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Abstract: With the development of deep learning, the performance of image semantic segmentation
in remote sensing has been constantly improved. However, the performance usually degrades while
testing on different datasets because of the domain gap. To achieve feasible performance, extensive
pixel-wise annotations are acquired in a new environment, which is time-consuming and labor-
intensive. Therefore, unsupervised domain adaptation (UDA) has been proposed to alleviate the
effort of labeling. However, most previous approaches are based on outdated network architectures
that hinder the improvement of performance in UDA. Since the effects of recent architectures for
UDA have been barely studied, we reveal the potential of Transformer in UDA for remote sensing
with a self-training framework. Additionally, two training strategies have been proposed to enhance
the performance of UDA: (1) Gradual Class Weights (GCW) to stabilize the model on the source
domain by addressing the class-imbalance problem; (2) Local Dynamic Quality (LDQ) to improve the
quality of the pseudo-labels via distinguishing the discrete and clustered pseudo-labels on the target
domain. Overall, our proposed method improves the state-of-the-art performance by 8.23% mIoU
on Potsdam→Vaihingen and 9.2% mIoU on Vaihingen→Potsdam and facilitates learning even for
difficult classes such as clutter/background.

Keywords: unsupervised domain adaptation; semantic segmentation; remote sensing image;
transformer; self-training

1. Introduction

Remote sensing (RS) image-semantic segmentation is aimed at analyzing the pixel-
level content of RS images and classifying each pixel in RS images with a predefined ground
truth label. It has received increasing attention and research interest due to its application
in city planning, flood control, and environmental monitoring.

In the past few years, many semantic segmentation algorithms based on deep neural
networks (DNNs) have been proposed and achieved overwhelming performance, such
as fully convolutional networks [1–3], Encoder-Decoder based models [4], and Transform-
ers [5–8]. However, these methods require a large amount of annotated data to work
properly with specific datasets and have degraded performance due to the discrepancy
between feature distributions in different datasets and named domain gap (or domain
shift). Datasets with different feature distributions are considered as different domains.
The domain gap mainly occurs due to the diversity of data acquisition conditions, such as
color, lighting, and camera settings. Therefore, in practical applications, these supervised
methods are limited to specific scenes and still need laborious annotations to perform well
in different datasets.

Domain adaptation (DA), a subcategory of transfer learning, has been recently pro-
posed to address the domain gap. It enables a model to learn and transfer the domain-
invariant knowledge between different domains. DA methods can be supervised, semi-
supervised or unsupervised based on whether it has access to the labels of the target
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domain. In particular, unsupervised domain adaptation (UDA) is aimed at transferring the
model from a labeled source domain to an unlabeled target domain. Currently, existing
UDA works can be divided into generative-based methods, adversarial-learning methods,
and self-training (ST) methods [9].

Specifically, generative-based works use image translation or style transferring to
make the images from different domains visually similar. Then, semantic segmentation
models can be trained with the translated images and the original labels. Yang et al. [10]
used the Fast Fourier Transform (FFT) to replace the low-level frequencies of the target
images with that of the source images before reconstituting the image via the inverse FFT.
Ma et al. [11] adopted gamma correction and histogram mapping on source images to
perform distribution alignment in a Lab color space. In remote sensing, graph match-
ing [12] and histogram matching [13] were applied to perform image-to-image translation.
To obtain more accurate and appropriate translation results, generative adversarial net-
works (GANs) [14–17] have been widely used in previous UDA methods [18–23] for RS
semantic segmentation. The potential issue of generative-based methods is that the perfor-
mance of semantic segmentation models heavily rely on the quality of translated images,
as pixel-level flaws could significantly influence the accuracy.

Adversarial-learning methods introduce a discriminator network to help segmenta-
tion networks minimize the discrepancy between source and target feature distributions.
The segmentation network predicts the segmentation results for the source and target
images. The discriminator takes the feature maps from the segmentation network and tries
to predict the domain of the input. To fool the discriminator, the segmentation network
finally outputs feature maps with similar distribution for images from the source and target
domains. Tsai et al. [19] established that source and target domains share strong similarities
in semantic layout. They constructed a multi-level adversarial network to exploit structural
consistency in the output space across domains. Vu et al. [24] used a discriminator to make
the target’s entropy distribution similar to the source. Cai et al. [21] proposed a bidirectional
adversarial-learning framework to maintain bidirectional semantic consistency. However,
the discriminator networks are highly sensitive to hyper-parameters and are difficult to
train to learn similar feature distributions in different domains.

Unlike the first two UDA methods, self-training (ST) methods do not rely on any
auxiliary networks. ST strategies can transfer knowledge across domains with segmentation
networks only, which is far more elegant. ST methods follow the “easy-to-hard” scheme
where the highly confident predictions inferred from unlabeled target data are treated
as pseudo-labels and the labeled source data and pseudo-labeled target data are used
jointly to get a better performance in the target domain. Zou et al. [25] proposed one
of the first iterative ST techniques in semantic segmentation by treating pseudo-labels
as discrete latent variables, which are computed through the minimization of a unified
training objective. Vu et al. [24] introduced direct entropy minimization to self-training as
a way to encourage the model to produce high-confident predictions instead of using a
threshold to indicate high-confident ones. Yan et al. [26] combined the self-learning method
with the adversarial-learning method on RS images by a cross-mean teacher framework
exploiting the pseudo-labels near the edge. To alleviate the issue of faulty UDA pseudo-
labels in semantic segmentation, each pseudo-label is weighted by the proportion of pixels
with confidence above a certain threshold [27,28], named the quality of pseudo-labels.

In addition, most previous UDA methods evaluate their performance with classical
architectures such as DeepLabV2 [29] and DeepLabV3+ [4] which have been outperformed
by the modern vision transformer [5–7] and limit the overall performance of UDA methods.
In recent studies, Xu et al. [7] first introduced the transformer into the supervised semantic
segmentation of RS images. Hoyer et al. [30] were also the first to systematically study the
influence of recent transformer architectures on UDA semantic segmentation.

