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Abstract: The use of multi-mode remote sensing data for biomass prediction is of potential value to
aid planting management and yield maximization. In this study, an advanced biomass estimation
approach for sugarcane fields is proposed based on multi-source remote sensing data. Since feature in-
terpretability in agricultural data mining is significant, a feature extraction method of deep archetypal
analysis (DAA) that has good model interpretability is introduced and aided by principal component
analysis (PCA) for feature mining from the multi-mode multispectral and light detection and ranging
(LiDAR) remote sensing data pertaining to sugarcane. In addition, an integrated regression model
integrating random forest regression, support vector regression, K-nearest neighbor regression and
deep network regression is developed after feature extraction by DAA to precisely predict biomass of
sugarcane. In this study, the biomass prediction performance achieved using the proposed integrated
learning approach is found to be predominantly better than that achieved by using conventional
linear methods in all the time periods of plant growth. Of more significance, according to model
interpretability of DAA, only a small set of informative features maintaining their physical meanings
(four informative spectral indices and four key LiDAR metrics) can be extracted which eliminates
the redundancy of multi-mode data and plays a vital role in accurate biomass prediction. Therefore,
the findings in this study provide hands-on experience to planters with indications of the key or
informative spectral or LiDAR metrics relevant to the biomass to adjust the corresponding planting
management design.

Keywords: biomass prediction; multi-mode remote sensing data; deep archetypal analysis;
integrated learning

1. Introduction

The issue of food production is a constant concern for governments, businesses,
consumers, and other sectors because of its importance for national food security and
individual living standards [1]. With the increasing demand for agricultural products
due to the growing world population, how to increase crop yields has become one of the
great challenges needing to be urgently addressed [2]. Among the various measures to
increase crop yield, early biomass prediction on the field/farm scale plays an important
role in providing guidance for adjusting crop management regimes. In other words, it
can maximize crop yields and generate greater profit while reducing input resources and
environmental pollution [3]. Non-destructive prediction of crop biomass is especially
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important for use as a guide for national food policy formulation, price control, and foreign
food trade [4].

The rapid development of remote sensing technology in recent years has made it pos-
sible to achieve timeous, reliable, and cost-effective early biomass prediction. Among the
different methods of remote sensing, unmanned aerial vehicle (UAV)-based remote sensing
imaging is preferred as the primary means of data acquisition in agricultural production,
accounting for the limitations of low resolution, high cost, and adverse influence of weather
conditions in satellite remote sensing [5]. With collected remote sensing data using UAV,
different vegetation indices (VIs) have been explored for crop biomass prediction. The nor-
malized difference vegetation index (NDVI) proposed by Tucker et al. [6] was found to be
very effective in characterizing the growth status of crops. It has a positive correlation with
crop biomass. Based on this fact, more VI metrics were explored for trial use in agricultural
biomass prediction activities for different crops. Among those are the enhanced vegeta-
tion index (EVI), the difference red edge index (NDRE), the green normalized difference
vegetation index (GNDVI), etc. With calculation of these abundant VI features, the as-
sessment of the crop biomass is mainly realized by finding the optimal VI. For example,
Sulik and Long [7] used the normalized difference yellowness index (NDYI) to estimate
flowering yield of oilseed rape which provided a better performance than NDVI. As more
VI metrics were proposed, to address the limitations of individual VI metrics, multiple VIs
can be combined as predictor variables to improve the effectiveness of biomass prediction
methods. For example, Da et al. [8] found that a combination of soil-adjusted vegetation
index (SAVI) and NDVI indices made a significant contribution in predicting soybean yield.
Kouadio et al. [9] found that using EVI and NDVI could significantly reduce the errors of
predicting wheat yield by extracting multiple VIs. Despite the encouraging results obtained
using VIs, the intrinsic yield drivers have not been fully explored in the modelling.

Nowadays, using data from multiple sources to predict crop biomass is attracting
much attention. Imaging with VIs-NIR sensors often suffers from saturation of data
information, especially when applied on high density vegetation [10]. Therefore, it is
necessary to use other sensors to acquire crop information as a supplement to the spectral
information. Unlike multispectral information that can be quantified through VIs, the use of
UAV-based light detection and ranging (LiDAR) sensors in agricultural research is relatively
limited. In fact, studies conducted by Christiansen et al. [11] and Sofonia et al. [12] on
wheat and sugarcane crops have revealed significant correlations between LiDAR-derived
crop attributes and biomass. Therefore, the combination of spectral information conveyed
in multispectral data and three-dimensional structural information of crops conveyed
in LiDAR data to obtain more comprehensive information on crops has the potential to
improve the estimation of plant traits in various agricultural applications.

