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Abstract: Alfalfa (Medicago sativa L.) is one of the most relevant forage crops due to its importance
for livestock. Timely harvesting is critical to secure adequate forage quality. However, farmers face
challenges not only to decide the optimal harvesting time but to predict the optimum levels for both
forage production and quality. Fortunately, remote sensing technologies can significantly contribute
to obtaining production and quality insights, providing scalability, and supporting complex farming
decision-making. Therefore, we aim to develop a systematic review of the current scientific literature
to identify the current status of research in remote sensing for alfalfa and to evaluate new perspectives
for enhancing prediction of both biomass and quality (herein defined as crude protein and fibers)
for alfalfa. Twelve papers were included in the database from a total of 198 studies included in the
initial screening process. The main findings were (i) more than two-thirds of the studies focused on
predicting biomass; (ii) half of the studies used terrestrial platforms, with only 33% using drones and
17% using satellite for remote sensing; (iii) no studies have used satellites assessed alfalfa quality
traits; (iv) improved biomass and quality estimations were obtained when remote sensing data was
combined with environmental information; (v) due to a direct relationship between biomass and
quality, modeling them algorithmically improves the accuracy of estimation as well; (vi) from spectral
wavelengths, dry biomass was better estimated in regions near 398, 551, 670, 730, 780, 865, and
1077 nm, wet biomass in regions near 478, 631, 670, 730, 780, 834, 933, 1034, and 1538 nm, and quality
traits identified with narrow and very specific wavelengths (e.g., 398, 461, 551, 667, 712, and 1077 nm).
Our findings might serve as a foundation to guide further research and the development of handheld
sensors for assessing alfalfa biomass and quality.

Keywords: alfalfa; biomass production; Medicago sativa L.; quality assessment; vegetation index;
wavelength selection

1. Introduction

From a climate change standpoint, the development of more sustainable farming sys-
tems to reduce the overall environmental footprint from the livestock sector [1] will be even
more critical to satisfy the ever increasing pressure of the growing population and calorie
consumption. Animal-based foods account for 18% of worldwide calorie consumption and
25–35% of protein intake [2]. Adequate nutrition is fundamental to ruminant production
and forage contributes an important nutrition component [3]. In addition, as forage quality
varies broadly within and among forage species, with nutritional demands varying be-
tween animal species, supplying adequate nutrition to animals requires a balance and is a
complex challenge [3]. However, the greatest challenge in finding this balance remains in
obtaining spatio-temporal information on forage biomass and its quality.
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Fortunately, remote sensing technologies can improve the overall prediction of forage
biomass and quality prior to harvest, hence decreasing the risks and aiding in deter-
mining the ideal time to harvest and bale [4]. Moreover, increasingly available satellite
images and other remote sensing technologies (e.g., proximal sensors, unmanned aerial
vehicles, etc.) might assist the creation of decision support systems for monitoring the
condition of main field crops [5–7]. The use of these platforms may enable more precise
evaluations of the effects of field interventions on addressing on-farm issues, therefore
helping the broader objective of achieving food security [6]. However, attempts to examine
the application of remote sensing technologies are often focused on major field crops,
such as soybean (Glycine max L.), maize (Zea mays L.), wheat (Triticum aestivum L.), or rice
(Oryza sativa L.) [8–10]. Rarely are efforts devoted towards crop quality evaluation in forage
crops, and among the current ones, most of them are focused on biomass productivity and
not so much on quality assessment [11–14].

In recent decades, alfalfa has become more attractive due to its agronomic and nutritive
value [15–17]. The most relevant characteristics of this crop are its adaptability to different
soil and climate conditions, high nitrogen fixation capability which translates in a high-
quality (15–22% protein content) forage [18]. In addition, it can be used for hay, silage,
and pasture, as well as by-products for bio-fuel production, pharmaceutical compounds,
enzymes, and industrial proteins [18]. As a perennial crop, alfalfa is established and then
harvested in the following years (e.g., ≈3–4 years), with the potential to be harvested
several times (e.g., 3–4 times) throughout the growing season [19], resulting in a more
sustainable and profitable production system. There is a short window of time between
the pick of biomass and full bloom where the trade-off between production and quality is
maximized [20]. Therefore, it is critical to determine when to start harvesting. Non-optimal
harvest timing has a detrimental effect on yield and quality, as well as plant regrowth,
leading to possible failures in subsequent cycles and decreasing the longevity of alfalfa
production [21,22]. Current scientific literature on the use of remote sensing in assessing
alfalfa production is scarce (even with less research on crop quality) focusing on a few
different platforms (e.g., terrestrial [23–29], UAVs [29–32], and satellites [4,33]). However,
to the best of our knowledge, there is a lack of a synthesis analysis that provided a thorough
revision of the current scientific literature using remote sensing platforms to assess alfalfa
production and quality. Understanding the potential for spectral bands and vegetation
indices to predict relevant biomass and quality (e.g., crude protein and fiber) traits can
facilitate future development of new sensors and platforms to boost alfalfa farming systems
and increase overall sustainability.