Meanwhile, UDA is concerned with transferring knowledge from a labeled domain to
an unlabeled domain, which is domain-relevant. From the perspective of domain-irrelevant
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methods, we can focus on improving the generalization of models by increasing the size of
training data and addressing the class-imbalance problem.

Data augmentation, a technique of generating perturbed images, has been found to im-
prove the generalization ability of models in various tasks. For instance, Zhang et al. [31] en-
hanced the dataset by linear combinations of data and corresponding labels. Yun et al. [32]
composited new images by cutting a rectangular region from one image and pasting it on
another, a technique recently adopted by Gao et al. [22] for semantic segmentation of RS im-
ages. Chen et al. [33] used a variety of spatial/geometric and appearance transformations
to learn good representations and gain great accuracy by a simple classification model in
a self-supervised learning method. In semi-supervised learning, Olsson et al. [27] mixed
unlabeled data to generate augmented images and labels named ClassMix. The mask’s
shape for mixing is determined by category and is not necessarily rectangular. To be
specific, a mask may contain all the pixels of a class. However, in the strategy of ClassMix,
half of the classes are selected to generate the mask [27]. Then, it was developed by Tran-
heden et al. [28] in the image-semantic segmentation UDA task, where the masked slices of
images and labels are generated in the source domain and are pasted to the target domain,
thus making the target images contain slices of the source images.

The imbalanced category proportions compromise the performance of most standard
learning algorithms, which expect balanced class distributions. When presented with
complex imbalanced datasets such as RS datasets, these algorithms might fail to properly
represent the distributive characteristics of the data, thus providing unfavorable accuracy
across the classes of the data. To address the class-imbalance problem, basic strategies can
be divided into two categories, i.e., preprocessing and cost-sensitive learning [34]. However,
most of them have either high computational complexities or many hyper-parameters to
tuning. In deep learning, Zou et al. addressed the class-imbalance problem by setting
different class weights based on the inverse of their corresponding proportions in the
dataset [25]. In UDA, Yan et al. [35] introduced class-specific auxiliary weights for exploiting
the class prior probability on source and target domains. Recently, Hoyer et al. [30] sampled
source data with rare classes more frequently in order to learn them better and earlier.
On the other hand, some data with common classes may be rarely sampled or not sampled
at all, which might result in degraded performance.

However, three challenges still exist in UDA for RS image-semantic segmentation:
(i) The potential of a vision Transformer for UDA semantic segmentation of RS images has
not been discussed. (ii) In ST methods [27,28], the correct and incorrect pseudo-label in an
image gets the same weight depending on the ratio of high-confident pixels. (iii) Due to the
randomness of sampling, the changes in category proportions during the training process
have not been considered in [30,35] for addressing the class-imbalance problem in UDA
semantic segmentation.

In this paper, we apply Transformer [30] and cross-domain mixed sampling [28] to a
self-training UDA framework for RS image-semantic segmentation. Then, two strategies
are proposed to boost the performance of the framework. First, we introduce a strategy
of Gradual Class Weights to dynamically adjust class weights in the source domain for
addressing the class-imbalance problem. Secondly, a novel way to calculate the quality of
pseudo-labels is proposed to guide the adaptation to the target domain. The implemen-
tation code is available at https://github.com/Levantespot/UDA_for_RS, accessed on
21 August 2022. The three main contributions of our work can be summarized as follows:

1. We demonstrate the remarkable performance of Transformer in self-training UDA of
RS images compared to the previous methods using DeepLabV3+ [4];

2. Two strategies, Gradual Class Weights, and Local Dynamic Quality are proposed to
improve the performance of the self-training UDA framework. Both of them are easy
to implement and embed in any existing semantic segmentation model;

3. We outperformed state-of-the-art UDA methods of RS images on the Potsdam and
Vaihingen datasets, which indicates that our method can improve the performance of
cross-domain semantic segmentation and minimize the domain gap effectively.

https://github.com/Levantespot/UDA_for_RS
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2. Methods

In this section, we provide an overview of our self-training framework, where the
pseudo-labels pT are generated by teacher model hφ from the target images xT to guide
the student network gθ to better transfer knowledge from the source to the target domain.
In addition, we will briefly compare the difference between the network structure of the
convolutional neural network (CNN) and the vision Transformer. Then, the class imbalance
issue is alleviated by Gradual Class Weights (GCW), where the weights of classes are
updated based on the current source image xS. Finally, we illustrate the implementations
of the Local Dynamic Quality (LDQ), where the quality of pseudo-labels pT is estimated
based on the states of their neighbors. The overall self-training UDA framework is shown
in Figure 1.
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Figure 1. Overview of our self-training framework with Gradual Class Weights and Local Dynamic
Quality. Source images xS and source labels yS are trained together in a supervised way with GCW.
Pseudo-labels pT are generated by teacher model hφ in place of the target labels yT . Target images xT

and pseudo-labels pT are trained together with LDQ. The darker the color is in GCW and LDQ, the
larger the weight of the corresponding class and pseudo-label is.

2.1. Self-Training (ST) for UDA

In UDA for RS, we define two sets of images collected from different satellites or
locations as different domains. To simplify the problem, images in the source and target
domains have the same resolution of H ×W with 3 channels and the same set of semantic
classes in both domains. One having both images xS and corresponding labels yS is the
source domain DS = {(xS, yS)|xS ∈ RH×W×3, yS ∈ RH×W×C}, where C is the number of
categories while the other with only images xT available is known as the target domain
DT = {xT |xT ∈ RH×W×3}. The subscripts S and T denote the source and target domains,
respectively. Note that the target labels yT are only accessible at the testing stage. The label
at spatial location (h, w) in yS is a one-hot vector with a length of C, denoted as y(h,w)

S ,
h ∈ [1, . . . , H], w ∈ [1, . . . , W]. The objective of UDA methods is to train a model using
source images xS and source labels ys to achieve a good performance on target images xT
without having access to the target labels yT . In the self-training UDA framework, a student
model gθ is first trained on the source domain DS in a supervised way, where θ denotes
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its parameters. The objective function with cross-entropy loss is formulated as shown in
Equation (1):

LS(xS, yS) = −
C

∑
c=1

H

∑
h=1

W

∑
w=1

GCW(n, c) · (y(h,w)
S )c · log

(
gθ(x(h,w)

S )
)

c (1)

where xS,yS are the n-th source image and the corresponding label, (·)c denotes the c-th
scalar of a vector, gθ(x(h,w)

S ) ∈ RC denotes the normalized probabilities predicted by gθ of
each class at location (h, w) in image xS, and GCW(n, c) is the weight as a function of class
c and index n of the image and will be discussed in Section 2.3.

