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Abstract: Rangeland ecosystems comprise more than a third of the global land surface, sustaining
essential ecosystem services and livelihoods. In Spain, Southeast Spain includes some of the driest
regions; accordingly, rangelands from Murcia and Almeria provinces were selected for this study.
We used time series metrics and the Hurst Exponent from rescale range and detrended fluctuation
analysis to cluster different rangeland dynamics to classify temporally and spatially diverse range-
lands. The metrics were only calculated for three time periods that showed significant NDVI changes:
March to April, April to July, and September to December. Detrended fluctuation analysis was not
previously employed to cluster vegetation. This study used it to improve rangeland classification.
K-means and unsupervised random forest were used to cluster the pixels using time series metrics
and Hurst exponents. The best clustering results were obtained when unsupervised random forest
was used with the Hurst exponent calculated with detrended fluctuation analysis. We used the
Silhouette Index to evaluate the clustering results and a spatial comparison with topographical data.
Our results show that adding the Hurst exponent, calculated with detrended fluctuation analysis,
provided a better classification when clustering NDVI time series, while classifications without the
Hurst exponent or with the Hurst exponent calculated with the rescale range method showed lower
silhouette values. Overall, this shows the importance of using detrending when calculating the
Hurst exponent on vegetation time series, and its usefulness in studying rangeland dynamics for
management and research.

Keywords: NDVI; multiscaling; vegetation dynamics; rangelands; detrended fluctuation analysis;
random forest

1. Introduction

Ecosystems were considered complex systems with non-linear dynamics in space and
time for more than three decades [1–4]. However, only recent research focuses on tackling
the complexity of ecosystem temporal dynamics with various methodologies [5–12]. As
an eco-social system, rangelands comprise 30–40% of the Earth’s landmass, supporting
approximately 1 billion people [13,14]; this makes them suitable land types to study ecosys-
tem dynamics with significant human activity effects. This type of land is heavily affected
by land degradation, affecting 73% of all rangelands [15–19]. Land degradation reduces
biological productivity, ecosystem functions, and complexity [20,21].

Climate change and social-economic trends are some of the main challenges in range-
land conservation, often with interactive and synergy responses [22,23]. An integrated
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approach to land management is required to address these issues. Understanding the dy-
namics and characteristics of rangelands is a vital part of their conservation [4,24–26]. The
Normalized Differentiated Vegetation Index (NDVI) was widely used to monitor, assess,
and classify vegetation [27–31]. Moreover, more recently, supervised and unsupervised
machine learning was used to classify rangeland pixels based on values of NDVI at the
spatial level. Summary statistics of NDVI time series were also used to study spatiotempo-
ral data [32–35]. The unsupervised classification does not require labelled data. K-means
and ISODATA algorithms are commonly used in unsupervised land cover and crop classi-
fication. However, these algorithms are susceptible to outliers, high dimensionality, and
noise. Unsupervised Random Forest (URF) was previously used with other biological
data, such as genomic sequence data [36] and vegetation [37]. Different metrics to measure
the fitness of the cluster were developed. The Silhouette Index is an excellent internal
cluster validation metric, more robust than other metrics, such as the Rand Index and Dun
Index [38–41].

A method to study the complexity of time series is their fractal character using the
Hurst exponent [42]. This method was developed to measure the persistence (H > 0.5) or
antipersistence (H < 0.5) of a time series. This analysis can be calculated using the Rescaled
Range (R/S) method, named the Hurst Index (HI, [42]). Another method uses detrended
fluctuation analyses (DFA), which removes tendencies of the time series before calculating
the Hurst exponent (H2), the generalised Hurst exponent for q = 2 [43]. Both methods were
used in long-term ecosystem dynamics on vegetation [8,10,44,45]. Another application was
to localise changes in those dynamics, such as those affected by fire [46]. When a time series
is persistent, the trend of that time series will continue in the same direction. However, if a
time series is antipersistent, the trend will be followed by the opposite (e.g., if the trend
were increasing, it would be followed by a descent). If the Hurst exponent is close to 0.5,
the time series will follow a random process, such as a random walk.