With multi-source remote sensing data utilized for biomass prediction, many VI
features can be obtained, with varying degrees of importance to the biomass prediction
task. With limited training samples, simple concatenation or stacking of different feature
objects may contain redundant information or result in overfitting models [13]. Therefore,
feature dimensionality reduction is necessary when using multi-source remote sensing
multispectral and LiDAR indicator data feature metrics [14]. For example, Cao et al. [15]
used exploratory data analysis to select variables significantly associated with wheat
yield. Li et al. [16] used the ReliefF feature selection algorithm to select two narrow-
band vegetation indices for predicting potato yield. Zhang et al. [17] used a total of
three methods of stepwise regression analysis, recursive feature elimination and Boruta
analysis to select features for forest height estimation, all with relatively good results.
There are also other feature transformation methods performing good feature learning
for biomass estimation, such as principal component analysis (PCA) [18]. In fact, model
interpretability is a key focus for feature learning in applications for agriculture and the
forestry industry [19,20]. The lack of interpretability of the learning process make it difficult
to find effective reference information to constrain and improve optimization of existing
problems. Nowadays, the deep learning network is well known as a first choice for feature
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learning; however, limited model interpretability is a major problem when it is used for
multi-source remote-sensing-based biomass prediction without being capable of providing
features that have physical meaning. Moreover, most available deep learning networks are
supervised. Archetypal analysis (AA) [21,22] aims to find data archetypes with extreme
properties and shows great potential for feature learning. Given its ability to deliver
good model interpretation, its kernel extension has been explored for extracting multi-
source remote sensing metrics to facilitate forest age attribute evaluation by modification
with fast implementation [13]. As with the probabilistic realization of AA by Seth [23],
Keller et al. [24] proposed a deep archetypal analysis (DAA) in their latest research, which
presents a significant ability to achieve unsupervised non-linear feature learning in potential
space and is especially useful for applications with small training sets. Moreover, DAA
allows use of a priori auxiliary information to guide the search for interpretable archetypal
features. DAA, shows great potential for mining informative interpretable features in
abundant multisource remote sensing data for biomass prediction through unsupervised
non-linear deep learning by adding proper guiding information.

In addition to the use of informative VIs, another important aspect of estimation of
crop biomass requires precise and robust regression models [25]. Multiple linear regression
(MLR) is the most popular regression modelling method due to its simplicity and efficiency.
For example, Stateras et al. [26] used MLR to develop an olive tree yield prediction model
including factors such as NDVI and ground slope. Zhou et al. [1] used MLR to establish the
relationship between rice yield and variables of NDVI and visible atmospherically resistant
index (VARI) at different stages of its growth, which achieved a coefficient of determina-
tion R2 exceeding 0.7. However, when there are complex relationships between predictor
variables and biomass, linear regression models have limited performance [27]. There have
been several non-linear regression models reported that are able to handle non-linear fitting
tasks, such as random forest regression (RFR) [28], support vector regression (SVR) [29]
and K-nearest neighbor regression (KNN) [30]. Zhang et al. [31] achieved good results
in predicting winter wheat yield using SVR with hyperspectral data. Xu et al. [32] used
RFR to estimate maize biomass and found that it was very helpful for precise estimation.
Han et al. [33] used both SVR and RFR to predict winter wheat yield and achieved an
R2 of greater than 0.75. A deep neural network (DNN) was demonstrated to have pow-
erful non-linear learning ability in different applications including regression tasks [34].
For example, Kross [35] used neural networks to model crop yields. Yang et al. [36] used
deep convolutional networks for regression, and it was found to be significantly better
than traditional regression models. Compared to those individual models, in recent years,
integrated learning methods that integrate multiple underlying learners have received
much attention [37–39]. Through use of integrated approaches, for example, the stacked
regression method of superimposed regression [40], heterogeneous learners have been
combined to exploit their different merits for regression accuracy improvement in forest
cover estimation [41], PM2.5 monitoring [42] and predicting the yield of alfalfa [37] with
hyperspectral data. However, integration of general regression models including DNN
regression has rarely been explored for precise biomass prediction.

In light of the above facts, the aim of this study is to propose a deep-learning-based
biomass prediction approach for sugarcane fields using UAV-based multi-source remote
sensing data. Specific objectives include: (1) proposing a PCA-aided DAA interpretable
remote sensing feature selection method for biomass prediction; (2) establishing an inte-
grated regression model including DNN regression; and (3) evaluating the potential of the
proposed approach for sugarcane biomass prediction.