To address the domain gap, ST approaches use pseudo-labels pT to transfer the
knowledge from the source to the target domain. In the basic version of ST methods,
the student model generates the pseudo-labels pT . To reduce abrupt changes in the model
parameters due to the large gap between the source and target domains, the exponentially
moving average (EMA) and teacher model hφ are introduced to make the generation of
pseudo-labels more reliable. In EMA, the teacher model hφ is updated based on the student
model gθ , formulated as shown in Equation (2):

φt+1 ← αφt + (1− α)θt (2)

where θ and φ are the parameters of student model gθ and teacher model hφ, respectively,
t denotes the training step, and hyper-parameter α ∈ [0, 1] indicates how important the
current state of weights φt is. The generation of pseudo-labels pT is formulated as shown
in Equation (3):

(p(h,w)
T )c =

1, if c = arg max
c′

(
hφ(x(h,w)

T )
)

c′

0, otherwise
(3)

where p(h,w)
T denotes the one-hot pseudo-label at location (h, w) in the pseudo-labels pT ,

and hφ(x(h,w)
T ) ∈ RC denotes the normalized probabilities of each class in image xT at

location (h, w). Note that no gradient will be backpropagated into the teacher model hφ

through this procedure. Since there is no guarantee that these generated pseudo-labels
are corrected, we use LDQ to quantify the reliability and quality of each pseudo-label at
location (h, w). They are denoted as LDQ(h, w) and will be discussed later in Section 2.4.
The pseudo-labels pT and their quality are jointly used to train on the target domain as
shown in Equation (4):

LT(xT , pT) = −
H

∑
h=1

W

∑
w=1

LDQ(h, w) · p(h,w)
T · log gθ(x(h,w)

T ) (4)

Note that the models gθ and hφ have the same network architecture. The pseudo-labels
pT are generated online, i.e., the teacher model hφ generates pseudo-labels pT for every
image at each iteration.

2.2. Transformer for Semantic Segmentation

We will briefly review what makes CNNs successful and then compare them to the
key components of vision Transformers. Generally, CNNs leverage the basic information
such as texture and color that make up the visual elements through a large number of
convolutional filters. For example, convolutional filters capture the key points, lines,
and curves in shallow layers, while filters in deeper layers extract more abstract details
and focus on discriminative structures [36,37]. Since CNNs are locally sensitive, different
receptive fields (RF) of the input image are perceived in different layers, as shown in
Figure 2. From the perspective of information flow, the receptive field determines the area
where the model can learn the information of the input image. Furthermore, CNNs capture
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local structures of an image in the early stages and extract a larger range of global features
in the deeper layers.

Figure 2. The receptive fields of CNNs in different layers. As the convolution proceeds, the range of
receptive fields gradually increases. Layer 1 gets an RF of 3 × 3 (blue area in the image), while 5 × 5
for layer 2 (light blue area in the image). Note that the two filters are both fixed at testing.

However, the learned convolutional filters are fixed at testing, which hinders the
generalization of CNNs. To make the model more adaptive and general, vision Transform-
ers [5–8] bring the self-attention mechanism from natural language processing to computer
vision. The self-attention mechanism is illustrated in Figure 3. The fixed convolutional
filters are replaced with weights that can be computed dynamically based on the similarity
or affinity between every pair of patches, thus enabling capturing “long-term” information
and dependencies between sequence elements. Therefore, vision Transformers have a
larger receptive field to extract finer features at the encoding stage.

3×3 Image Layer 1

with RF = 3×3

Overlapped Patches

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]

𝑓1(𝑥)

𝑓2(𝑥)

𝑓3(𝑥)

𝑄

𝐾

𝑉

transpose

softmax

𝑥1

𝑥2
𝑥3

𝑥4

Attention Map
𝑥1 𝑥2 𝑥3 𝑥4

𝑥1
𝑥2
𝑥3
𝑥4

: Matrix multiplication

Figure 3. A simplified illustration of the self-attention mechanism in vision Transformer. The self-
attention mechanism takes the overlapped patches of an image as input. These patches are encoded
in three ways, i.e., f1, f2, f3, to get three matrices Q, K, V, short for Query, Key, and Value, respectively.
The softmax result of the matrix product of Q and K is called the attention map, which represents the
similarity or weights between each pair of patches. The darker the color in the attention map, the
stronger the relationship between the two patches. The attention map is multiplied with the matrix V
to get the feature layer 1, which is the output of the self-attention module. Unlike the convolution,
self-attention module has a receptive field of the entire input.
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2.3. Gradual Class Weights (GCW)

Class imbalance is a common and plaguing situation where the distribution of data
is skewed since some classes appear much more frequently than others. For example,
the common class roads occur more frequently than the rare class cars, resulting in less
information about the cars and poor model generalization. To efficiently alleviate this issue,
Zou et al. [25] assigned a weight to each class, inversely proportional to the frequency in
the whole training dataset. As a result, the rare classes receive more attention than the
common classes. The frequency fc of class c is defined in Equation (5):

fc =
1

H ×W

H

∑
h=1

W

∑
w=1

(y(h,w)
S )c (5)

where y(h,w)
S denotes the one-hot source label at location (h, w), and (·)c denotes the c-th

scalar of a vector. However, due to the randomness in sampling, the distribution of the
class will be different from that calculated on the whole dataset in advance. To address the
mismatched distribution, the weights will be updated iteratively for each image. In addition,
inspired by gradual warmup [38], where small learning rates are used to reduce volatility in
the early stages of training, it is assumed that class weights also need the warmup to keep
the model more stable and robust in the early training stages. Notably, instead of directly
initializing the class weights to the distributions estimated from the first sample, they are
initialized to 1 and then are updated iteratively by an exponentially weighted average.
The pseudo-code of the proposed GCW is presented in Algorithm 1, where YS denotes
all the source labels with a size of Ns, fc denotes the frequency of class c in the source
domain, W(n, c) represents the original class weights only based on fc, and T denotes the
temperature parameter [30]. A higher T leads to a more uniform distribution while a lower
one makes the model pay more attention to the rare classes.