The Hurst exponent was applied to the NDVI time series to quantify the long-term
memory as well as their trend. Long-term memory is affected by land use, land changes, and
climate change, making it useful for rangeland managers. Topographical variables were also
linked to Hurst exponent values [5,6]. Several authors used it to map rangelands or other
vegetation, and comment on their connection with slope and elevation values [5,8,10,47–50].
However, to our knowledge, integrating the system persistence characteristics with the
NDVI annual pattern to classify rangelands was not yet accomplished. The Hurst exponent
represents vegetation dynamics and NDVI time-series summary statistics represent the
vegetation types. This research aims to provide new insights into a spatially complex
eco-social system, where aridity, land degradation, and climate change restrict agricultural
practices and ecosystem services [51,52]. Clustering rangeland pixels in arid areas can be
used to prioritise field visits where different vegetation dynamics and trends are found.

The present study attempted rangeland classification, including the Hurst exponent.
Two Hurst exponent methods (HI and H2) were used to evaluate the influence of the DFA
in capturing vegetation dynamics. Additionally, two different machine learning methods
(k-means and URF) were applied to decide which provided a more accurate outcome based
on the Silhouette Index.

2. Materials and Methods
2.1. Area of Study

Three agricultural regions of Southeast Spain were selected (Figure 1): Los Velez in
the province of Almeria, and the Northwest and Northeast in the province of Murcia,
which will be called Murcia-NW and Murcia-NE, respectively, for clarity. These three
regions have a Mediterranean arid climate with an average annual precipitation of less
than 300 mm, although with regional variations [53]. The spatial resolution used was
250 m/pixel. This spatial resolution matches the resolution used by most stakeholders in
the Spanish agricultural insurance system. The pixel selection was provided by ENtidad
Estatal de Seguros Agrarios (ENESA, Ministerio de Agricultura, Pesca y Alimentación,
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Government of Spain), using the Sistema de Información Geográfico de Parcelas Agrícolas
(SIGPAC [54]) and the Mapa Forestal Español (MFE, Spanish Forest Map). Firstly, pixels
categorised as rangeland were selected using the SIGPAC. Secondly, using the previous
selection, pixels with a tree coverage higher than 15% were discarded to ensure a low tree
coverage, based on the MFE. Three thousand six hundred and fifty-four (3654) pixels of
rangelands were selected, consisting of grasslands, shrublands, and open woodlands.
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Figure 1. Location of the study area. (a) Selected Provinces. (b) Selected agricultural regions of
Almeria and Murcia. (c) Selected pixels in three agricultural regions of Almería and Murcia. Source
basemap: Invierno 2020. Gobierno de España y Comunidad Autónoma de Murcia. CC-BY 4.0
scne.es 2020.

The three regions are mainly located in mountainous areas. The Murcia-NE region is
mainly a mix of grassland and shrubland; Murcia-NW is dominated by sparse woodland
mixed with shrubs; and in Los Velez, grasslands and shrublands are the primary vegetation
with minimal areas of sparse woodland. These regions include areas with different aspects
and changing slopes and elevations.

2.2. Data Collection
2.2.1. NDVI Data

The NDVI data were collected from MOD09A1.006, using the AppEEARS tool [55],
and downloading the RED (band 1) and NIR (band 2) values for the target areas. This
tool has a 250 m spatial resolution, collecting a set of 3654 pixels and an 8-day temporal
resolution from the beginning of 2000 to 2019, a total of 20 years of data. R software [56]
was used for each pixel series to calculate the NDVI, using Equation (1) below. The 8-day
temporal resolution was transformed to a 10-day resolution as used by the Spanish indexed
agricultural insurance.

NDVI = 100× NIR− RED
NIR + RED

(1)

The possible NDVI values range from 0 to 100. The obtained NDVI values were then
checked for quality. The data were deleted if they were not categorised as ideal quality
(quality values in band from AppEEARS, less than 0.01%). The gaps were filled using
running averages with a gap interval of seven dates. The time series were then smoothed
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using the Savitzky–Golay method [57], with a window size of 9 selected, based on the
best-fitted outputs.

2.2.2. GIS Data

A Digital Elevation Model (DEM, 10 m resolution) was downloaded from the Coperni-
cus website [58], and ArcGIS software v. 10.8.1 [59] was used to calculate the slope based
on the DEM. These two datasets, and the variables used in the clustering analysis (Hurst
exponent and NDVI summary statistics), were used to compare the clustering results
through boxplots for a visual comparison.