2. Materials and Methods
2.1. Data Source

The dataset used in this study was created by Yuri et al. [18] for sugarcane biomass
prediction. Data acquisition was conducted in the sugarcane fields using both UAV-based
LiDAR and multispectral imaging sensors in six sessions during the growing season from
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November 2017 to June 2018. The sugarcane fields were sampled at two sites in north-
east Queensland, each of which consisted of 10 m × 30 m blocks covering six rows of
sugarcane. Nitrogen treatments (0, 70, 110, 150, 190 kg N/ha) were applied to each block
by using randomized groups of categories. There were in total 56 randomly distributed
sugarcane plots of size 2 m × 2 m that were finally collected for biomass evaluation during
the last season. Manual weighing and recording of the mass of sugarcane from each of
the 56 designated sampling plots were conducted. This biomass collection was used as
reference to learn the proper biomass prediction model through relating to the remote
sensed predictors calculated from multispectral and LiDAR data collected from these
56 field plots during six periods; biomass prediction at all locations of the planting site
could then be achieved.

Yuri et al. [18] summarized and used 116 indices from multispectral and LiDAR data
for predicting sugarcane biomass. Specifically, 10 vegetation indices, NDVI, NDRE, GNDVI,
EVI, modified anthocyanin content index (MACI), optimized soil-adjusted vegetation index
(OSAVI), simplified canopy chlorophyll content index (SCCCI), transformed chlorophyll
absorption and reflectance index (TCARI), triangular greenness index and VARI, were
calculated using multispectral images. On this basis, the maximum (max), minimum (min),
mean (avg), standard deviation (std), 25th percentile (p25), 50th percentile (p50) and 75th
percentile (p75) of each vegetation index of all pixels of each biomass sampling plot were
derived, and a total of 70 multispectral features were obtained. In addition, a total of 46
LiDAR indicators were generated using LiDAR point cloud data. Maximum height (max_h),
average height (avg_h), average square height (qav_h), standard deviation of height (std_h),
height skewness (ske_h), height kurtosis (kur_h), 5th to 95th height percentiles (p05 to p95),
5th to 95th bincentiles (fraction of points between ground and the height percentile) (b05 to
b95) and percentage of height points for 0 to 0.1 m, 0.1 m to 0.5 m, 0.5 m to 1 m and 1 m
to 10 m (d00 to d03) (threshold values for d00, d01, d02 and d03 are defined to represent
penetration of laser pulses at different sheights of sugarcane) were included. In this study,
the same set of 116 metrics could be used to mine the key metrics important to sugarcane
biomass prediction.

2.2. Method

The aim of this study is to investigate an advanced sugarcane biomass prediction
method including potential feature mining and prediction modelling using UAV-based
multi-source remote sensing. The workflow of the proposed approach is presented in
Figure 1. As seen from Figure 1, with the fused multi-source remote sensing data metrics,
interpretable feature selection was first conducted using a PCA-aided DAA. This network
works to generate representative archetypes and then enables the elimination of an informa-
tive subset from the original 116 feature indicators. Then, an integrated regression model
combining RFR, SVR, KNN and DNN is used to model the fitness between selected feature
indicators and biomass to obtain the final biomass prediction model.
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Figure 1. Workflow diagram of the proposed biomass prediction method with the number of
archetype parameters set to three as an example. Pi, (i = 1, 2, 3, 4) are regression model predictions.

2.2.1. Interpretable Feature Selection

Feature selection is essential to reduce data dimensionality and extract more informa-
tive features before model development. Model interpretability is especially important for
the intelligent processing of remote sensing information applied to agricultural applica-
tions [19,20]. To provide good model interpretability, a deep learning network of DAA [24]
was deployed in this study to achieve representative feature learning from 116 remote
sensed metrics of sugarcane to mine key metrics used for further biomass prediction.

The linear AA model can be regarded as a variant of non-negative matrix factorization.
AA obtains low-dimensional potential factors called archetypes, endowed with geometric
interpretation by imposing convex and non-negative constraints [22]. Mathematically,
the objective of AA is to determine weight matrices A and B for a given data matrix
X which enables obtaining a small set of k extreme/representative archetypes and can
represent the data points using those archetypes. This leads to the following optimization
problem formulated as Equation (1)

min
A,B
‖X− ABX‖2

F s.t.A ≥ 0, B ≥ 0, |am|1 = 1, |bk|1 = 1 (1)

where X ∈ Rm×n is the input data with n features. The new features Z = BX are known
as archetypes which are generated as linear combinations of observations weighted by
the index matrix B. The observations are reconstructed using these archetypes and the
corresponding coefficients A.