Algorithm 1 Gradual Class Weights

Input: Source Labels YS ∈ RNS×H×W×C, mixing parameter β ∈ (0, 1), and temperature T.
Output: Gradual class weights GCW(n, c) for each class c of n-th image.

1: ∀c ∈ [1, . . . , C], GCW(0, c)← 1 . Initialization via equal weights.
2: for n = 1 to Ns do . Calculate GCW for each image.
3: yS ← YS(n) . Get n-th label from YS.
4: for c = 1 to C do . For each class
5: W(n, c) = C·exp [(1− fc)/T]

∑C
c′=1 exp [(1− fc′ )/T]

. Calculate the naive class weights.

6: GCW(n, c) = β ·GCW(n− 1, c) + (1− β) ·W(n, c) . Calculate the GCW.
7: end for
8: end for

2.4. Local Dynamic Quality (LDQ) of Pseudo-Labels

In some previous ST works [25,26], only pseudo-labels with probabilities greater than
a fixed threshold λ are used for training, and they are known as high-quality pseudo-labels.
Equation (6) depicts the procedure of determining the quality of the pseudo-label at location
(h, w).

q(h, w) =

{
1, if max

(
hφ(x(h,w)

T )
)
≥ λ

0, otherwise
(6)

where 1 and 0 indicate high quality and low quality, respectively, hφ denotes the teacher
model used to generate pseudo-labels as it is more stable than the student model gθ .
The threshold λ is typically determined via grid search, where a manually specified subset
of the thresholds is searched exhaustively, the best value will then be chosen as the pseudo-
label threshold λ. Once the threshold is determined, it will not be changed during the
training stage. Intuitively, a higher threshold leads to more accurate, high-quality pseudo-
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labels but may also result in fewer samples available for training in the early training stage,
because the model should have lower confidence during the early training stages than after
many iterations.

To alleviate the influence of faulty UDA pseudo-labels in semantic segmentation,
the image-wise ratio of high-quality pseudo-labels in an image is estimated to weigh the
sample [27,28]. Therefore, we proposed a pixel-wise quality of pseudo-labels named local
dynamic quality (LDQ), where each pseudo-label is assigned a different weight based on
the pixels around it. The main idea underlying our method is intuitive: discrete pseudo-
labels are more likely to be misclassified and should have relatively lower quality. On the
contrary, the clustered ones deserve higher quality. In particular, the quality of a pseudo-
label is calculated based on the ratio of high-quality surrounding pseudo-labels, which
can be efficiently calculated through convolution. The formula for LDQ is demonstrated
in Equation (7):

LDQ(h, w) =
1

(2K + 1)2

K

∑
i=−K

K

∑
j=−K

q(h + i, w + j) (7)

where LDQ(h, w) denotes the quality of a pseudo-label at location (h, w), K ∈ N denotes the
depth of neighbors, and 2K + 1 is known as the size of the convolution kernel. In contrast
to [25,26], all pseudo-labels, correct or incorrect, are used for training as the pixels-wise
quality weights the influence of each pseudo-label.

3. Results

In this section, we introduce the source and target datasets, describe the experimental
details, and finally illustrate the obtained results.

3.1. Dataset Description

The Potsdam (POT) dataset [39] contains 38 patches of a typical historic city with
large building blocks, narrow streets, and dense settlement structures with a resolution of
6000 × 6000 pixels over Potsdam City, and the ground sampling distance is 5 cm. In total,
24 and 14 patches are used for training and testing, respectively.

The Vaihingen (VAI) dataset [40] contains 33 patches of a relatively small village with
many detached buildings and few multi-story buildings with a resolution ranging from
1996 × 1995 to 3816 × 2550 pixels, and the ground sampling distance is 9 cm. In total, 16
and 17 patches are used for training and testing, respectively.

Both datasets have the same six categories: impervious surfaces, buildings, low
vegetation, trees, cars, and clutter/background. The clutter/background class consists of
water bodies and other objects which are of no interest in semantic object classification
in urban scenes. Note that Potsdam has two band modes; RGB (red, green, and blue)
and IRRG (near-infrared, red, and green), while Vaihingen has only IRRG mode. We use
Potsdam in RGB mode and Vaihingen in IRRG mode. In IRRG mode, things may look
different from natural images, e.g., trees and low vegetation are red. Since Potsdam is a city
and Vaihingen is a village, there are more cars and apartments in the POT dataset, while
there are more houses and farmland in the VAI dataset.

Since the two datasets are the same in task objective and label space but different
in feature distribution and band mode, they are suitable for evaluating the performance
of UDA methods. In this paper, we used two different settings of domain adaptation.
The first one is transferring from the Potsdam dataset to the Vaihingen dataset, presented
as POT→VAI, and the other is the opposite, denoted as VAI→POT. Note that the only
difference between the source and target domains is that no labels are accessible in the
target domain during training. Meanwhile, to make images and labels fit into the GPU
memory properly, all images are cropped into 512 × 512 pixels’ patches with overlaps of
256 pixels. In this setting, 344 training data and 398 testing data are generated from VAI,
while 3456 and 2016 are for POT.