2.3. Fractal Analysis
2.3.1. Rescale Ranged Hurst Exponent

Hurst Index analysis was used to analyse the persistence of NDVI in each area [42].
For this index, the package “pracma” (version 1.9.9) [60] was used in R Software. This index
splits the time series into τ subseries. Each subseries calculates the mean and cumulative
sum of the mean to calculate the range (R(τ)). This range is divided by each subseries
standard deviation (S(τ)). The Hurst exponent (HI) is then calculated using the following
formula and by averaging each subseries, where c is a constant of proportionality, τ is the
time span, and H is the Hurst scaling exponent.

R(τ)
S(τ)

= cτH (2)

2.3.2. Multifractal Detrended Fluctuation Analysis

A Mann–Kendall test [61,62] was applied to the whole temporal series of each pixel.
Since most of the NDVI series presented a trend, Multifractal Detrended Fluctuation
Analysis (MF-DFA) was used following [43], developed to calculate multifractal properties
after removing trends in the time series. The main feature of multifractals is that they are
characterised by high variability over wide ranges of temporal or spatial scales associated
with intermittent fluctuations and long-range power-law correlations.

The MF-DFA operates on x(i), where i = 1, 2, . . . , N, with N being the series length; x
represents the mean value, and x(i) are increments of a random walk process around the
average x. The integration of the signal, therefore, provides what is called the ‘trajectory’
or ‘profile’:

y(i) =
i

∑
k=1

[x(k)− x] (3)

Furthermore, the integration will reduce the level of measurement noise present in
observational and finite records. Next, the integrated series was divided into Ns = int (N/s),
the integer part of non-overlapping segments of equal lengths s. The local trend was then
calculated for each Ns segment by a least-squares fit, and then the variance was determined:

F2(s, ν) =
1
s

s

∑
i=1
{y[(ν− 1)s + i]− yν(i)}2 (4)

for each segment ν, where ν = 1, . . . , NS. Here, yν(i) is the fitting curve in segment ν. In
this case study, a line was chosen. After detrending the series, the average was performed
over all segments to obtain the 2nd-order fluctuation function:

Fq(s) =
{

1
2Ns

∑
[

F2(s, ν)
] q

2
} 1

q

(5)

H(q) is the generalised MF-DFA exponent in the function of q. H(q) was calculated
for the time scales where the fluctuation functions increased linearly to allow detrending
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calculations, starting at 32 days. Observing Equations (4) and (5), in the case that q = 2, the
equation will be:

F2(s) ∝sH(2) (6)

Therefore, H2 = H(2) is the Hurst index estimated using MF-DFA as it was used by [63].
In this study, given that only one exponent (H2) was used, this method will be referred to
as DFA.

2.4. Variable Selection for Clustering

Summary statistics of the NDVI time series (quartiles 1, 2, 3, and variances) were
calculated to analyse vegetation dynamics, similarly to [34,35]. However, the statistics were
calculated at different year moments (phases) where NDVI behaves differently across the
year. Three periods were chosen when the NDVI experienced more significant changes:
Phase 2 (March and the first two ten-day periods of April), Phase 3 (from the last ten-day
period of April to the last ten-day period of July), and Phase 5 (September to December)
following [64]. For these three periods, the mentioned summary statistics were calculated.
The Hurst exponent was then calculated for the whole NDVI time series using two methods,
R/S and DFA. Afterwards, clustering techniques were used on the selected summary
statistics independently, and with each of the Hurst exponents. The results were compared
to topographical data: elevation and slope.

Among all summary statistics and the Hurst exponents, a correlation matrix was
applied to select variables that did not have a strong correlation (i.e., <0.75). Principal
component analysis was run when strong correlations were present to select the most
explanatory variables. Upon selection, clustering analyses were run and compared.

2.5. Clustering

Clustering was made using two unsupervised machine learning methods (k-means
and URF). The Silhouette Index [39] was used to compare the different classification results
and select the best option based on the partition and all proximities for all objects. The
Silhouette Index was calculated for clusters A and C, following Equation (7):

SI(i) =
b(i)− a(i)

max{a(i), b(i)} (7)

where a(i) is the average dissimilarity i to all other objects of cluster A, and b(i) is the
minimum average dissimilarity of i to the centroid of cluster C.