Following this rationale, a systematic review was conducted to outline the present state
of remote sensing technologies for evaluating alfalfa biomass production and investigate
the opportunities for testing quality attributes such as protein and fibers. Therefore, this
review aims to: (i) analyze the use of remote sensing platforms to assess alfalfa biomass
and quality; (ii) identify the most accurate wavelengths (spectral bands) and vegetation
indices to predict alfalfa biomass and quality; and (iii) identify current knowledge gaps to
guide future assessments.

2. Materials and Methods
2.1. Literature Search

A systematic review of the scientific literature was conducted using Scopus and Web
of Science, focusing on publications in English language from the last ten years (2013–2022).
The search period was defined with the goal of focusing on the last decade of remote sens-
ing innovation and improvement on sensors, platforms, data analysis, and development
of decision support tools for this relevant forage crop. For the search equation, the terms
“Remote Sensing” and “Alfalfa” or “Medicago sativa” were selected, resulting in a total of
131 papers after duplicate removal (67 in total). We analyzed the publications by screening
their titles and abstracts and excluding those that did not discuss remote evaluation of
alfalfa for biomass and/or quality traits, resulting in a total of 24 studies. From this total,
we reviewed the complete text to assess whether it was possible to extract information
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regarding the use of spectral data for alfalfa biomass and quality attributes by identifying
articles that met the criteria. Further publications, not considering the time-period men-
tioned previously, were derived from these manuscripts’ citations (54 new papers were
reviewed), yielding two additional studies. Consequently, 12 articles were included in
the final database (Table 1). The database does not include studies of alfalfa mixed with
other types of forage when it was not possible to extract alfalfa-specific observations. An
overview of the approach of the database search is presented in Figure 1.

Table 1. State-of-the-art of remote sensing for assess alfalfa production and quality.

Year Citation Study
Region Platform Article Title Source Title

2007 [25] Kentucky, USA Terrestrial
Relationships between Blue- and Red-based
vegetation indices and leaf area and yield of
alfalfa

Crop Science

2015 [23] California, USA Terrestrial
Developing in situ non-destructive estimates
of crop biomass to address issues of scale in
remote sensing

Remote Sensing

2015 [28] Oklahoma, USA Terrestrial
Estimation of biomass and canopy height in
bermudagrass, alfalfa, and wheat using
ultrasonic, laser, and spectral sensors

Sensors

2016 [27] Oklahoma, USA Terrestrial
Canopy visible and near-infrared reflectance
data to estimate alfalfa nutritive attributes
before harvest

Crop Science

2016 [4] Eastern Province
of Saudi Arabia Satellite

Assessing the spatial variability of alfalfa yield
using
satellite imagery and ground-based data

Plos One

2018 [26] Minnesota, USA Terrestrial Estimating alfalfa yield and nutritive value
using remote sensing and air temperature

Field Crops
Research

2019 [29] Oklahoma, USA Terrestrial
and UAV

High-throughput approaches for phenotyping
alfalfa germplasm under abiotic stress in the
field

Plant Phenome
Journal

2020 [30] Wisconsin, USA UAV Alfalfa yield prediction using uav-based
hyperspectral imagery and ensemble learning Remote Sensing

2020 [24]
Mediterranean
central-south,
Chile

Terrestrial

Use of Vis-NIR reflectance data and regression
models to estimate physiological and
productivity traits
in lucerne (Medicago sativa)

Crop and Pasture
Science

2021 [32] Washington, USA UAV

Alfalfa (Medicago sativa L.) crop vigor and
yield characterization
using high-resolution aerial multispectral and
thermal infrared imaging technique

Computers and
Electronics
in Agriculture

2022 [31] Wisconsin, USA UAV
Multitask learning of alfalfa nutritive value
from
uav-based hyperspectral images

IEEE Geoscience
and
Remote Sensing
Letters

2022 [33] Oklahoma, USA Satellite

Alfalfa yield estimation based on time series of
Landsat 8 and PROBA-V images:
An investigation of machine learning
techniques and spectral-temporal features

Remote Sensing
Applications:
Society and
Environment
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Figure 1. Workflow diagram outlining the systematic review process. The left-hand panels show
the five phases of the review, and the center and right-hand boxes show the number of articles for
each step.

2.2. Content Analysis

After reading the selected publications, productivity and quality indicators, plant
phase and cutting cycle, remote sensing platforms (wavelengths and vegetation indices),
and prediction and estimation methodologies were extracted. The collected dataset was
summarized in a database and flow charts to illustrate the findings on (i) the use of remote
sensing platforms to assess alfalfa biomass and quality traits, and (ii) wavelength and
vegetation indices options to establish a potential relationship with alfalfa biomass and
quality traits.

