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Abstract: Using deep learning-based object detection algorithms for landslide hazards detection
is very popular and effective. However, most existing algorithms are designed for landslides in
a specific geographical range. This paper constructs a set of landslide detection models YOLOX-
Pro, based on the improved YOLOX (You Only Look Once) target detection model to address the
poor detection of complex mixed landslides. Wherein the VariFocal is used to replace the binary
cross entropy in the original classification loss function to solve the uneven distribution of landslide
samples and improve the detection recall; the coordinate attention (CA) mechanism is added to
enhance the detection accuracy. Firstly, 1200 historical landslide optical remote sensing images in
thirty-eight areas of China were extracted from Google Earth to create a mixed sample set for landslide
detection. Next, the three attention mechanisms were compared to form the YOLOX-Pro model.
Then, we tested the performance of YOLOX-Pro by comparing it with four models: YOLOX, YOLOv5,
Faster R-CNN, and Single Shot MultiBox Detector (SSD). The results show that the YOLOX-Pro(m)
has significantly improved the detection accuracy of complex and small landslides than the other
models, with an average precision (AP0.75) of 51.5%, APsmall of 36.50%, and ARsmall of 49.50%.
In addition, optical remote sensing images of a 12.32 km2 group-occurring landslides area located
in Mibei village, Longchuan County, Guangdong, China, and 750 Unmanned Aerial Vehicle (UAV)
images collected from the Internet were also used for landslide detection. The research results proved
that the proposed method has strong generalization and good detection performance for many types
of landslides, which provide a technical reference for the broad application of landslide detection
using UAV.

Keywords: landslide detection; optical remote sensing image; deep learning; attention mechanism;
unmanned aerial vehicle; YOLOX

1. Introduction

Landslide is one of the common geological disasters in mountainous areas, which
can seriously endanger human life, and property and damage the natural environment.
Due to global climate change, the frequency and intensity of landslide disasters have
increased in recent years. For example, the 2018 Baige landslide on the Jinsha River in Tibet
blocked the Jinsha River from forming a dammed lake, which caused disasters hundreds
of kilometers downstream after the dammed lake burst [1]. For such landslide disasters
occurring in uninhabited regions, using satellite images to quickly locate and extract
landslide feature information and delineate its potential impact area is significant for timely
disaster diagnosis, post-disaster rescue, and landslide database establishment.

Traditional landslide hazard analysis includes field exploration and manual visual
interpretation methods using remote sensing data [2,3]. Huang et al. [4] identified 11,308 ge-
ological hazards triggered by the 2008 Wenchuan earthquake, including landslides, slope
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collapses, and debris flows, in 16 hard-hit counties in Sichuan Province, China, through
field surveys and remote sensing interpretation. The traditional method is more accurate
but relies too much on expert experience and requires significant time and effort. The
pixel- or object-based feature thresholding method sets one or more thresholds for land-
slide identification by statistically analyzing a specific landslide area’s spectral, textural,
or geomorphological features [5,6]. However, the threshold method often sets the feature
threshold according to the specific research area, which has a small scope of application and
weak generalization. When the research area changes, the detection effect is not good. The
change detection method is based on two-dimensional optical images or three-dimensional
topographic data for two or more periods of remote sensing data of the same location
for landslide area change detection [7–10]. Change detection is better for applying fresh
landslides but requires time series remote sensing data. The most widely used are op-
tical image-based machine learning detection methods, such as support vector machine
(SVM) [11,12], random forest (RF) [13,14], and artificial neural network (ANN) [15–17].
However, such methods require extracting a lot of image feature data and conducting
many experiments on feature selection and hyperparameter debugging, which is more
workload. In recent years, deep learning technology has developed rapidly, especially Con-
volutional neural networks(CNN)-based detection algorithms, which have made a series of
achievements in the field of image processing [18–23], including image classification, object
detection, and semantic segmentation, which can automatically extract multi-layer features
from the original image and process complex images effectively [24,25]. Ghorbanzadeh
et al. [26] used ANN, SVM, RF, and CNN methods to detect landslides in the southern part
of Rasuwa district, Nepal. The results show that CNN-based detection methods require
less manual supervision and can be easily applied to other regions by simply retraining
the model with other relevant training data. According to the image detection process,
CNN-based target detection algorithms are divided into one-stage and two-stage detection
methods. The one-stage algorithms of the SSD [27] YOLO series [28–32] belong to end-to-
end detection and are characterized by higher speed. The two-stage algorithms represented
by Faster R-CNN [33] have slightly lower detection speeds but higher detection accuracy.
The above two methods have become the hotspots of landslide detection research to realize
the automatic detection of landslides in a certain area [34,35]. Yuanzhen et al. [35] used
three target detection algorithms, Mask R-CNN, RetinaNet, and YOLO v3, to automatically
identify ancient loess landslides in the Loess Plateau of China. The results show that the
two-stage target detection algorithm (Mask R-CNN) is more effective and suitable for
detecting old loess landslides. Libo et al. [34] designed a lightweight and fast YOLO-SA
algorithm to detect potential landslide areas in Qiaojia and Ludian counties of Yunnan
Province, China, with a model F1 score of 90.65%, a miss detection rate of 1.56%, an error
rate of 16%, and a detection speed of 42 f/s. Yet, the detection accuracy of the model needs
to be improved due to the small landslide dataset and human marking errors. However,
most of the existing studies are aimed at landslide detection in specific regions [35–38],
with low accuracy and poor robustness for landslide detection in multiple categories in
different terrain and landscapes, which has not been widely used.