To study the differences and similarities between the clusters, the adjusted Rand Index
was used [65] from the R package “fossil v. 0.4.0” [66], which determines whether two
clusters are similar to each other using a contingency table of the two clusters making an
all pair-wise comparison.

2.5.1. K-Means

K-means was developed by Stuart Lloyd in 1957 and published in 1982 [67]. It is a
non-hierarchical technique, and one of the simplest methods to solve clustering problems.
James MacQueen first coined this method as k-means in 1967 [68]. This algorithm starts
clustering by randomly assigning a K number of centroids. Secondly, it calculates the
distance between the data points, and the closest centroid minimises the sum of the square
as in Equation (8):

d(x, y) =
1
2 ∑

i
(xi − yi)

2 (8)

The algorithm repeats this process by adjusting the centroids based on the calculated
distance, iterating a set number, and converging in a fixed point [69]. In this paper, Hartigan
and Wong’s method was used [70] with the R package “stats v. 3.6.2” [56]. This method
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reassigns point by point, considering the shift in the means after the reassignment of
previous points, and it may reassign a point even if it already has an assigned centre.

2.5.2. Unsupervised Random Forest

Random forest [71] is a tree-based ensemble method, i.e., methods that generate many
classifiers and aggregate their results. It uses bootstrap aggregating (bagging [72]) to
calculate a large number of trees based on the fed predictor variables and to select the
most voted trees. Random forest is a non-parametric method that builds each tree using
a deterministic algorithm based on the three main variables: (1) the number of trees (nt);
(2) the number of predictors tested on each node (m); and (3) the minimal size for each
node (nodesize). A third of the bootstrap is omitted in each node and is considered out-of-
the-bag (OOB) data. These data are used to obtain a classification rate for each node. The
variable importance is calculated for the averaged final tree based on the OOB data and
their classification rate. Each tree presents a different variable importance, but these are
averaged [73]. The R package “randomForest v. 4.6-14” was used [74] to calculate the RF as
an unsupervised method, utilising the proximity matrix as predictor variables.

3. Results
3.1. Variable Selection Approach

All summary statistics between the three selected phases presented a robust linear
correlation (>0.75) except for the three variances (Figure 2). Principal component analyses
(PCA) were performed with our statistic variables, including the Hurst exponents (HI
and H2). Moreover, among those variables with a strong correlation, quartile 3 of phase 5
was chosen for its higher explanatory power (Tables A1 and A2). The three variances and
quartile 3 of phase 5 were used separately with HI and H2, and with neither of them.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 23 
 

 

 
Figure 2. Correlation matrix of all variables tested for the three study regions. Large, dark blue cir-
cles indicate a high correlation, while small, light blue circles indicate a low correlation. Ph2/3/5 
stands for Phase 2/3/5, and Var for variance. 

3.2. Clustering Analysis 
3.2.1. K-Means 

The k-mean analyses were applied, using the aforementioned selected variables, for 
three and four clusters based on the elbow method. The elbow method is a heuristic 
method to determine the number of clusters in a dataset [75], as shown in Figure 3. K-
means clustering was different when three (three-cluster analyses) and four (four-cluster 
analyses) clusters were used. However, for each cluster number, the results were identical 
whether no Hurst exponent, H2 or HI were used. The clustering results presented an ad-
justed Rand Index of 1 among the three-cluster analyses and an adjusted Rand Index of 
0.84 when comparing the results of three- and four-cluster analyses. The fourth cluster 
showed very few pixels with a low Silhouette Index for this cluster, as shown in Figure 4. 
The Silhouette Index was the same in all k-means analyses with three- and four-cluster 
analyses (Table 1). 