3. Results
3.1. Overview of Remote Sensing Platforms Used to Assess Alfalfa Biomass and Quality

One of the most distinct findings from the final database is related to the type of
platforms used to acquire information regarding biomass and quality traits (Table 2). Here,
four different platforms such as handheld sensors, embedded sensors in terrestrial vehicles,
drones, and satellites were listed as the most used for this purpose. Most notably, about
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50% of studies used terrestrial [23–29] and 33% drone platforms [29–32]. For example, in
the research reported by Pittiman et al. [28], three active multispectral canopy sensors
embedded in a tractor documented information such as environmental and canopy tem-
perature, relative humidity, photosynthetic radiation, and various vegetation indices. In
the same way, ref. [32] embedded multispectral and thermal sensors on a UAV to collect
information regarding vegetation indices (e.g., NDVI, MNLI, EVI, GNDVI) and environ-
mental and canopy temperature. Only 17% of the research used the satellite platform. For
this, Azadbakht et al. and Kayad et al. [4,33] used images from different satellites and even
combined them to improve the temporal resolution of biomass assessment. When dividing
the studies based on the evaluated traits, 77% focused on predicting biomass in both wet
and dry forms, while only 33% focused on quality assessment. Another important finding
to highlight was the fact that quality traits assessed by satellites were not reported by any
of the studies analyzed.

3.2. Assessing the Performance Prediction of Approaches for Alfalfa Biomass and Quality

Regarding the methodologies listed for evaluating the assessment performance, a
broad spectrum can be depicted, from regression analysis to machine learning techniques,
as well as different combinations of variables and feature space exploration. From our
database, research has reported promising results when biomass production and quality
have been analyzed together with environmental information. For instance, research
reported by Noland et al. [26] showed coefficient of determination (R2) values close to
0.87 for assessing biomass and quality using regression analysis (CP, NDF, and NDFd)
(Tables A1 and A4). In the same way, Chandel et al. [32] assessed dry biomass using CWSI
and MNL indices based on canopy and air temperature and wavelengths, scored R2 equal
to 0.68 (Table A2).

In addition, research using only spectral information has also found promising results.
For example, the research reported by Azadbakht et al. [33] showed that a time series
capturing variations on vegetation indices (LSWI, NDVI, SR, EVI2, OSAVI) along the
crop cycle provides useful indicators for overall prediction of biomass. The authors used
machine learning techniques such as ridge regression, Gaussian process, random forest,
and support vector regressions among others to explore the best model to estimate yields,
resulting in an R2 greater 0.89 (Table A3). In another example reported by Feng et al. [30],
the use of an ensemble approach of support vector regression, K- nearest neighbors and
random forest for 25 vegetation indices resulted in an R2 equal to 0.87 (Table A2). Most
recently, the same authors [31] found that assessing quality traits simultaneously (CP, aNDF,
ADF) by multi-target learning outperformed single-target methods (Table A5).
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Table 2. Studies using data from remote sensing platforms for developing methods to assess alfalfa biomass and quality traits.

Production
Indicator

Quality
Indicator

Cutting
Cycle Plant Phase Platform Spectral Inputs Non-Spectral

Inputs Method Citation

DB - 1st, 2nd,
3rd, 4th

10% bloom,
25% bloom Terrestrial

NDVI, BNDVI,
WDRVIα,
BWDRVIα,
α = 0.1, 0.05 and
0.01

- NLR [25]

WB - - Sprouting and
Flowering Terrestrial

MBVI, TBVI,
λ1528, λ438, λ499,
λ458,
λ1508, λ448 nm

meanG,
medianG LR [23]

DB - - 10% bloom Terrestrial

NDVI, λ450, λ520,
λ530, λ570, λ590,
λ650, λ690, λ710,
λ780, λ900 nm

- Correlation [28]

- NDF,
ADF - Late bud to

10th flower Terrestrial λ400–1349 nm - MPLSR [27]

DB - 8th, 9th,
10th, 11th

10% bloom,
30% bloom,
50% bloom

Satellite

EVI, GNDVI,
GRVI, LSWI,
NDVI, NIR,
SAVI, λ865 ±
30 nm

Yield Monitor Correlation [4]

DB
CP,
NDF,
NDFd

- - Terrestrial

NDVI, GNDVI,
REIP, MTCI,
PHORI, CARI,
NDLI, NDNI,
λ460, λ550, λ551,
λ650,
λ711, λ712, λ780,
λ1073, λ1077,
λ1087 nm

GDUBASE-5,
GDUALT SLR [26]

DB,WB - - - Terrestrial
UAV

CCC, IRVI, NDVI,
NDRE, λ670, λ730,
λ780 nm
NDVI

- Correlation [29]
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Table 2. Cont.