To solve the above problems, this paper proposes a universal method (YOLOX-Pro)
based on improved YOLOX [32] to detect landslides in optical remote sensing images.
This method improves the detection accuracy for landslides in different geomorphological
environments and has excellent detection capability for small and complex landslides.
The main contributions of this work are as follows. First, a mixed historical landslide
sample dataset was established. Then, the varifocal loss function was used to solve the
miss detection and poor accuracy for small landslides [39], and the attention mechanism
was introduced to improve the identification ability for landslide areas [40–42]. In addition,
four object detection models were compared with YOLOX-Pro while testing the effect of
three attention mechanisms on YOLOX-Pro detection performance. Finally, the effect of the
location and quantity of attention mechanism on the YOLOX-Pro were compared, and the



Remote Sens. 2022, 14, 4939 3 of 25

detection ability of the model for UAV landslide images was tested. The proposed method
has strong generalization and practical performance, with broad application prospects.

2. Study Area and Dataset

In this study, thirty-eight study areas in China where landslides have occurred were
selected for research. The study areas include the western alpine valley and the hilly
eastern area, and the triggering factors of landslides include earthquakes, precipitation,
and human activities. The landslide types cover earth slides, rockslides, and a few debris
flows. Within each selected study area, there are multiple landslide points distributed as
shown in Figure 1.
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Figure 1. The location of the study area. The red rectangular boxes are landslide study areas, with
multiple landslides distributed within each area.

We thoroughly considered the diversity of landslide types and distribution based on
thirty-eight study areas and extracted these areas’ optical remote sensing images using
Google Earth software. We selected 1200 images containing landslides as landslide samples
and 1200 images not containing landslides as negative samples. Finally, the above study
samples were visually interpreted by experts to ensure the accuracy of the image categories.
The landslide samples consist of 720 earth slides, 400 rockslides, and 80 debris flows. Most
of the images in this dataset have a spatial resolution of 1 m or 0.5 m, with image dates
ranging from 2007 to 2021. The negative samples are used to increase the model’s ability to
discriminate landslides, including mountains, hills, farmland, rivers, roads, and cities. The
above two samples formed the CN dataset for this study, which was used to train and test
the research model of this paper.

Mibei Village is located in Beiling Town, Longchuan County, Heyuan City, Guangdong
Province, China. The heavy rainfall that lasted four days, from 10 June 2019, caused
hundreds of small landslides in the area, distributed near roads, houses, and gullies [43].
We obtained Google Earth optical remote sensing images of the area in 2020 with a spatial
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resolution of 0.60 m, including 267 landslides (Figure 2), for additional testing of the
model’s performance.
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Figure 2. The landslide area is located in Mibei Village, Beiling Town, Longchuan County, Heyuan City,
Guangdong Province, China. The red points are the locations of landslides identified after the survey.

The UAV (Unmanned Aerial Vehicle) dataset consists of 750 UAV images, including
250 landslide samples and 500 non-landslide negative samples, also visually interpreted by
experts. One hundred and fifty landslide images and negative images were collected from
the Internet, and another 100 landslide images were obtained from the literature [44]. The
UAV dataset was used to evaluate the model’s portable performance, and the landslides’
time and location were unknown.