The goal of DAA, as in linear AA, is to find K convex packets that best describe the
components of the original data (i.e., the smallest convex set containing data X) and obtain
extreme data patterns. DAA is established by adopting deep variational information bottle-
neck theory which combines the information bottleneck with the variational autoencoders
approach. Different from AA, DAA identifies archetypes in a potential feature space. This
is realized by transforming the original data X via a non-linear transformation f (X) into
new representation T ∈ Rm×n. As deep variational information, bottleneck theory utilizes
information bottleneck theory which optimizes the objective function (Equation (2)) to find
the random variable T

min
p(t|x)

I(X; T)− λI(T; Y) (2)

where λ is the Lagrangian multiplier, and the function I denotes the mutual information do-
main. This formulation indicates that it enables T to retain as much information as possible
from an auxiliary information matrix Y. Thus, in addition to good model interpretability,
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DAA also uses extra side information to guide the representative feature learning [24].
To constrain the feature learning process with extra benign property, PCA feature property
and the advanced feature learning capability of DAA are combined in this study. Specif-
ically, the auxiliary information Y is generated through PCA by setting the cumulative
contribution of the principal component variance to 0.9. Using PCA principal components
as auxiliary information is assumed to guide the data decomposition process to determine
valuable archetypes in the potential space independent of each other as the principal com-
ponents are orthogonal to each other. Moreover, approaching PCA decomposition is better
to force the new data distribution with maximum cumulative variance. Another intention
is to combine those advantages realized in the non-linear mapping space which can be
taken as an indirect realization of PCA in the non-linear way but being imposed as more
physical constraints.

By using a parametric form of Equation (2) with parametric conditionals pφ(t|x) and
pθ(y|t), and assuming IB Markov chain T − X−Y, the above formulation is revised thus

max
φ,θ
−Iφ(t; x) + λIφ,θ(t; y) (3)

The non-linear transformation f (X) to achieve the new representation feature in DAA
is realized through first sampling ti by means of the probabilistic AA following Equation (4)

ti ∼ N (ui(x) = aiZ, σ2
i (x)I) (4)

where the mean ui and variance σ2 given by ai are non-linear transformations of data point
xi learned by the encoder, and ui is a convex combination of the archetype zj, j = 1, . . . , k
weighted by vector ai. The archetype zj is further considered to be a convex combination
of ui, i = 1, . . . , m weighted by bj. Then, through learning the weight matrices A and B
subjected to the convex constraints and Gaussian parameterization, DAA can learn, in a
non-linear manner, the latent archetypes in the latent space and realize the transformation
of X as a convex combination of those archetypes.

There is no absolute reference system in the potential space, so the k archetypes need
to be positioned at the low-dimensional simplex, and matrix Z f ixed is used to collect the
coordinates. This results in the loss of additional distance-dependent archetypes that need
to be minimized:

min lAT = min
∥∥∥Z f ixed − BAZ f ixed

∥∥∥2

2
= min

∥∥∥Z f ixed − Zpred
∥∥∥2

2
(5)

where Zpred = BAZ f ixed is the predicted archetype position given the learning weight
matrices A and B. The optimal archetype structure is obtained if Zpred ≈ Z f ixed (i.e.,
the loss function is minimized) and the constraints on A and B can be guaranteed by using
softmax layers. Therefore, the complete objective function of DAA is finally represented as
Equation (6). More optimization details of DAA can be found elsewhere [24].

max
φ,θ
−Iφ(t; x) + λIφ,θ(t; y) + νIφ,ψ(t; x̃)− lAT (6)

To acquire key original features rather than archetypes as mathematical generated fea-
tures, this study mines the key metrics from the combination components of the archetypes.
That means the most informative metric that contributes to each archetype is extracted.
This must utilize the index matrix B of the archetypes as it indicates which original features
contribute to the generation of the archetypes. Therefore, those original input feature
metrics, which contribute the most to the generation of each archetype, are finally selected
as the most explanatory physical features following Equation (7):

Eg = {xi|Bj(i) == max
(

Bj
)
|j = 1, 2, . . . , j = k} (7)



Remote Sens. 2022, 14, 4944 7 of 20

where Bj represents the index vector corresponding to a certain archetype.