Production
Indicator

Quality
Indicator

Cutting
Cycle Plant Phase Platform Spectral Inputs Non-Spectral

Inputs Method Citation

DB - - 35 cm height
and 10% bloom Terrestrial NDSI, NDTI,

DATT, RE, DD - NLR [24]

DB - - - UAV

NDVI, PHYRI,
NDRE,
MND705 nm,
GNDVI, RDVI,
NDCI, CI, DATT,
DD, DCNI, GITEL-
SON,CARTE,
SRI, MSRI,
MSR705, MSR,
NVI, EVI, TCARI,
MCARI,
OSAVI, TGI,
TCARI/OSAVI,
MCARI/OSAVI,
MTVI, MTCI,
SPVI, REP, VOG,
VIOPT

- SVR, KNNR,
RFR, Ensemble [30]

WB - 1st, 2nd 1st bloom UAV

NDVI, IPVI, MSR,
OSAVI, GNDVI,
TDVI, EVI, MNLI,
CWSI

T◦canopy,
T◦air,
M, U, L

LR, MLR, SLR,
PLSR, LASSO [32]

-
CP,
aNDF,
ADF

2nd, 3rd, 4th - UAV λ400–1349 nm - SVR, RFR, ANN,
STL, MTL [31]

DB - - - Satellite SR, NDVI, EVI2,
OSAVI, LSWI -

BRT, GPR, RFR,
SVR, RIDGE,
LASSO

[33]
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3.3. Potential Wavelengths and Vegetation Indices for Assessing Alfalfa Biomass and Quality

The literature has shown that one of the main goals of applying remote sensing to
alfalfa is to offer an alternative to traditional laboratory methods for measuring alfalfa
quality traits on the farm. This can be achieved with a handheld sensor, a sensor on a drone
or satellite, or a combination of the three.

In this way, most authors used a combination of hyperspectral sensors embedded
in terrestrial [23–28] and UAV [30,31] platforms. An example of this can be found in
Marshall et al. [23], where they evaluated the relationship between each wavelength in
the λ400–2500 nm range with biomass (dry and wet), to obtain the wavelength that better
correlates to this feature. In the same way, Feng et al. [30] created several vegetation
indices based on information in the range of 400–1000 nm to predict biomass supported
on different machine learning techniques. However, identifying wavelengths related to
quality traits was reported only by Noland et al. [26], but no clear information regarding
the plant development stage and crop cycle was provided. About 36% of studies did not
report the cutting cycle during data collection. In the same way, about 36% did not report
the plant stage during data collection.

A summary of the main spectral bands and vegetation indices investigated in the
relationship between biomass and quality for alfalfa based on revised articles [4,23,26,28,29]
was presented in Figure 2. The research reported by Noland et al. [26], demonstrated that
dry biomass and NDF have the same behavior as CP and NDFd but are inversely related
(Figure 2a). This finding shed light on the possibility of using additional wavelengths and
vegetation indices not yet used to assess quality traits. For example, results discovered
by Kayad et al., Marshall et al., Pittiman et al., and Cazenave et al. [4,23,28,29] provided
evidence that dry biomass is related to wet biomass (Figure 2b), regardless of the type of
sensors and platforms. Therefore, by optimizing sensing platforms by embedding sensors
with more capability to predict biomass and/or quality, farmers and decision-makers will
benefit most from using them.

In this way, we can consider the following wavelengths to assess alfalfa biomass
and quality traits: in the blue region (λ398, λ428, and λ478 nm) (Figure A1); in the green
region (529, λ551, and λ580 nm) (Figure A2); in the red region (λ631, λ667, and λ670 nm)
(Figure A3); in the red-edge region (λ682, λ712, λ730, and λ733 nm) (Figure A4); in near-
infrared (λ780, λ783, λ834, λ885, λ933, λ983 nm) (Figure A5); and in short-wave infrared
(λ1034, λ1077, λ1084, λ1437, λ1488, λ1538, λ1588, λ1790 nm) (Figure A6). As well as, the
following vegetation indices: CCC [λ780, λ730 nm], EVI [λ865, λ660, λ483 nm], GNDVI
[λ865, λ660 nm], IRVI [λ780, λ670 nm], NDRE [λ730, λ670 nm], NDVI [λ865, λ660 nm],
NDVI [λ760, λ650 nm], NDVI [λ850, λ625 nm] and SAVI [λ865, λ660 nm] (Figure A7).
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Figure 2. (a) Sankey diagram illustrates the potential wavelengths and vegetation indices for es-
tablishing relationships with biomass and quality in alfalfa. (b) Only in the study developed by
Noland et al. [26] was it possible to obtain information about the relationship between biomass and
quality for the same wavelength, the bar graph shows that CP and NDFd have a relation among
themselves and, as well as dry biomass and NDF, both sets with an inverse relationship. (c) The
remaining studies focused their evaluations only on biomass, where it is possible to observe in the
bar graph that dry biomass is related to wet biomass.