Remote Sens. 2022, 14, 4942 9 of 20

3.2. Implementation Details

Preprocessing: Our implementation is based on the PyTorch [41] and MMSegmen-
tation [42]. We use the preprocessing pipeline provided by the MMSegmentation [42],
where resizing, cropping, flipping, normalization, and padding are randomly applied to
the data. The pixels between the boundaries are ignored during training. In accordance
with [28,30], we mix the target data with the source data in the same way and use the same
data augmentation parameters of colorjitter, where the brightness, contrast, saturation,
and hue of images are randomly changed.

Network Architecture: Since both local and global features are important in seman-
tic segmentation, feature fusion [4] is usually required in CNNs to obtain high-precision
segmentation results. Hoyer et al. [30] designed a Transformer with context-aware mul-
tilevel feature fusion, named DAFormer, to exploit both coarse-grained and fine-grained
features. Since they achieved the best results in UDA semantic segmentation, we adopt
DAFormer [30] as the network architecture for both student model gθ and teacher model
hφ. DAFormer [30] used the MiT-B5 encoder [6] pre-trained on ImageNet [43] to produce a
feature pyramid with channels = [64, 128, 320, 512]. Then, its decoder embeds each feature
to 256 channels with the same size of H

4 ×
W
4 , followed by the depth-wise dilated separable

convolutions [44] with the dilation rates of 1, 6, 12, and 18.
Training: Student model gθ is trained with the AdamW [45] optimizer using be-

tas = (0.9, 0.999), a learning rate of 1× 10−4 for the encoder and 1× 10−3 for the decoder,
a weight decay of 0.01, linear learning rate warmup with twarm = 1500, and linear decay of
0.01 afterwards. The α used to update the teacher model hφ is set to 0.99. Then, two net-
works are trained for 4000 iterations with a batch size of 8 consisting of 4 source and 4 target
data. For GCW, the temperature T is set to 0.1 to pay more attention to the pixels of the rare
class, and the mixing parameter β is set to 0.9 to smoothly update the class distribution.
In LDQ, we set the threshold of pseudo-labels λ to 0.7.

3.3. Quantitative Results

In accordance with the previous UDA methods of RS semantic segmentation, F1-score
and Intersection over Union (IoU) have been used to evaluate the methods. The metrics are
formulated as shown in Equations (8) and (9):

IoU =
TP

TP + FP + FN
(8)

F1-score =
2× TP

2TP + FP + FN
(9)

where TP, FP, and FN denote the number of true positive pixels, false positive pixels,
and false negative pixels, respectively. IoU is also known as the Jaccard index, and the
F1-score is known as the Dice coefficient.

Since there are six different classes in VAI and POT datasets, F1-score and IoU are
first calculated for every class followed by the mean IoU (mIoU) and mean F1-score (mF1)
calculated by averaging the results of all the classes. The results of our method are shown
in four experiments and are reported in Tables 1 and 2. We build our baseline (B/L) with
a self-training framework (discussed in Section 2.1), DAFormer [30] network, the mixing
strategy in [28], and learning rate warmup [38]. Then, GCW and LDQ are first added
separately to the baseline and finally combined at the same time. To make our results more
reliable, all results are obtained by averaging over three runs with the same parameters and
architecture. Compared to the baseline on POT→VAI, GCW improves the performance by
9.97% of mIoU and 8.47% of mF1. It especially improves the performance of the roads, trees,
and vegetation, while LDQ greatly increases the results of the clutter. As the two results of
GCW and LDQ are complementary in many classes, our method generates more robust
results when using both GCW and LDQ. On VAI→POT, the performance of LDQ is more
desirable than GCW in the clutter, car, and tree classes, while it degraded in the vegetation
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class. In addition, the final experiment conducted with GCW and LDQ achieved close to
optimum results. However, all the experiments generated inferior results close to zero in
the clutter class on VAI→POT.

Table 1. Quantitative results (%) on POT→VAI.

Method
Clutter Road Car Tree Vegetation Building Overall

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mF1

CycleGAN [16] 2.03 3.14 48.48 64.99 25.99 40.57 41.97 58.87 23.33 37.50 64.53 78.26 34.39 47.22
AdaptSegNet [19] 6.26 9.55 55.91 71.44 34.09 50.34 47.56 64.17 23.18 37.22 65.97 79.36 38.83 52.01

MUCSS [20] 3.94 13.88 46.19 61.33 40.31 57.88 55.82 70.66 27.85 42.17 65.44 83.00 39.93 54.82
RDG-OSA [23] 9.84 14.55 62.59 76.81 54.22 70.00 56.31 71.92 37.86 54.55 79.33 88.41 50.02 62.71
CSC-Aug [22] 8.12 11.23 68.91 81.48 57.41 72.76 65.47 79.04 48.33 64.78 81.78 89.94 55.00 66.54

Baseline 25.19 40.19 66.81 80.10 43.22 60.32 52.23 67.51 43.08 60.08 88.72 90.54 53.21 67.04
w. GCW 30.43 46.48 75.28 85.87 47.47 64.32 73.98 85.05 62.36 76.80 89.61 94.52 63.18 75.51
w. LDQ 37.90 54.79 67.12 80.30 40.31 57.39 58.68 72.55 45.15 61.85 89.78 94.62 56.49 70.25

w. GCW & LDQ 41.63 53.19 75.22 85.84 41.63 58.75 74.53 85.40 61.44 76.08 90.32 94.91 63.23 75.70

Clutter, Road, and Vegetation indicate Clutter/Background, Impervious Surface, and Low Vegetation, respectively.
The same applies to Table 2.

Table 2. Quantitative results (%) on VAI→POT.