2.2.2. Biomass Prediction with an Integrated Regression Model

An appropriate regression model is important for biomass prediction. For example,
the KNN method [30], an instance-based learning method that predicts the unknown
sample by averaging the data of the k samples closest to the target sample, can tolerate
noise and uncorrelated properties. Linear RFR [28] is a model that combines a large
number of regression trees where each decision tree is constructed with a random set of
features and samples and is learned independently of each other. The results of each tree
are then combined to make the final prediction. Therefore, RFR can reduce overfitting.
With respect to the non-linear regression methods, SVR [29] uses kernel functions to map
data inputs to a high-dimensional feature space and realize non-linear regression. Those
independent regression models have been widely explored for prediction tasks. Nowadays,
as the powerful learning ability of a neural network, a deep regression network is of more
potential to be constructed for regression. In addition, integrated learning that uses a
sequence of learners to learn independently and then integrates the individual learning
results following some rules can achieve more promising learning results. Therefore,
in this study, an integrated learning model based on a stacking strategy proposed by
Wolpert et al. [40] was used to integrate the abovementioned four regression models
developed using different principles, while their power for biomass prediction has been
demonstrated in many studies [25,27,43]. MLR was utilized to combine those base learners
linearly for the sake of model diversity and complementary information. Specifically,
the DNN regression network in this study was constructed with three fully connected
hidden layers and 10 neurons for each layer. The entire neural network was trained by
adjusting the weights of each hidden layer to establish an end-to-end relationship between
the input and output. The non-linear Levenberg–Marquardt training algorithm was chosen
for optimization as it is insensitive to over-parameterization problems and can reduce the
possibility of falling into local minima.

2.3. Model Evaluation

To achieve acceptable accuracy and robustness when using such a small number of
data samples, leave-one-out cross-validation was adopted for model training. In detail, 55
out of the total of 56 samples were selected at a time to train the model, and the remaining
sample was used to validate the model performance, and the prediction performance of
the model was characterized using the average of 56 test results.

To assess the predictive performance of the proposed model for crop biomass in
a quantitative manner, the evaluation metrics in terms of R2, root mean square error
(RMSE), and mean absolute deviation (MAE), were applied. The R2, RMSE, and MAE were
calculated separately in the following equations:

R2 = 1−
Σn

i=1(yi − ŷi)
2

Σn
i=1(yi − yi)

2 (8)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (10)

where n is the number of samples, yi and ŷi are the observed and predicted values of the
samples, respectively, and yi represents the mean of all observations. The higher the value
of R2, the lower the RMSE and MAE, and the better the prediction achieved by the model.
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3. Results
3.1. Multi-Source Data Feature Selection

Feature selection by DAA is unsupervised learning which requires manual settings
of the generated representative archetypal features. To determine the optimal number of
archetypes, features for biomass prediction with different parameter configurations were
selected in this study, and the classic MLR model was used to quantify the effectiveness of
those configurations of features for biomass estimation.

Figure 2 presents the biomass regression performance with varied number of archetypes
in terms of R2. The number of archetype parameters is shown to increase; the prediction
accuracy using the proposed feature selection methods shows an upward trend. To obtain
the proper number of valuable predictors, the optimal number of archetypes for different
periods of data was determined using the cut-off criterion of slow growth in model perfor-
mance. For example, for Periods 2 and 3, the optimal archetype numbers can be obtained
directly from the peak performance of the model, both with a value of 15. For Periods
1, 4, 5 and 6, since there is no significant peak in prediction performance, the archetype
numbers at which the predicted performance begins to approach a plateau are selected as
values of 15, 12, 14 and 12, respectively. Figure 3 displays fitted scatter plots of observed
and predicted biomass values obtained using the respective best predictors for each of the
six periods.

4 6 8 10 12 14 16 18
 Number setting of DAA features
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0.3

0.4

0.5

0.6

0.7

0.8

R
2

Period 1
Period 2
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Figure 2. Biomass prediction accuracy using MLR models with varied archetype settings.
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Figure 3. Scatter plots of observed versus predicted values fitted using the best predictors for the
six periods.

With the best subset of features achieved with PCA-aided DAA for biomass prediction
in each period, prediction results compared to those using PCA-based feature learning
and linear AA-based feature selection are illustrated in Figure 4. Prediction with PCA
features was achieved according to the experimental setting by Yuri [18]. With the variance
percentage set at 0.9, a total of seven-dimensional principal component features can be
obtained with PCA for the biomass prediction using MLR in six different periods, and the
R2 values obtained are 0.1955, 0.6163, 0.6269, 0.5257, 0.4910 and 0.3695, respectively. When
the feature learning of PCA is replaced by the proposed PCA-aided DAA feature selection
in this study, the R2 values of the fitting results show significant improvement over PCA
in all six periods. In fact, it ranks first almost among all the counterpart methods during
the whole growth period. It achieves the highest R2 value of 0.7745 in the third period
which obtains an improvement of 0.1476 compared to 0.6269 using a PCA approach in the
same period. An average increase of at least 0.1076 can be achieved throughout the growth
period. More increases are found in the early and late stages. Thus, those results confirm
the validity of deep-learning-based feature selection method proposed in this study for
predicting sugarcane biomass. Moreover, this figure also suggests that even though the
linear AA is not as competitive as DAA in most periods except Period 5, it deserves higher
recommendation compared to PCA in feature selection for biomass prediction.