4. Discussion

This study discussed the current status of remote sensing technologies used to quantify
alfalfa biomass and investigate quality traits during the last decade. Our study showed
the possible wavelengths and vegetation indicators, as well as methodologies for reliable
alfalfa biomass and quality trait forecasts, which are widely dispersed in scientific literature.
Field inspection using remote sensing platforms can help farmers not only optimize the
timing for bailing but achieve better quality [34].

From the remote sensing platforms, it was not surprising to find that most research
related to assessing alfalfa biomass and quality relates to using sensors embedded in ter-
restrial equipment. Terrestrial platforms are accessible and capable of being configured to
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embed a diversified range of sensors from handhelds (multi-bands) to hyperspectral [7].
However, these platforms are labor intensive and time consuming to physically inspect
the on-farm alfalfa crop. Therefore, its use should be well-planned to overcome these
challenges. The use of UAVs can outperform the limitations of terrestrial platforms. How-
ever, it is relatively more expensive and can only be used under the appropriate weather
conditions [35,36]. On the other hand, satellite platforms provide insights into large-scale
production monitoring. Unfortunately, it is not yet used to assess alfalfa quality traits.
Fortunately, this could change as new platforms and missions with higher temporal and
spatial resolutions are being deployed. However, there are still gaps to explore regarding
knowing the best combination of spectral information and methods to make alfalfa biomass
and quality predictions using these platforms.

Spectral information is powerful in extracting plant traits. For example, in green
vegetation, the visible region (400–700 nm) is dominated by light absorption by photosyn-
thetic pigments, near-infrared (700–1100 nm) by dry matter, and SWIR (1100–2500 nm) by
water [37]. However, it is not enough just to have a good relationship between spectral in-
formation and alfalfa biomass and quality. It is also necessary to model the relationships by
adding climatic data in order to enable inferences into a new growing season. Considering
the results in Noland et al. [26], it is evident that biomass and quality traits are correlated
(Figure 2b). Therefore, multi-target learning can contribute to modeling production and
quality simultaneously. Feng et al. [31] provided an example of the multi-target learning
approach to predict three quality traits: CP, ADF (cellulose and lignin), and aNDF (total
fiber such as cellulose, hemicellulose, and lignin, without ash). However, for this study
as well as others reviewed, spectral data acquisition was always collected very close or
right at harvesting time, which could be late for a proactive response by farmers. Therefore,
research needs to create methods to make these predictions as early as possible before
harvesting alfalfa. In addition, multi-target learning is rarely used in research to assess crop
quality and less to potentially identify the optimal time for sensing during the crop season.

To improve the predictions for forage biomass and quality, the temporal scale of the
available optical satellite imagery will play a critical role, with the possibility of securing
daily data during the critical period between forage harvest times. When environmental
conditions present a challenge (e.g., cloud coverage), active sensors can provide relevant
data as well, and its was proven by Zhou et al. [38], reporting on monitoring alfalfa
harvest frequency. In this way, optical-and-radar image fusion can further improve the
predictive capability for forage plant traits. Future approaches integrating agro-climatic
data (soil-plant traits) with remote sensing will assist in improving the prediction of both
alfalfa forage quantity and quality with the goal of enhancing a more sustainable and
profitable farming system under climate change and variability. In addition, integrating
crop growth models can also assist in providing relevant data on crop phenology and leaf
area progress, linked to biomass and N status for alfalfa. Crop growth models have been
already tested to simulate alfalfa growth, yield, crude protein, and fiber under climatic and
environmental conditions [39,40]. In addition, El-Hajj et al. [41] explored the combination
of crop models with optical and radar images in hay crops to make assimilation of irrigation
regimes. However, a major limitation of crop growth models is the lack of spatio-temporal
information about the actual conditions at farm level [42]. Multi-source remote sensing
might help in this regard updating the crop simulation by using vegetation indices or
specific wavelengths and automatically correcting alfalfa biomass and quality predictions
on a time scale at pixel level. Therefore, combining multi-source remote sensing, crop
modeling, and agro-climatic data is the clear path forward to re-design the alfalfa systems
and provide timely actionable items to assist farmers in taking relevant decisions within a
short timeframe.

5. Conclusions

Our evaluation may be a starting point for strategic innovation in alfalfa production us-
ing remote sensing platforms, as well as suggesting future research possibilities. Regardless
of the remote sensing platform, we discovered good findings for measuring both biomass
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and quality characteristics. The literature findings indicate that multi-target learning is a
promising approach for analyzing both forage quantity and quality. In addition, combining
specific information extracted from different spectral regions from spectral bands with
environmental data is the most accurate feature in making predictions. These findings
might serve as a foundation for the development of new research and portable sensors
to be used directly in the field or embedded in aerial and orbital platforms. Among the
deficiencies highlighted by this synthesis analysis, none of the studies evaluated alfalfa
quality using satellite imagery. Satellite images with high spatial and temporal resolution
would aid in the modeling of the relationship between biomass production and quality.
These advances in technology will assist alfalfa production, management, and utilization by
enabling farmers to act in a timely manner and make alfalfa production more sustainable.
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Abbreviations