Method
Clutter Road Car Tree Vegetation Building Overall

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mF1

CycleGAN [16] 10.77 16.66 50.91 66.91 43.72 59.82 32.23 48.08 24.19 37.93 62.73 76.32 37.43 50.95
AdaptSegNet [19] 2.24 3.67 46.71 63.07 45.44 61.92 21.23 34.26 29.84 44.86 50.49 66.56 32.66 45.72

MUCSS [20] 13.56 23.84 45.96 62.97 39.71 56.84 25.80 40.97 41.73 58.87 59.01 74.22 37.63 52.95
RDG-OSA [23] 3.02 3.82 59.76 74.35 60.62 74.83 43.50 59.92 40.65 56.73 73.30 84.13 46.81 58.96

Baseline 0.25 0.50 59.60 73.86 26.13 32.14 48.76 65.51 41.98 59.10 71.13 82.69 41.31 52.30
w. GCW 0.65 1.29 64.81 78.53 48.05 56.39 34.05 50.60 37.82 54.60 73.13 84.40 43.08 54.30
w. LDQ 0.85 1.65 57.73 73.05 68.81 81.52 41.52 58.64 6.91 12.52 73.92 84.97 41.62 52.06

w. GCW & LDQ 0.53 1.04 71.15 82.94 65.53 79.18 56.63 72.23 59.53 74.60 82.68 74.04 56.01 66.73

The results of VAI→POT are not provided by CSC-Aug [22].

3.4. Visualization Results

Figures 4 and 5 depict the predicted results for baseline, baseline with GCW, baseline
with LDQ, and baseline with GCW and LDQ on POT→VAI and VAI→POT, respectively.
Note that the thick black lines in panels (b) are the boundaries ignored during training.
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Clutter Road Car Tree Vegetation Building Boundary

(a) (b) (c) (d) (e) (f)

Figure 4. Predictions of the validation images from VAI on POT→VAI. (a) Target images. (b) Ground
truth. (c) Baseline. (d) Baseline with GCW. (e) Baseline with LDQ. (f) Baseline with GCW and LDQ.

Clutter Road Car Tree Vegetation Building Boundary

(a) (b) (c) (d) (e) (f)

Figure 5. Predictions of the validation images from POT on VAI→POT. (a) Target images. (b) Ground
truth. (c) Baseline. (d) Baseline with GCW. (e) Baseline with LDQ. (f) Baseline with GCW and LDQ.
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3.5. Comparisons with Other Methods

We compare our results with five methods of remote sensing domain adaptation:
CycleGAN [16] is a generative network transferring images from a source domain to
a target domain, AdaptSegNet [19] is a multi-level adversarial discriminator network
exploiting structural consistency, MUCSS [20] combines DualGAN [15] network with
ST strategies, CSC-Aug [22] combines style translation with the consistency principle,
and RDG-OSA [23] proposed the resize-residual DualGAN [15] with an output space
adaptation method. These previous UDA works use either DeepLabv2 [29] or DeepLabv3+
[4] as the semantic segmentation framework. Note that the results of all methods are using
the same datasets POT and VAI. In addition, we take the average results of all methods to
ensure fairness. A comprehensive comparison with these works is shown in Tables 1 and 2
for POT→VAI and VAI→POT, respectively.

Our baseline is surprisingly competitive and even better compared to other state-
of-the-art techniques, which demonstrates that the Transformer generalizes better to the
new domain than the previous CNNs. Compared to CSC-Aug [22], our method increases
the mIoU and mF1 by 8.23% and 9.16% on POT→VAI, respectively. While compared to
RDG-OSA [23], it increases by 9.2% and 7.77%, respectively, on VAI→POT. Generally, our
proposed method almost outperforms all the previous works both in IoU and F1-score,
except for the car class on POT→VAI and the clutter class on VAI→POT.

4. Discussion

In this section, we first explore strategies and hyper-parameters in detail. Since our
experiments show that the results on POT→VAI are more stable and reliable than that
on VAI→POT, we focus on the consequences of the strategies mainly via experiments on
POT→VAI. Then, we discuss the limitations of the proposed method, the possible reasons
for unstable results on VAI→POT, and possible further improvements.

4.1. GCW

In supervised learning, it is often beneficial to change the loss weights of each class to
obtain better performance because most datasets are class-imbalanced. However, it is more
complicated in domain adaptation problems where the same class may have different or
conflicting feature and texture distributions in the source and target domains. Therefore, we
investigate the influence of the class weights on UDA performance via three experiments,
where the first one equally sets the weights of all classes to 1, the second experiment applies
GCW to dynamically change the class weights, and the last experiment initializes the class
weights to the final result of GCW as the final weights are approximately equal to the mean
of those calculated from the entire dataset. All experiments are performed based on the
baseline. Table 3 shows that the GCW can improve the performance of each class compared
to the first approach, while the prior invariant weights in the third method severely degrade
the results.

Table 3. The IoU (%) of each class with different class weights on POT→VAI.

Class Weight Clutter Road Car Tree Vegetation Building Overall

Equal weights 25.19 66.81 43.22 52.23 43.08 88.72 53.21
GCW 30.43 75.28 47.47 73.98 62.36 89.61 63.18

Fixed prior weights 0.54 32.78 3.89 0.16 0 75.41 18.8

Figure 6 illustrates the change process of the class weights calculated by GCW, where
the class weights of road, building, and vegetation are close to 0.5 while that of the car
and clutter class are higher than 1.5, which indicates that the latter two appear much less
frequently than the first three. Remarkably, most of the class weights at 800 iterations
of training are close to themselves in the final rounds, which means that GCW and the
third method are almost identical after 800 rounds. However, the model gets no extra
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performance by directly initializing the class weights to the final values but the degraded
behaviors, as demonstrated in Figure 7. Therefore, we conclude that the proposed GCW
that gradually adjusts the class weights serves by avoiding a sudden change of the class
weights and allowing healthy convergence at the start of training, which is similar to
a gradual warmup [38]. It reveals the significance of model stability in the UDA: the
model could get unsatisfied results even if it performs well in early iterations because of
the disagreement of feature distribution between the source and target domains. On the
other hand, while the result curves of the GCW and equal weights have similar trends in
Figure 7, the former has a higher IoU and more compact confidence interval almost for
all the categories and iterations, indicating better performance and stability, respectively.
To sum up, the model of UDA can still benefit from the well-focused class weights tenderly.
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Figure 6. The weights of each category as calculated by GCW during the training on POT→VAI.
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Figure 7. IoU of each category during the training on POT→VAI. The shaded areas correspond to the
95% confidence intervals. (a) Road. (b) Building. (c) Vegetation. (d) Tree. (e) Car. (f) Clutter.