Remote Sens. 2022, 14, 4944 10 of 20

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6
 Period and Model 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
2

PCA+MLR
AA+MLR
DAA+MLR

Figure 4. Comparison of R2 obtained with different feature selection methods for biomass prediction
in six periods.

Table 1 summarizes the evaluation of the best subset of features selected by PCA-aided
DAA for biomass prediction with the MLR model in six periods. The best metrics derived
for biomass prediction in different periods are shown to differ. They were selected following
Equation (7), and their specific weights in the generation of corresponding archetypes are
presented in Figure 5. Combining the characteristics of the six periods of feature selection,
the spectral indicators of p25_NDVI, avg_NDRE, max_EVI, std_OSAVI and p25_VARI
and the LiDAR indicators max_h, std_h, p70 and b55 appear more frequently. Thus, these
remote sensing metrics are considered as predictors with more potential value for biomass
prediction. Table 1 also shows that during the whole growing process, the best prediction
result arises in Period 3 with the highest R2 of 0.7745, lowest RMSE of 3.4806 and an
MAE of 2.6995. The growing status at the beginning and last period obtains much poorer
predictions; therefore, around 120 days after application of fertilizer is the best time to
predict sugarcane biomass. Using the metric data from this time period as an example,
all the indicator metrics are visualized based on the data from this period (Figure 6).
The biomass mapping results in Figure 6n imply that the growing statuses distribution
represented by those 13 metrics including both spectra- and elevation-related, have different
correlations with the final biomass distribution.
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Table 1. Selection of key indicators from multispectral and LiDAR data features.

Period Optimal Number
of Archetypes Set

R2 Features Obtained with Optimal
Archetype Parameter Settings

Period 1 15 0.4272 min_GNDVI, max_EVI, p75_MACI, p25_OSAVI, p50_OSAVI, max_SCCCI,
std_TGI, min_VARI, std_h, p80, b25, b70, d01

Period 2 15 0.7492 p50_NDVI, avg_NDRE, std_GNDVI, avg_MACI, std_OSAVI, std_TGI,
p25_TGI, p50_TGI, max_VARI, p25_VARI, b10, b15, b55

Period 3 15 0.7745 p25_NDVI, std_NDRE, p50_GNDVI, max_EVI, p50_EVI, std_EVI, max_SCCCI,
p75_TGI, p25_VARI, p75_VARI, b05, b35, b55

Period 4 12 0.6333 avg_NDRE, p50_EVI, std_EVI, max_MACI, std_OSAVI, min_TGI, min_VARI,
p25_VARI, max_h, std_h, p70

Period 5 14 0.6037 avg_NDRE, std_GNDVI, max_MACI, p50_MACI, p25_OSAVI, p50_OSAVI,
avg_TGI, min_TGI, p50_VARI, max_h, p70, b10, b55

Period 6 12 0.5627 p25_NDVI, p50_GNDVI, avg_EVI, p25_TGI, p50_TGI, avg_VARI, p75_VARI,
p80, d01
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Figure 5. The composition weight of the selected features in the respective archetype, with larger
weights implying that the features are more capable of characterizing the extreme properties possessed
by the archetype: (a) period 1; (b) period 2; (c) period 3; (d) period 4; (e) period 5; (f) period 6.
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Figure 6. Visualization of the growth status of the whole planted area with respect to each selected
key metric. The final biomass map shows that most of the selected key indicators are correlated with
crop biomass.

Figure 7 further presents the correlation between the above selected 13 predictors and
the biomass data through a correlation matrix. As can be seen in the figure, the variables
p25_NDVI, std_NDRE, p50_GNDVI, max_EVI, p50_EVI, std_EVI, max_SCCCI and
p75_TGI are positively correlated with each other and with the biomass, while p25_VARI,
p75_VARI, b05, b35 and b55 are negatively correlated with the previous variables and
also negatively correlated with the biomass. This result is in fact along with the natural
phenomena. For example, because the three LiDAR metrics of b05, b35 and b55 are defined
as the fraction of points between the ground and the height percentile, the higher and
denser growing of sugarcane means less points could arrive at the ground, and more points
would be received at a higher height. Consequently, smaller values are calculated for those
metrics, but more biomass would be achieved with higher and denser sugarcane.
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Figure 7. Correlation matrix between selected features and biomass in Period 3.