Figure 2. Correlation matrix of all variables tested for the three study regions. Large, dark blue circles
indicate a high correlation, while small, light blue circles indicate a low correlation. Ph2/3/5 stands
for Phase 2/3/5, and Var for variance.
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3.2. Clustering Analysis
3.2.1. K-Means

The k-mean analyses were applied, using the aforementioned selected variables, for
three and four clusters based on the elbow method. The elbow method is a heuristic
method to determine the number of clusters in a dataset [75], as shown in Figure 3. K-
means clustering was different when three (three-cluster analyses) and four (four-cluster
analyses) clusters were used. However, for each cluster number, the results were identical
whether no Hurst exponent, H2 or HI were used. The clustering results presented an
adjusted Rand Index of 1 among the three-cluster analyses and an adjusted Rand Index
of 0.84 when comparing the results of three- and four-cluster analyses. The fourth cluster
showed very few pixels with a low Silhouette Index for this cluster, as shown in Figure 4.
The Silhouette Index was the same in all k-means analyses with three- and four-cluster
analyses (Table 1).
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Table 1. Average Silhouette Indexes for 3 and 4 clusters for k-means and optimised URF.

Analysis
K-Means Unsupervised Random Forest

3 Clusters 4 Clusters 3 Clusters 4 Clusters

Without H2/HI 0.33 0.34 0.51 0.49
With H2 0.33 0.34 0.62 0.47
With HI 0.33 0.34 0.50 0.45

3.2.2. Unsupervised Random Forest

Using the elbow method with the partitioning around medoids method showed a
similar graphic as using the k-means method, indicating that three and four clusters may
be the most appropriate to use (Figure 5).
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Figure 5. Elbow method of the selected variables using partitioning around medoids clustering,
where three and four clusters were selected.

The URF has more variables that affect the results: the number of trees (nt) and
several variables (m) used for splitting branches. Three or four clusters were used and
H2, HI, and no Hurst exponent analyses, were calculated. For each combination, URF was
calculated for different nt and m to obtain the analysis with the highest Silhouette Index
(Figures A4–A6). Compared with k-means, URF showed higher variability between the
results, whether using H2, HI, or no Hurst exponent. The silhouette values from URF
were consistently higher when three groups were used for the three analyses regarding the
Hurst exponent (Table 1). When four clusters were used in our analyses, the additional
fourth cluster showed a low Silhouette Index for that cluster (Figure 6). Therefore, only the
URF clustering for three clusters will be discussed with and without the Hurst exponents,
focusing on the cluster with the highest Silhouette Index (H2).

The clustering results were more similar between the use of HI and no Hurst exponent
than when H2 or HI was used, presenting 0.82 and 0.74 in the adjusted Rand Index, respec-
tively. For all cases, cluster 1 was the most predominant, and cluster 2 had a higher NDVI
and variance, while the opposite can be said for cluster 3. These differences were more
remarkable when H2 was used. The difference in Hurst exponent (HI or H2, respectively)
between the three clusters was more evident when H2 was used. The major differences in
clustering among these three analyses were found in cluster 2, that with the highest H2
and NDVI (Figures 7 and 8). These distinct pixels were found mainly in the Murcia-NW
region (Figures 9 and A4–A6).
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3.2.3. Cluster Characterisation 

Figure 9. (a) On the top are the clustering results of URF in the Murcia-NW when HI (a) or H2 (b)
was used, showing cluster 1 and 2 present in this region, while cluster three was not present in this
area. (c) compares the differences in clustering when HI (bottom) and H2 (top) were used in URF for
all the study areas.

3.2.3. Cluster Characterisation

The Hurst exponent from DFA showed a stronger linear correlation with elevation
and slope than HI. The same occurred with the selected variables used for the clustering
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analyses (Table 2), the variances from phases 5 and 2 (those with the highest correlation
to H2 and HI, respectively). These correlations were reflected in the clustering process.
When URF with H2 was used, slope and elevation were more heavily differentiated for
clusters 2 and 3. These differences were not found when k-means was used since the
clustering outcome was the same when H2 substituted HI, or no Hurst exponent was used.
Furthermore, slope and elevation showed a more considerable overlap between the clusters
on the three-cluster analyses when k-means was used (Figure 8).

Table 2. Correlations between H2 and HI with elevation, slope, and variances from phases 5 and 2.