4.2. LDQ

To begin, we compare our pixel-wise Local Dynamic Quality with the equal quality
and image-wise quality [28,30] in Table 4. It should be noted that the results for the hyper-
parameters discussed later are for LDQ applied alone. When LDQ and GCW are used
together, we find that the best experimental results are obtained with different hyper-
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parameters. To be consistent with experiments in Table 1, we used the same λ = 0.7 or
K = 3 in the following experiments. In equal quality, all generated pseudo-labels are
considered correct. In addition, image-wise quality assigns the proportion of pseudo-labels
exceeding a threshold λ of the maximum softmax probability to all these pseudo-labels.
In Table 4, our strategy of pixel-wise quality has the best overall performance among these
methods. The performance improvement is mainly from the clutter class, where the IoU
increased by 11.43% compared to image-wise quality.

Table 4. The IoU (%) of each class with different methods of quality on POT→VAI. In LDQ, pseudo-
labels’ threshold λ = 0.7, and K = 3. The results are averaged over three runs.

Method Clutter Road Car Tree Vegetation Building Overall

Equal Quality 25.19 66.81 43.22 52.23 43.08 88.72 53.21
Image-wise Quality [28] 26.47 55.35 42.20 58.54 46.41 89.22 55.35

LDQ 37.90 67.12 40.31 58.68 45.15 89.78 56.49

To better understand the effect of LDQ, we investigate two critical hyper-parameters
in LDQ, namely the pseudo-labels threshold λ and the depth of neighbors K. The first
parameter plays a significant role in ST to determine the samples used for training in the
target domain [25,26] and the quality generated by LDQ, while second one controls the
range for computing the quality of the pseudo-labels.

First, we explore the influence of threshold λ on the generation of the high-quality
pseudo-labels of the target domain during training via three experiments, where LDQ is
applied with three different values λ = [0.5, 0.7, 0.9] and same parameter K = 3. To rule
out the effect of the performance gap, we choose three experiments with similar quantitative
results which can be found in Table A1 in Appendix A. Additionally, three metrics are defined
to describe the results: (1) Ph: percentage of high-quality pseudo-labels, (2) Pc: percentage of
correct ones in Ph, and (3) Pch: percentage of correct high-quality pseudo-labels.

Ph =
∑H

h=1 ∑W
w=1 q(h, w)

H ×W
(10)

Pc =
∑H

h=1 ∑W
w=1 q(h, w) · [p(h,w)

T = y(h,w)
T ]

∑H
h=1 ∑W

w=1 q(h, w)
(11)

Pch = Pc × Ph =
∑H

h=1 ∑W
w=1 q(h, w) · [p(h,w)

T = y(h,w)
T ]

H ×W
(12)

where q(h, w) is defined in Equation (6) which denotes whether the pseudo-label p(h,w)
T

is high-quality, [·] denotes the Iverson bracket, while y(h,w)
T denotes the target label at

location (h, w). Both p(h,w)
T and y(h,w)

T are one-hot vectors. The results of Ph, Pc, and Pch are
illustrated in Figures 8–10, respectively. Please note that the pixels around the boundary
(black areas in Figures 4 and 5) are ignored in the results.
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Figure 8. Ph: Percentage (%) of high-quality pseudo-labels with different threshold λ on POT→VAI,
calculated from eight randomly selected images. (a) λ = 0.5. (b) λ = 0.7. (c) λ = 0.9.
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Figure 9. Pc: Percentage of correct ones in Ph with different threshold λ on POT→VAI, calculated
from the same images in Figure 8. (a) λ = 0.5. (b) λ = 0.7. (c) λ = 0.9.
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Figure 10. Pch: Percentage (%) of correct high-quality pseudo-labels with different threshold λ on
POT→VAI, calculated from the same images in Figure 8. (a) λ = 0.5. (b) λ = 0.7. (c) λ = 0.9.

As shown in Figure 8, the results are per our intuitions: (1) the larger the pseudo-label
threshold is, the more strict the LDQ will become, and (2) the more iterations the model
learns, the more confident it will become in the target domain. Note that the word “strict”
describes the strength of the criteria for determining the quality of pseudo-labels, regardless
of their correctness. In Figure 9, with the largest threshold λ = 0.9, most of the generated
pseudo-labels pT are more accurate and trustworthy compared to the results when λ = 0.5
except for images 1 and 4. However, with the iteration of the training stage, the correct
ratio Pc of some pseudo-labels even decreases, e.g., image 4 in Figure 9b and images 2 and
3 in Figure 9c. These results are reasonable since it is challenging to determine whether
the generated pseudo-labels are high-quality merely by a threshold value λ. The results of
Pch are shown in Figure 10, which indicates the ratio of correct pseudo-labels practically
learned by our model. According to the results, the model learns the maximum proportion
of correct pseudo-labels when λ = 0.5 among these images. The accuracy of pseudo-labels
is highest overall when the λ = 0.9, as shown in Figure 9c. The least high-quality pseudo-
labels are generated in Figure 10c, resulting in a low proportion of correct pseudo-labels
learned by the model. This suggests that during the adaptation from POT to VAI, samples
with confidence slightly above 0.5 are mostly correct, while those with particularly high
confidence are the least correct. We believe that the presence of some features with the
same distribution but different categories in the two datasets, i.e., domain gaps, seriously
misleads the model. In summary, a larger threshold λ model generates pseudo-labels with
higher accuracy, but it might limit the number of high-quality pseudo-labels, both of which
require some trade-off in use. A larger threshold λ induces the model to predict more
accurate but fewer high-quality pseudo-labels, so there is a trade-off between accuracy
and quantity.