3.2. Biomass Prediction with Different Regression Models

With the potential subset of biomass predictors, the four mentioned regression models
introduced in Section 2.2.2 are first deployed for biomass prediction independently. Then,
to evaluate the effectiveness of the stacking method, different combinations of the base
learners are adopted to predict biomass for each of the six stages in the changing fertility of
sugarcane. The biomass prediction results obtained are shown in Figure 8. The sugarcane
biomass predicted by each individual regression model presents different performances
on each prediction task. KNN and RFR do not maintain a high prediction accuracy in the
whole growing periods and only have better results in a particular period. The highest R2

achieved using SVR exceeds 0.7, but in some periods, the results are significantly inferior
to those predicted by KNN or RFR algorithms. Obviously, the deep learning regression
method behaves best among all methods assessed herein. Overall, the integrated regression
models outperform every independent learning mode for predicting sugarcane biomass in
all six periods; in general, the more the base learners are included, the more promising the
prediction results are. The best results in all the periods are obtained by using the integrated
learning with the four base learners. Compared to the best result of 0.7745 achieved using
conventional MLR in Table 1, the integrated learning enables the much higher R2 value of
0.8722 in the third period when the four base learners are integrated.
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Figure 8. R2 comparison of different superimposed regression models for six periods.

Table 2 further displays the combination coefficients for the four base learners in the
secondary integration learning layer with MLR. The higher the regression coefficient of
a particular base learner is, the more significant its contribution to the final prediction
performance will be. The effect of linear KNN on the performance of the stacking model
has a positive correlation in the early periods and shows a negative correlation in the later
stages, but the overall contribution is small with the regression coefficient being stable
around 0.2. Interestingly, the trend of the integration coefficient of the non-linear SVR model
is opposite that of KNN. It witnessed a steady decline, followed by a sharp fluctuation,
first increasing, then decreasing. It maintains negative contributions in the integration for
biomass prediction in the first three early stages and the final period. A positive coefficient
for integration is only found in two stages. Over the six periods of the forecasting task,
the RFR model shows a more stable performance, with regression coefficients fluctuating
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between 0.3 and 0.5. The DNN model makes the greatest contribution among all the base
learners in all periods.

Table 2. Distribution of regression coefficients within the second level model (MLR).

Model Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

KNN 0.1398 0.2525 0.0972 −0.2492 −0.5308 −0.0431
SVR −0.0553 −0.3792 −1.3946 0.2296 0.2276 −0.2325
RFR 0.5010 0.3148 0.3660 0.4844 0.1298 0.3683

DNN 0.6330 0.8390 1.9695 0.6946 1.1441 0.8115

Figure 9 displays the scatter plots of observed versus predicted values obtained with
the best predictors using the best integrated learning approach. In accordance with the best
illustration of regression accuracy in Figure 8, the best visualization using fitting results
is also obtained in Period 3. With respect to the regression models shown in Figure 9,
the sugarcane biomass mapping of whole planting area in different periods using PCA-
aided DAA feature selection and the best integrated regression learning including DNN
is presented in Figure 10. Apparently, the predicted biomass distribution map learned
with early or late period data obtains a prediction result violating the natural growing
phenomenon. Figure 10c,d also show the discrete distribution of plant biomass, matching
practical conditions on farmland. In contrast, the biomass of plants in a plant area shows
more continuous and natural variations as shown in Figure 10b,c. In referring to the
biomass prediction accuracy obtained on the sampled plots data as displayed in Figure 8,
the biomass mapping of the whole plant area in Figure 10c is more promising in terms of
its use in the evaluation of the growing status of such plants.
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Figure 9. Scatter plots of observed versus predicted biomass values achieved by the integrated
regression model.
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Figure 10. Total biomass predicted using the proposed method for six periods. The color bars denote
total biomass estimates from 10 to 40 in unit of kg.

4. Discussion

To establish a biomass prediction model with higher prediction accuracy through
mining informative physical interpretable features to guide crop management interventions,
this study proposes an effective deep-learning-based approach for feature selection based
on a PCA-aided DAA network and using an integrated regression model. The proposed
method archives much more promising results compared to traditional methods.

Appropriate feature processing of the data is an important step before regression
modelling to obtain higher predictive performance. Feature processing algorithms such as
recursive feature elimination [37] and PCA [18] have been applied to biomass prediction
analysis with good results. In ecological studies, it is particularly important to select the
most informative features from the original dataset, rather than use virtual mathematical
features. Different from those widely used feature learning methods, our PCA-aided DAA
network enables dimensionality reduction of the data features in a non-linear mapping
space. Figure 4 shows that this non-linear method predominantly surpasses PCA and linear
AA dimensionality reduction methods in feature mining for biomass prediction. Moreover,
it allows easy extraction with clues to finding informative features while maintaining the
original physical meaning of the data.