The CN and UAV datasets are composed as shown in Table 1, and the research sample
for this paper is shown in Figure 3.

Table 1. The dataset in this paper. Each sample is an image, the landslide sample contains one to
more landslides, and there are no landslides in the negative sample.

Dataset Images Total Images

CN dataset
1200 landslides samples

720 earth slides

2400
400 rock slides
80 debris flows

1200 negative samples

UAV dataset
250 landslides samples

750
500 negative samples
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Figure 3. The research sample for this paper. The landslide samples contain one or more landslides
per image, and the negative samples are environmental images that do not contain landslides. CN
landslides samples: (a1–a10); CN negative samples: (b1–b10); UAV landslides samples: (c1–c5); UAV
negative samples: (d1–d5).

3. Methods

This study constructed a YOLOX-Pro model based on the improved YOLOX [32]
model and proposed a method applied to complex hybrid landslide detection. First, the
principles of CNN and YOLOX algorithms were briefly reviewed. Then, the algorithm was
investigated in two aspects to make it applicable to landslide detection tasks: (1) Replaced
the loss function to solve the uneven distribution of landslide samples and improve the
model’s ability to detect dense and small landslides and complex landslides, thus improving
the detection Recall. (2) Based on the YOLOX, the attention mechanism was used to
enhance the algorithm’s ability to identify landslides in the environment and thus improve
the detection accuracy forming the YOLOX-Pro model. Moreover, the Common Objects
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in Context (COCO) [45] evaluation metrics were introduced to compare the detection
performance of various models in detail.

3.1. Convolutional Neural Network

CNN is widely used in image recognition tasks. Its basic structure consists of a
convolutional layer, an activation function, a pooling layer, and a fully connected layer, as
shown in Figure 4. The typical convolution operation is as follows:

zl = σ
(

wl × al−1 + bl
)

(1)

where zl is the output feature map of the lth layer, wl and bl is the convolution kernel and
bias of the lth layer, respectively, al−1 is the input image or feature map, and σ represents
the activation function. The convolution layer is equivalent to a feature extractor, using
different sizes of convolution kernels to extract features at different scales of the image,
e.g., c × 3 × 3, where c is the number of input channels, 3 × 3 denotes the size of the
extracted area, and the output is called a feature map. Each feature map is used as a
class of extracted image features. Multiple convolutional kernels are usually used to
obtain different feature maps to improve the representation capability of the convolutional
network. The activation function is a nonlinear function, such as sigmoid

(
1/
(

1 + e(−x)
))

or SiLU (x× sigmoid(x)), which aims to enhance the representation and learning ability
of the neural network. The pooling layer is usually used for feature selection, reducing
the feature map size and the number of parameters, with maximum pooling and average
pooling being the most used. Furthermore, this study also uses average pooling along with
the X-axis and Y-axis directions, as shown in Figure 5. The fully connected layer at the
tail of the network maps the high-dimensional features to the low-dimensional space and
classifies the extracted features.
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3.2. YOLOX Algorithm

YOLOX is a one-stage target detection algorithm proposed by Megvii Technology,
China, in 2021, improving the basic network structure of YOLOV3-SPP [29]. Compared
with other object detection algorithms of the YOLO series, the standard network structure of
YOLOX has significantly improved speed and accuracy. For lightweight network structure,
it has high detection accuracy with fewer parameters. The YOLOX model consists of three
modules: Backbone, Neck, and Head. Its network structure is shown in Figure 6.

As shown in Figure 6, the Focus [31], CBS, Cross Stage Partial Network (CSP) [46],
and Spatial Pyramid Pooling (SPP) [47] are the basic modules of YOLOX, which are used
to extract and transform the input features. The CBS module consists of Convolution,
Batch Normalization (BN) [48], and SILU functions. The Bottleneck is a structural unit in
ResNet [49] that is used to improve the nonlinearity of the network structure and reduce
the computational effort.

Backbone extracts feature from the input images, and the obtained feature sets are
called feature map. A total of three effective feature maps containing different scale
information are received in the backbone network, which is 1/8, 1/16, and 1/32 of the
input image size, respectively.

In the Neck, the effective feature maps are fused with up-sampled and down-sampled
features to get three enhanced feature maps containing richer picture information, each of
which is a collection of a large number of feature points.