We investigate the effect of K by analyzing the mean quality of the correct and incorrect
pseudo-labels calculated through Equation (7). Similarly, these experiments are conducted
with different K but the same pseudo-labels’ threshold λ = 0.7, and the results are shown in
Figures 11 and 12. The quantitative performance can be found in Table A2 in Appendix A.
In the case of K = 2, 3, and 4, the average quality of incorrect pseudo-labels is reduced
by 11.91%, 11.07%, and 19.14%, respectively, compared to the correct ones at iteration
4000. In comparison to the image-wise quality [28,30], our strategy improved the quality
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of pseudo-labels with very little overhead. As for the values of K, it is suggested to pick a
proper K to ensure that 2K + 1 is below the width of the minimal segmentation target since
the data near the boundary are harder to classify and usually get lower confidence.
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Figure 11. Averaged quality (%) of incorrect pseudo-labels with different K on POT→VAI, calculated
from the same images in Figure 8. (a) K = 2. (b) K = 3. (c) K = 4.
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Figure 12. Averaged quality (%) of correct pseudo-labels with different K on POT→VAI, calculated
from the same images in Figure 8. (a) K = 2. (b) K = 3. (c) K = 4.

4.3. Computational Complex Analysis

In this paper, the number of all parameters for the DAFormer [30] with MiT-B5
encoder [6] is 85.15 M, compared to 62.7 M for DeepLabV3+ [4]. Although the vision
Transformer is larger than CNNs, no auxiliary networks are needed in the self-training
framework, so there is no other overhead. For example, the generative-based network
structure of ResiDualGAN [23] contains two generators and two discriminators, each
with 41.82 M and 6.96 M parameters, respectively. Each generator and discriminator has
41.82 M and 6.96 M parameters, respectively, for a total of 97.56 M parameters. As a result,
the computational complexity of our method is completely acceptable.

4.4. Limitations

We have verified the effectiveness of the Transformer and proposed GCW and LDQ
in UDA for semantic segmentation of RS images. However, there are many unsolved and
unexplored issues in our proposed framework. Due to computational constraints, only
one type of Transformer with limited iterations has been tested to support our claims.
The potential of the vision Transformer in UDA of RS semantic segmentation could be
explored in further studies using network architectures such as those proposed in [5–8].

Hoyer et al. [30] demonstrated that Transformer outperforms most previous UDA
methods using DeepLabV2 [29] or DeepLabV3+ [4]. However, their experiments are based
on pre-training and large datasets, which are difficult to achieve in the field of remote
sensing. While adapting to a large dataset from a tiny dataset, there might be insufficient
data and features available for the elaborate Transformer to learn, which thus derives some
inferior and unstable performance. For example, the overall performance on the POT→VAI
is better than on VAI→POT since there is more training data in POT. Additionally, the IoU
for the clutter category on VAI→POT is close to 0. Therefore, further studies are required
to facilitate improvements in the UDA performance with Transformers on small datasets.
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In Figure 6, the values of GCW fluctuate at the beginning but eventually become steady.
Accordingly, the model does not gain significant additional performance in later iterations
but only retrains the advantages obtained in the early stages. The GCW formula could be
changed in subsequent iterations to improve domain adaptation to the target domain.

The LDQ is based on the assumption that the model predicts with low confidence for
incorrect predictions while producing high confidence for correct predictions. However,
it may break down in some cases, such as the domain adaptation between two domains
with particularly large gaps. As illustrated in Tables 1 and 2, the performance with LDQ
degrades in some classes compared to the baseline. For instance, the IoU of the car class
reduces by 2.91% on POT→VAI, while it decreased from 41.98% to 6.91% on VAI→POT in
the vegetation class. Since the results become much more feasible by combining GCW and
LDQ, it is suggested to use LDQ with robust strategies for better performance.

5. Conclusions

In this article, we reveal the remarkable potential of the vision Transformer for the
task of unsupervised domain adaptation for remote sensing image-semantic segmenta-
tion. Additionally, Gradual Class Weights (GCW) and Local Dynamic Quality (LDQ),
two simple but effective training strategies working on the source and target domains,
respectively, are introduced to stabilize and boost the performance of UDA. Compared
to other UDA methods for RS image-semantic segmentation using DeepLabV3+ [4], our
method improves the state-of-the-art performance by 8.23% mIoU on POT→VAI and 9.2%
mIoU on VAI→POT. Notably, GCW improved the performance by addressing the class
imbalance problem and allowing healthy convergence at the beginning of the training
stage. In addition, LDQ serves by reducing and increasing the weights of the incorrect
and correct pseudo-labels, respectively. The two strategies can be effortlessly embedded in
various types of semantic segmentation domain-adaptation methods to boost performance.
Furthermore, our strategies enable the model to learn even the difficult classes such as
clutter/background. In our future work, we will focus on improving UDA performance
with Transformers on small datasets.
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Appendix A

In Section 4.2, we investigated the effects of LDQ with different λ and K. We choose
experiments with similar performance, rather than the best results or mean results, to ex-
plore the subtle change between different hyper-parameters. Therefore, some results may
differ from the results in Table 1. For reference, detailed quantitative results with different
λ and K are provided in Tables A1 and A2, respectively.
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Table A1. The IoU (%) of each class with different pseudo-label thresholds λ on POT→VAI.

λ Clutter Road Car Tree Vegetation Building Overall

0.5 29.59 74.86 41.2 72.56 61.28 89.92 61.57
0.7 31.84 70.36 39.73 75.66 55.49 90.05 60.52
0.9 48.11 69.47 44.72 66.52 46.21 89.84 60.81

Table A2. The IoU (%) of each class with different K on POT→VAI.

K Clutter Road Car Tree Vegetation Building Overall

2 32.32 70.68 41.18 65.08 37.08 89.13 55.91
3 38.4 64.3 36.8 63.7 42.24 89.86 55.88
4 35.07 69.77 36.6 53.8 46.6 88.17 55
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