To address the challenge of precise biomass prediction, it is important to know the key
influencing factors associated with yield to inform crop management interventions. In fact,
it is of great significance to expound the implicit relationship between the physico-chemical
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characteristics of the object and those selected metrics. A study proves that remotely sensed
vegetation indices can reflect the physiological characteristics of crops at different growth
stages [44]. The higher values are usually associated with faster growth rates or higher
biomass accumulation in crops [44,45]. In our study, different sets of VIs were found to
exhibit potential for biomass prediction in different periods (Table 1). Figure 6 presents
the 13 key metrics distribution of the whole planted area in the most representative period
(Period 3). Most of the selected metrics that represent the growth status of the plants the
most are also highly correlated with the biomass prediction results referring to Figure 6n,
and those are mainly generated from spectral data. In contrast, three LiDAR metrics
show a negative correlation with biomass. In fact, those three metrics are also in line with
the natural phenomena because they are the fractions of points between ground and the
corresponding height percentile. The higher and denser growing of sugarcane means that
less points can arrive at the ground, and more points will be received at a higher height.
Consequently, smaller values are calculated for b05, b35 and b55. This presents the potential
value of our feature-selection method to extract interpretable remote sensing metrics which
are important to reflect their relationship with final biomass. Moreover, the results also
show that accurate prediction of the biomass relies on VIs of both spectral indices and
LiDAR indicators. In fact, prediction of biomass using spectral indices alone encounters
the problem of easy saturation in dense vegetation [10]. Combining spectral indices with
LiDAR indicators carrying structural information about the crop (e.g., std_h and b55)
can benefit from the goodness of multi-source information to realize better predictions.
Moreover, the traditional practice applies equal amounts of fertilizer indiscriminately to
all planting areas at the beginning of the growing season. According to the information in
Table 1 and Figure 6, proper adjustment measures to local conditions may allow better crop
nutrient uptake and reduce environmental impacts through monitoring the key influencing
factors and implementation of subsequent adjustments.

Many studies on crop biomass prediction have been performed using different re-
gression methods, all of which have achieved promising prediction results [25,27,37,39,43].
In this study, Figure 8 shows most of the independent regression methods fail to achieve
overall good prediction performance in different periods. Therefore, it is difficult for a
single machine learning model to maintain a general high prediction performance in crop
biomass estimation with different periods of remote sensing data. It is essential to develop
a method that can integrate the advantages of multiple models to improve the accuracy of
sugarcane biomass prediction under different growth conditions. Figure 8 demonstrates
that the integrated learning combines the strengths of multiple machine learning mod-
els in obtaining greater prediction accuracy. It returns a more stable performance than
the independent regression method which shows greater fluctuations over different pe-
riods; therefore, combining all suitable base learners by stacked regression methods as
far as possible is an effective way in which to obtain an optimal model for sugarcane
biomass prediction. Given the outstanding performance of the DNN shown in the present
study, it deserves consideration for use in biomass estimation no matter whether used in
independent or integrated learning cases.

The overall experimental results in this study show that the new approach proposed
in this paper is very effective in improving the accuracy of biomass prediction based on
early crop data. In terms of a temporal comparison, the prediction performance of the
model peaks at the early periods of the season (i.e., the second and third periods in Figure 8)
regardless of which method is used, and then the prediction accuracy gradually decreases.
This finding suggests that the best time point for biomass prediction is around 120 days
after crop fertilization, which is early in the entire growth cycle of sugarcane. The most
likely reason for this result is that the differences in crop structure and vegetation index
between the different N-fertilizer treatments are gradually decreasing with the increase
in the crop growing period [18]. This is very important as it conforms to the practice that
predicting crop biomass plays a significant role in adjustment of planting management
practices to maximize yield. If the biomass could only be accurately predicted until late
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in the growing season, it would restrict the ability to take, and efficacy of, prompt actions
or adjustments.

5. Conclusions

This study indicates that compared to the traditional biomass prediction technique
using PCA, traditional AA and MLR, interpretable feature selection using the proposed
PCA-aided DAA method and regression using an integrated regression model can further
improve the biomass prediction performance. The prediction performance in terms of R2

increased from 0.6269 in one available study [18] to 0.8722 using the method proposed
here. The experimental results for six different periods of multi-source data pertaining to
sugarcane plants indicate that our deep learning feature selection method enables users to
achieve more informative VIs or LiDAR metrics than the PCA method in terms of feature
interpretability. The multiple remote sensing metrics of p25_NDVI, avg_NDRE, max_EVI,
std_OSAVI and p25_VARI and the LiDAR indicators max_h, std_h, p70 and b55 show
potential value in sugarcane biomass estimation. This provides practical experience to
growers with regard to the key or informative spectral or LiDAR indicators related to
biomass, which allows them to adjust planting management plans accordingly.
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