Hurst Exponent Elevation Slope Var_Ph5 Var_Ph2

H2 −0.81 −0.53 0.54 0.29
HI −0.25 −0.07 0.05 0.21

When H2 was used, the three-clusters analyses presented more significant differences.
These differences are shown in their dynamics, as seen in the variances calculated separately
for each cluster, phase, and NDVI (Figure 10), where some pixels were distinct. These dif-
ferences were still found when all pixels were averaged for each cluster (Figures 8 and 10).
These differences in NDVI are reflected in the type of vegetation found dominating each
pixel. Cluster 1, where we found the majority of pixels, reflects a great variation from
woodlands to grasslands. In this region with an arid climate, patchy landscapes with
different vegetation are typical and they can occur along an ecological continuum, rather
than as well-defined and separated ecosystems [76,77]. Cluster 2 shows a vast majority of
woodland, while cluster 3 consists mainly of grassland (Table 3), despite cluster 1 having
both grassland and woodland, as reflected by an intermediate average NDVI for cluster 1.
Pixels from cluster 2 are those with higher NDVI representing thicker forests, unlike the
more dispersed forests with shrubs found in cluster 1.
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Figure 10. Time series of cluster prototypical pixels in: (a) the cluster type (selected based on their
vegetation type: mixed shrubland for cluster 1, open woodland for cluster 2 and grassland for cluster
3); (b) the average of each cluster; and (c) the variances for each cluster and phase, based on the NDVI
dynamics following [64].
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Table 3. Percentages of vegetation type of the selected pixels, based on the National Forest Map.
Results for each cluster are based on URF with H2.

Cluster Woodland Shrubland Grassland

1 48.0 7.7 44.3
2 99.7 0.3 0.0
3 15.5 4.4 80.1

The Mann–Kendall test was performed for all the pixels and the area. Although all
three clusters showed that most pixels had a significant positive trend, cluster 2 had 90%
of the pixels in that category, while clusters 1 and 3 only had 67% and 64%, respectively
(Table 4).

Table 4. Percentages of Mann–Kendall results for each cluster based on URF with H2.

Significance Cluster 1 Cluster 2 Cluster 3

Significant decrease 6.2% 0 % 2.2%
Not significant 26.5% 10% 34.3%

Significant increase 67.3% 90% 63.5%

4. Discussion

The link between elevation and the Hurst exponent was previously reviewed by
Peng [5], who found a good relationship between HI and elevation. In our study, the
stronger correlation of H2 with NDVI time-series variances, compared with HI, suggests
the importance of detrending in fractal analyses when studying vegetation time series.
Differences between R/S and DFA were previously reported [50], as DFA is less affected
by size effects or spurious correlation of non-stationary time series [50,78]. Our results
support these findings, highlighting the relevance of detrending, especially when studying
different vegetation types. Limited differences in pixel clustering were found in both
methods of calculating the Hurst exponent in areas dominated by grasslands, suggesting
that a tendency is not present in this NDVI series probably due to the grazing effect on
these areas. On the other hand, more significant differences in areas with more trees were
found. In this case, grazing does not limit the vegetation growth of trees, showing a trend
in their vegetation time series.

Arid rangelands are spatially heterogeneous [4,26], and land degradation and over-
grazing can affect the landscape creating a grassland/woodland continuum [79,80]. This
effect is reflected in the overlapping clusters, showing that discrete areas can have simi-
lar vegetation. However, differences among the majority of the pixels of each cluster in
persistence, elevation, and slope were found. In further research, other factors relating to
elevation and slope could be considered, such as availability for machine use in agriculture
(easier on flatter areas), rainfall, soil depth, or erosion. These factors should be considered
in land management.

Clustering vegetation dynamics and comparing those clusters with vegetation type
illustrate the tendencies related to each vegetation. Understanding these processes is key to
the spatiotemporal interactions between human and natural systems [18,19]. Most pixels
were categorised as antipersistent and with a significantly increasing trend. Land managers
should make special efforts to avoid further land degradation. Pixels categorised as the
least antipersistent and with an increasing NDVI trend (as no persistent pixels were found)
can be used as reference. These pixels can be studied to see if different management
practices are in place leading to differences in persistence and NDVI trends.

The variability in arid areas was expected since minor changes in slope, rainfall,
or other characteristics, mean a significant difference in water availability and plant
growth [81,82]. Using URF to study rangelands can improve our understanding of the area
even when fieldwork is unavailable, highlighting areas with different dynamics, crucial
when monitoring vegetation. These techniques can also cluster a more extensive range of
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land uses, not only be limited to rangeland, since they will have more distinctive spectral
signatures. Further research should be made in other arid areas to contrast whether this
method can allow us to analyse previous land classification, prioritise areas for future
surveys, and improve management action.

