81.34 77.19 97.67 91.08
FCOS 99.99 85.21 97.75 80.34 95.80 96.94 88.92 88.92 95.04 99.67 92.14

Our Method 97.19 88.86 98.68 83.09 94.17 98.97 90.54 87.64 97.65 97.13 93.39

Figure 13. Comparisons of ROC curves using different detection methods on the NWPU VHR-
10 dataset.

The superior detection performance by the proposed HA-MHGEN regarding mAP
was mainly assisted by considering the intramodality relations using the cross-attention
module, which can help the network in learning the association between spatial and seman-
tic relations. HA-MHGEN can thereby complement spatial and semantic relation feature
extraction, and further enhances the discrimination ability of fused features to boost multi-
class object-detection performance. To indicate the validity of the proposed HA-HMGEN,
a series of visual multiclass geospatial object-detection results are shown in Figure 14,
which further demonstrate the generalization and effectiveness of our proposed method for
multiclass remote-sensing object detection. However, there were also some unsatisfactory
detection results. For example, as shown in Figure 14e,h, the object categories of BCs and
vehicles were missing, and Figure 14n shows a false detection in which a road was also
predicted as bridge. In addition, for some objects with high appearance homogeneity
with the background, such as airplanes and ships, HA-MHGEN achieved worse detection
performance than that of MGCN, as listed in Table 4. The main reason is that MGCN adopts
spatial contextual information in superpixel segmentation for graph construction, which
takes into account more complete object information and their background information
for relation discrimination. In future work, we will continue to amend these drawbacks to
further improve the detection performance of our method.
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Figure 14. Visualization of multiclass object-detection results using the proposed HA-MHGEN on the
NWPU VHR-10 dataset; red and blue dashed lines denote missing and false detections, respectively.
(a) Airplane. (b) BD. (c) Ship. (d) GTF. (e) Vehicle. (f) Bridge. (h) TC. (i) Harbor. (j) TC and BC.
(k) BD, BC, and TC. (l) Airplane and ST.

4.4.4. Computational Cost Analysis

Aside from the detection accuracy comparison and analysis between the proposed
HA-MHGEN and other famous detection methods, the computational speed and complex-
ity of detectors are also important. Therefore, to further illustrate the effectiveness of the
proposed HA-MHGEN in practical cases, we also compare the computational speed and
complexity of our method with that of 11 other famous detection methods with different
backbones. Specifically, we adopted the mean inference time for computational speed com-
parison and analysis, and parameters and giga floating-point operations (GFLOPs) were
utilized for complexity analysis. For a fair comparison, we randomly selected 10 remote-
sensing images from each dataset and resized them into 512 × 512 pixels for experimental
verification. Table 5 reports the series of comparisons regarding mean inference time, pa-
rameters, and GFLOPs: CornetNet needed the most inference time and computational
consumption. Faster R-CNN and FPN needed almost the same inference time, but FPN
had more parameters and GFLOPs for calculation, and then improved complexity. FCOS,
MGCN, and STGCN almost had the same inference time, and the parameters and GFLOPs
of MGCN and STGCN were higher than those of FCOS, which indicates that MGCN and
STGCN had high computation complexity. CenterNet, SRAF-Net, and FMSSD were almost
the same in terms of inference time, and SARF-Net and FMSSD needed a higher compu-
tational cost. YOLO-v3 and the proposed HA-MHGEN had similar inference times, and
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HA-MHGEN had fewer parameters and GFLOPs than those of YOLO-v3, which indicates
the relatively low computational complexity of HA-MHGEN. These comparisons show
that HA-MHGEN both achieved the best performance of object detection in the datasets,
and had acceptable computational speed and complexity.

Table 5. Computational cost comparison and analysis of different approaches.

Methods Backbone map@DOTA map@DIOR map@NWPU
VHR-10

Params
(M)

GFLOPs Inference
Times (ms)

Faster
R-CNN

ResNet-101 56.17 55.24 82.37 60.7 81.6 67

Yolo-v3 DarkNet-53 66.92 58.97 72.16 60.04 82.4 28
FCOS ResNet-101 61.73 61.37 92.39 51.2 70.65 55

CenterNet ResNet-101 74.08 62.51 72.07 52.7 75.2 44
RetinaNet ResNet-101 64.19 63.27 79.6 56.9 81.3 91
CornerNet Hourglass-54 55.82 64.59 71.84 112.7 287.6 127

FPN ResNet-101 72.43 66.18 91.34 50.7 112.3 69
SRAF-

Net
ResNet-101 66.37 70.39 84.55 62.9 87.2 46

FMSSD VGG-16 74.76 72.37 91.17 61.3 84.2 42
MGCN ResNet-101 77.92 72.94 91.39 62.4 87.2 52
STGCN ResNet-101 76.18 73.15 92.07 64.6 90.1 56

Our
Method

ResNet-101 78.79 74.96 93.27 51.4 67.9 33

5. Conclusions

In this paper, we presented a novel hybrid attention-driven multistream hierarchical
graph embedding network (HA-MHGEN) for multiclass geospatial object detection in
high-spatial-resolution remote-sensing images (HSRIs). First, to explore intra- and interob-
ject hierarchical spatial relations and contextual semantic relations, a self-attention-aware
multiscale GCN model was designed to more effectively extract spatial and semantic rela-
tions features, respectively. Second, we proposed a cross-attention-driven intramodality
relation fusion model that takes advantage of the multihead attention mechanism to learn
associated joint feature representations between diverse spatial and complex semantic cor-
relations, and adopted the cross-attention mechanism to further improve the discrimination
ability of the fused features. Lastly, the derived spatial-relation, semantic-relation, and their
intramodality relation features were embedded into the uniform learning framework to
improve detection performance. Comprehensive experiments were conducted on three
benchmark datasets, DOTA, DIOR, and NWPU VHR-10, and the effectiveness and superi-
ority of the proposed HA-HMGEN was demonstrated both quantitatively and qualitatively.
In the future, we will pay more attention to novel advantage feature fusion models and
further enhance the performance of our proposed detection framework.
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