The following abbreviations are used in this manuscript:

Production and quality indicators
DB Dry biomass
WB Wet biomass
CP Crude protein
NDF Neutral detergent fiber
NDFd Neutral detergent fiber digestibility
aNDF Ash-corrected neutral detergent fiber
ADF Acid detergent fiber
Methods for prediction or estimation
ANN Artificial neural networks
BRT Boosted regression trees
GPR Gaussian process regression
KNNR K-nearest neighbor regression
LASSO Least absolute shrinkage and selection operator
LR Linear regression
MLR Multiple linear regression
MPLSR Modified partial least squares regression
MTL Multi-target learning
NLR Non-linear regression
PLSR Partial least squares regression
RFR Random forest regression
RIDGE Ridge regression
SLR Stepwise linear regression
STL Single-target learning
SVR Support vector regression
Boruta, GS, RReliefF Feature selection method
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Non-spectral data
T◦ Temperature
M, U and L Indicates the measured upper limit and lower limits [32]
GDUbase-5 and GDUALT Cumulative growing degree units [26]
meanG and medianG Chromatic greenness [23]
Remote sensing data
α Levels of a near-infrared reflectance scalar [25]
λ Wavelength, nm
BNDVI Blue normalized difference vegetation index
BWDRVI Blue-wide dynamic range vegetation index
CARI Chlorophyll absorption ratio index
CARTE Carter index
CI Curvature index
CWSI Crop water stress index
DATT Double difference index
DCNI Double peak canopy nitrogen index
EVI Enhanced vegetation index
GITELSON Gitelson index
GNDVI Green normalized difference vegetation index
IPVI Infrared percentage vegetation index
MBVI Multiple-band vegetation index
MCARI Modified chlorophyll absorption ratio index
MCARI/OSAVI Combined MCARI/OSAVI
MND705 Modified normalized difference vegetation index
MNLI Modified non-linear index
MSR Modified simple ratio
MSR705 Modified simple ratio index
MSRI Modified simple ratio index
MTCI Meris terrestrial chlorophyll index
MTVI Modified triangular vegetation index
NDCI Normalized difference cloud index
NDLI Normalized difference lignin index
NDNI Normalized difference nitrogen index
NDRE Normalized difference red edge
NDSI Normalized difference spectral index
NDTI Normalized difference tillage index
NDVI Normalized difference vegetation index
NVI New vegetation index
OSAVI Optimized soil-adjusted vegetation index
PHORI Photochemical reflectance index
PHYRI Physiological reflectance index
RDVI Renormalized difference vegetation index
RE Red edge
REIP Red edge inflection point
REP Red edge position index
SPVI Spectral polygon vegetation index
SRI Simple ratio index
TBVI Two-band vegetation index
TCARI Transformed chlorophyll absorption in reflectance index
TCARI/OSAVI Combined TCARI/OSAVI
TDVI Transformed difference vegetation index
TGI Triangular greenness index
VIOPT Optimal vegetation index
VOG Vogelmann index
WDRVI Wide dynamic range vegetation index
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Appendix A

Table A1. Most accurate features for predicting alfalfa biomass using terrestrial platforms.

Biomass—Terrestrial Platform

Variable Year Cutting
Cycle Plant Phase Feature

Input Wavelength Non-Spectral Method Performance
R2 Citation

DB 2005

2nd 10% bloom WDRVIα = 0.1 770, 660 nm

- NLR

0.38

[25]

3rd 10% bloom BWDRVIα = 0.05 770, 450 nm 0.26
4th 25% bloom WDRVIα = 0.01 770, 660 nm 0.85
2nd,
3rd,
4th

10–25%
bloom NDVI 770 ± 15,

660 ± 10 nm 0.68

DB 2014,
2015 - - 551, 711, 712,

1073, 1077, 1087 nm - GDUALT SLR 0.85 [26]

DB 2012,
2015 - 35 cm height

and 10% bloom

NDSI
RE
NDSI
DD

940, 1122 nm
λ670, λ780 nm
940, 1122 nm
749, 720,
701, 672 nm

- NLR

0.65
0.11
0.47
0.33

[24]

WB 2011,
2012 -

Sprouting
and
Flowering

1528, 438,
499, 458,
1508 and 448 nm
[First Derivative]

-
meanG
and
medianG

LR 0.89 [23]
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Table A2. Most accurate features for predicting alfalfa biomass using UAV platforms.