This study includes several limitations. (1) MODIS spatial resolution is much larger
than most land plots in this region. Despite remote-sensing data with a higher spatial
resolution, 250 m spatial resolution was chosen, as it is used for indexed agricultural
insurance in Spain. (2) Ground field visits were not possible to formally validate our results,
and the Silhouette Index was used to compare the clustering results. Future steps could
be to formally visit different areas for each cluster to validate these results. However, this
study aids the body of research [5,6,8,44,45,50] supporting the use of persistence (DFA) and
trends (Mann–Kendall) for vegetation series, using these techniques in arid rangelands to
aid rangeland managers and policymakers.

5. Conclusions

Two methods (R/S and DFA) were used to calculate the Hurst exponent (HI and H2).
The results were compared using two clustering methods, with summary statistics from
the NDVI time series. The combination providing the best results was obtained based on
the Silhouette Index and cluster characteristics. URF with the Hurst exponent from DFA
(H2) showed the best outcome, compared with URF performed with the Hurst exponent
calculated with R/S (HI), URF made without the Hurst exponent, and all the k-means
results.

URF found differences when different Hurst exponent methods were used, while
k-means found no differences. URF with H2 showed greater differences between areas with
higher tree coverage and those with a mix of grassland and shrubland. Additionally, the
H2 time series presented a stronger linear correlation with slope and elevation, an essential
aspect of vegetation dynamics in arid environments.

Detrended fluctuation analyses produced significant differences when calculating
the Hurst exponent in time series that presented a tendency. Detrending time series
can allow for a better understanding of the dynamics of vegetation time series, as well
as rangeland evolution and future trends. Rangeland persistence was a key aspect to
consider in rangeland management and research. Thus, future research should explore
more rangeland, and other land uses, and compare different land management practices.
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Appendix A. Principal Component Analyses Made to Select the Most
Explanatory Variables

Table A1. Three first principal components from the PCA for all the NDVI time-series variables
and H2. Background color highlights those variables with higher explanatory power for each
principal component.

Variables PC1 PC2 PC3
NDVI_H2 0.14 −0.27 0.84
Var_Ph2 0.13 −0.59 −0.22
Var_Ph3 0.13 −0.56 −0.37
Var_Ph5 0.23 −0.38 0.17
Quartile_1_Ph2 0.32 0.01 0.03
Quartile_1_Ph3 0.31 0.19 −0.13
Quartile_1_Ph5 0.31 0.16 001
Median_Ph2 0.32 0.05 0.2
Median_Ph3 0.31 0.14 −0.14
Median_Ph5 0.31 0.11 0.04
Quartile_3_Ph2 0.32 −0.01 0.01
Quartile_3_Ph3 0.32 0.08 −0.17
Quartile_3_Ph5 0.33 0.05 0.07
Standard deviation 3.10 1.36 0.95
Proportion of Variance 0.74 0.14 0.07
Cumulative Proportion 0.74 0.88 0.94

Table A2. After removing the variables with a strong correlation for the summary statistics with the
least explanatory power, the first principal components from the PCA for the selected variables are
shown. Those variables with higher explanatory power for each principal component are highlighted.

Variables PC1 PC2 PC3
NDVI_H2 0.36 −0.54 0.74
Var_Ph5 0.47 0.45 0.13
Var_Ph3 0.43 0.54 0.07
Var_Ph2 0.54 −0.13 −0.16
Quartile_3_Ph5 0.12 −0.43 −0.64

Standard deviation 1.72 1.02 0.76
Proportion of Variance 0.59 0.21 0.12
Cumulative Proportion 0.59 0.79 0.91

Appendix B. The Silhouette Indexes Calculated for All URF Changing Mtry and
Number of Trees for Three Clusters
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Rescaled Range method. “m” represents the number of predictors tested on each node.
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Appendix C. Maps of the Clusters Using URF with HI and H2 for the Three
Study Provinces
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region of Murcia-NE. Cluster 1 is pink, cluster 2 is green, and cluster 3 is blue.
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