The Head is the classifier and regressor of YOLOX, which detects the feature map
output from the Neck part, determines whether the feature point corresponds to the object,
and realizes the classification and detection of the picture. As an example, the detection
images contain eighty categories of objects. YOLOX uses three Decoupled Heads to detect
feature maps of size 20× 20× (80 + 1 + 4), 40× 40× (80 + 1 + 4), and 80× 80× (80 + 1 + 4),
corresponding to eighty categories, one confidence score, and four regression parameters
information, respectively. Among the four regression parameters, the first two are the
offsets of the center point of the prediction box relative to the corresponding feature points,
and the last two are the parameters of the width and height of the prediction box relative
to the logarithmic index. After some Concatenation and Reshaping operations, a set
of feature vectors (85,8400) containing the above information is output. Among them,
8400 refers to the number of prediction points, (corresponding prediction box size 8 × 8,
16 × 16, 32 × 32), and eighty-five refers to the information of the prediction point (Cls, Reg,
Obj). Finally, the prediction points are matched with the objects in the images, and the
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best prediction boxes are selected as the detection results after confidence ranking and
Non-Maximum Suppression (NMS) [50] (Figure 7).
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from the input image. The prediction box can be obtained by adjusting the regression parameters.
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The main improvements of the YOLOX network are as follows.
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Yolv3-v5 uses coupled heads [51,52] to achieve classification and regression tasks
using 1 × 1 convolution, which limits the expressiveness of the detected images. In
contrast, YOLOX uses decoupled heads that perform classification and regression separately
and are integrated at the final prediction, improving the model’s detection accuracy and
convergence speed. The structure of YOLO series detection heads is shown in Figure 7.

YOLOX uses the Anchor Free detection method [53,54], which outputs only one set
of feature vectors and detects about 700,000 feature points. In contrast, YOLOv3-v5 uses
the Anchor Based method, which outputs three sets of feature maps and requires about 2
million feature points to predict, and YOLOX reduces about 2/3 of the parameters (Figure 7).
Moreover, YOLOX adopts the SimOTA [51] label assignment strategy of dynamically
matching positive samples for targets of different sizes, giving the model a certain adaptive
ability to match the detected targets dynamically. During the training process of the neural
network, the prediction results become more and more accurate as the number of iterations
increases and the model parameters are updated.

As shown in Figure 6, the Focus [31], CBS, Cross Stage Partial Network (CSP) [46],
and Spatial Pyramid Pooling (SPP) [47] are the basic modules of YOLOX, which are used
to extract and transform the input features, where a is a tiny constant. The number of
prediction boxes corresponding to the three types of feature points is 6400, 1600, and
400, respectively.

3.3. YOLOX-Pro Algorithm

We improved the YOLOX algorithm to meet the requirements of landslide detec-
tion tasks and named the new algorithm YOLOX-Pro (Figure 8). The YOLOX-Pro model
includes five network sizes: Nano, Tiny, S, M, and L, with increasing parameters and
computational power, as well as progressively increasing detection performance (Table 2).
A network of appropriate size can be selected for landslide detection according to the detec-
tion accuracy requirements and the capability of computing equipment. The improvement
of the YOLOX-Pro model is mainly in two aspects. First, the classification loss function
of YOLOX was replaced by the VariFocal loss function, which is used as the base model
for the study. Second, three attention modules, Squeeze-and-Excitation Module (SE) [40],
Convolutional Block Attention Module (CBAM) [41], and Coordinate Attention (CA) [42],
were added to the base model for comparison, and the optimal model was selected to form
the YOLOX-Pro model.
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Table 2. The Parameters of YOLOX and YOLOX-Pro.

Parameters (Mb)

Network Size Nano Tiny S M L
YOLOX 0.91 5.06 9.00 25.30 54.20

YOLOX-Pro 1.42 6.51 10.30 26.50 57.51

3.3.1. Reconstructing the Loss Function

The loss function is usually expressed using L(p, y), a non-negative real-valued func-
tion to estimate the degree of difference between the predicted value p and the label y (true
value). The smaller the loss function, the better the model’s prediction is within a certain
range. In binary classification tasks where the output y has only two discrete values of
[0, 1], a binary cross-entropy loss function is usually used to discriminate. Where p is the
probability that the predicted outcome is a positive sample, (1− p) denotes the negative
sample probability, and y is the true label of the sample, with a positive sample label of 1
and a negative sample label of 0. The basic formula is as follows.