Biomass—UAV Platform

Variable Year Cutting
Cycle

Plant
Phase

Feature
Input Wavelength Non-

Spectral Method Performance
R2 Citation

DB 2020 - -

Datt1, MCARI1, MTCI2,
MCARI/OSAVI1,MTCI1,
REP2, PRI[531,570],
SR[675,700], NDVI[521,689],
NDVI[717,732], REP1,
TCARI/OSAVI1, NVI2,
TCARI2, TCARI/OSAVI2
NDVI[720,820], Carte4,
NDVI[734,750], VOG3,
PRI[528,567], VOG2,
NDRE, SRI[533,565],
EVI, SRI[720,735]

400–1000 nm - Ensemble 0.87 [30]

WB 2018 1st, 2nd First
Bloom CSWL, MNL

668 ± 5, 840 ± 20 nm,
T◦canopy, T◦air,
M, U and L

- MLR 0.68 [32]



Remote Sens. 2022, 14, 4940 15 of 25

Table A3. Most accurate features for predicting alfalfa biomass using satellite platforms.

Biomass—Satellite Platform

Variable Year Cutting
Cycle

Plant
Phase

Feature
Input Wavelength Non-

Spectral Method Performance
R2 Citation

DB

2014 - -

Sum(LSWI), AUC(LSWI),
SumPeaks(LSWI) 837 ± 24, 1603 ± 32 nm

- GPR-Boruta 0.91

[33]

Sum(NDVI),
AUC(NDVI) 837 ± 24, 655 ± 41 nm

AUC(SR),
Sum+Slopes(SR) 837 ± 24, 655 ± 41 nm

SumPeaks(EVI2),
Sum| Slopes| (EVI2),
Sum+Slopes(EVI2)

837 ± 24, 655 ± 41 nm

2015 - -

Sum(LSWI), #Peaks(LSWI) 837 ± 24, 1603 ± 32 nm

- GPR-GS 0.92

Sum(NDVI) 837 ± 24, 655 ± 41 nm
AUC(EVI2), Sum + Slopes(EVI2),
Sum| Slopes| (EVI2), Sum(EVI2) 837 ± 24, 655 ± 41 nm

Sum(OSAVI), Sum+Slopes(OSAVI),
Sum|Slopes|(OSAVI) 837 ± 24, 655 ± 41 nm

2016 - -

AUC(LSWI), Sum(LSWI),
SumPeaks(LSWI), #Peaks(LSWI) λ837 ± 24, λ1603 ± 32 nm

- GPR-RReliefF 0.89AUC(NDVI), Sum(NDVI) λ837 ± 24, λ655 ± 41 nm
AUC(OSAVI), Sum(OSAVI) λ837 ± 24, λ655 ± 41 nm
Sum(EVI2), Sum+Slopes(EVI2) λ837 ± 24, λ655 ± 41 nm
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Table A4. Most accurate features for predicting alfalfa quality traits using terrestrial platforms.

Biomass—Terrestrial Platform

Variable Year Cutting
Cycle Plant Phase Feature

Input Wavelength Non-Spectral Method Performance
R2 Citation

CP 2014–
2015 - -

551, 711,
712,1073,
1077, 1087 nm

- GDUALT SLR 0.91

[26]

NDF

2014–
2015 - -

551, 711,
712, 1073,
1077, 1087 nm

- GDUALT SLR 0.87

2005–
2008 - Late bud

to 10th Flower 400–1349 nm - - MPLSR 0.77 [27]

NDFd 2014–
2015 - -

551, 711,
712, 1073,
1077, 1087 nm

- GDUALT SLR 0.87 [26]

ADF 2005–
2008 -

Late bud
to 10th
Flower

400–1349 nm - - MPLSR 0.83 [27]

Table A5. Most accurate features for predicting alfalfa quality traits using UAV platforms.

Biomass—UAV Platform

Variable Year Cutting
Cycle

Plant
Phase

Feature
Input Wavelength Non-Spectral Method Performance

R2 Citation

CP 2019

2nd

- 400–1000 nm - -

SVR 0.75

[31]

3rd RFR 0.81
4th SVR 0.77
2nd, 3rd, 4th MTL 0.84

aNDF 2019

2nd

- 400–1000 nm - -

SVR 0.54
3rd RFR 0.54
4th SVR 0.54
2nd, 3rd, 4th MTL 0.66

ADF 2019

2nd

- 400–1000 nm - -

SVR 0.60
3rd RFR 0.58
4th SVR 0.53
2nd, 3rd, 4th MTL 0.69
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Appendix B

Figure A1. Sankey diagram illustrates the wavelengths in the blue region (λ350−490)
most correlated with alfalfa biomass and quality traits. The flow chart intuitively displays
bars and paths drawn in proportion to the amount of information used. The larger
the bars, the more times this information has been used. Colored pathways assign the
connections between alfalfa biomass and quality traits and its usage in remote sensing
data (i.e., wavelengths or vegetation indices) as well as its response to the strength of
the correlation. When wavelength or vegetation indices have the potential to be used to
establish a relationship with biomass and quality traits, they are marked. The colors of
each correlation bar are linked to the biomass and quality traits. When it is white, it is
because it has no potential to be used. However, when the bar is colored and checkered, it
indicates that although it has not been used to study its relationship with quality, it has
the potential to predict it assuming its correlation with biomass.
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Figure A2. Sankey diagram illustrates the wavelengths in the green region (λ520−590)
most correlated with alfalfa biomass and quality traits. The flow chart intuitively displays
bars and paths drawn in proportion to the amount of information used. The larger
the bars, the more times this information has been used. Colored pathways assign the
connections between alfalfa biomass and quality traits and its usage in remote sensing
data (i.e., wavelengths or vegetation indices) as well as its response to the strength of
the correlation. When wavelength or vegetation indices have the potential to be used to
establish a relationship with biomass and quality traits, they are marked. The colors of
each correlation bar are linked to the biomass and quality traits. When it is white, it is
because it has no potential to be used. However, when the bar is colored and checkered, it
indicates that although it has not been used to study its relationship with quality, it has
the potential to predict it assuming its correlation with biomass.
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Figure A3. Sankey diagram illustrates the wavelengths in the red region (λ620−670) most
correlated with alfalfa biomass and quality traits. The flow chart intuitively displays
bars and paths drawn in proportion to the amount of information used. The larger
the bars, the more times this information has been used. Colored pathways assign the
connections between alfalfa biomass and quality traits and its usage in remote sensing
data (i.e., wavelengths or vegetation indices) as well as its response to the strength of
the correlation. When wavelength or vegetation indices have the potential to be used to
establish a relationship with biomass and quality traits, they are marked. The colors of
each correlation bar are linked to the biomass and quality traits. When it is white, it is
because it has no potential to be used. However, when the bar is colored and checkered, it
indicates that although it has not been used to study its relationship with quality, it has
the potential to predict it assuming its correlation with biomass.
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Figure A4. Sankey diagram illustrates the wavelengths in the red edge region (λ680−730)
most correlated with alfalfa biomass and quality traits. The flow chart intuitively displays
bars and paths drawn in proportion to the amount of information used. The larger
the bars, the more times this information has been used. Colored pathways assign the
connections between alfalfa biomass and quality traits and its usage in remote sensing
data (i.e., wavelengths or vegetation indices) as well as its response to the strength of
the correlation. When wavelength or vegetation indices have the potential to be used to
establish a relationship with biomass and quality traits, they are marked. The colors of
each correlation bar are linked to the biomass and quality traits. When it is white, it is
because it has no potential to be used. However, when the bar is colored and checkered, it
indicates that although it has not been used to study its relationship with quality, it has
the potential to predict it assuming its correlation with biomass.
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Figure A5. Sankey diagram illustrates the wavelengths in the near-infrared region
(λ760−1000) most correlated with alfalfa biomass and quality traits. The flow chart
intuitively displays bars and paths drawn in proportion to the amount of information used.
The larger the bars, the more times this information has been used. Colored pathways
assign the connections between alfalfa biomass and quality traits and its usage in remote
sensing data (i.e., wavelengths or vegetation indices) as well as its response to the strength
of the correlation. When wavelength or vegetation indices have the potential to be used
to establish a relationship with biomass and quality traits, they are marked. The colors
of each correlation bar are linked to the biomass and quality traits. When it is white, it is
because it has no potential to be used. However, when the bar is colored and checkered, it
indicates that although it has not been used to study its relationship with quality, it has
the potential to predict it assuming its correlation with biomass.
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Figure A6. Sankey diagram illustrates the wavelengths in the short-wave infrared region
(λ1000−2300) most correlated with alfalfa biomass and quality traits. The flow chart
intuitively displays bars and paths drawn in proportion to the amount of information used.
The larger the bars, the more times this information has been used. Colored pathways
assign the connections between alfalfa biomass and quality traits and its usage in remote
sensing data (i.e., wavelengths or vegetation indices) as well as its response to the strength
of the correlation. When wavelength or vegetation indices have the potential to be used
to establish a relationship with biomass and quality traits, they are marked. The colors
of each correlation bar are linked to the biomass and quality traits. When it is white, it is
because it has no potential to be used. However, when the bar is colored and checkered, it
indicates that although it has not been used to study its relationship with quality, it has
the potential to predict it assuming its correlation with biomass.
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Figure A7. Sankey diagram illustrates the vegetation indices most correlated with alfalfa
biomass and quality traits. The flow chart intuitively displays bars and paths drawn in
proportion to the amount of information used. The larger the bars, the more times this
information has been used. Colored pathways assign the connections between alfalfa
biomass and quality traits and its usage in remote sensing data (i.e., wavelengths or vege-
tation indices) as well as its response to the strength of the correlation. When wavelength
or vegetation indices have the potential to be used to establish a relationship with biomass
and quality traits, they are marked. The colors of each correlation bar are linked to the
biomass and quality traits. When it is white, it is because it has no potential to be used.
However, when the bar is colored and checkered, it indicates that although it has not been
used to study its relationship with quality, it has the potential to predict it assuming its
correlation with biomass.
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