L(p, y) = −y log(p)− (1− y) log(l − p) (2)

There are three types of losses in YOLOX: The prediction box position loss, which
is used to fit the bounding box during the training process gradually. The target score
loss reflects the actual probability of the predicted outcome. The target category score loss
reflects the probability that the predicted target is a certain category.

High-resolution optical remote sensing images are usually used in landslide detection
tasks, while landslides occupying a tiny percentage of the image can create a severe
proportional imbalance problem. In addition, difficult samples (small landslides and
complex landslide objects that are difficult to identify) can pose a significant challenge to
the detection task. Therefore, the VariFocal loss function is used instead of the target score
loss function in the original model to solve the above problem [39]. VariFocal loss function
improves the recognition of different types of targets by setting hyperparameters to reduce
the negative sample loss weights while increasing the hard sample weights. The VariFocal
loss function is designed based on the binary cross-entropy loss function and is expressed
as follows:

VFL(p, q) =
{
−q(q log(p)) + (1− q) log(l − p) q > 0
−αpγ log(1− p) q = 0

(3)

where p is the predicted IoU-aware classification score (IACS), and q is the target score, the
intersection ratio IoU (Intersection over Union) is used to measure the degree of resynthesis
of the prediction box and the ground truth. The larger the value indicates, the more accurate
positioning of the prediction boxes, taking the value range [0:1]. The IoU is expressed
as follows:

IoU =
area

(
Bp ∩ Bgt

)
area

(
Bp ∪ Bgt

) (4)

where Bp is the prediction box, and Bgt is the ground truth (actual box).
Positive samples, q are set to the IoU between the prediction box and the ground

truth, and all negative samples have a q value of 0. The parameters α and γ are used to
balance the losses of positive and negative samples. The negative samples are multiplied
by p to reduce their loss weights, due to the small number of positive samples. Positive
samples are multiplied by q to increase the loss weights because positive samples with
higher IoU values have larger loss values. The losses can be focused on those high-quality
samples during training. Finally, the overall positive and negative samples are weighted
using α to balance the losses.
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3.3.2. Add Attention Module

In computer vision, the attention mechanism aims to keep the algorithm focused on
key information and suppress redundant information. We added the attention mechanism
to the base model to improve the algorithm’s recognition of landslide areas and thus
improve the detection performance. Three attention modules, SE, CBAM, and CA, were
added to the base model dark2 block after the CSP component, as shown in Figure 6.

Attention Mechanism

The attention mechanism commonly used in convolutional neural networks can be
categorized depending on the domain of attention:

Spatial Domain: Compress the channels of the images to get the key information
containing only spatial dimensions, and then use the key information to produce weights,
which in turn act on the spatial data for the generation and scoring of masks. The represen-
tative Spatial Attention Module [52].

Channel Domain: Compressing the spatial dimension of the image to get only the
key information of the channel dimension, using the extracted key information to produce
weights, and then reacting to the channel data to generate and score the mask. The
representatives are Squeeze-and-Excitation Module (SeNet) and the Efficient Channel
Attention Module (ECA-Net) [55].

Hybrid domain: Combining spatial domain and channel domain, focusing on both
spatial information and channel information of the image, represented by Convolutional
Block Attention Module (CBAM) and Coordinate Attention (CA).

Coordinate Attention Mechanism

Coordinate Attention (CA) is a new lightweight attention mechanism for mobile
networks that effectively improves model performance while incurring little computa-
tional overhead. CA embeds the location information into the channel attention and then
decomposes the channel attention into two one-dimensional feature encoding processes
(Figure 5c,d). Then, the above two features are aggregated along two spatial directions
separately to obtain the remote dependencies in one spatial direction while preserving the
precise location information in the other. The generated feature maps are encoded into
direction-aware and location-aware attentional feature maps, which can be applied to the
input feature maps in a complementary way, enabling the network to locate the object of
interest more accurately. The CA workflow is shown in Figure 9.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 25 
 

 

representatives are Squeeze-and-Excitation Module (SeNet) and the Efficient Channel At-
tention Module (ECA-Net)[55]. 

Hybrid domain: Combining spatial domain and channel domain, focusing on both 
spatial information and channel information of the image, represented by Convolutional 
Block Attention Module (CBAM) and Coordinate Attention (CA). 

Coordinate Attention Mechanism 
Coordinate Attention (CA) is a new lightweight attention mechanism for mobile net-

works that effectively improves model performance while incurring little computational 
overhead. CA embeds the location information into the channel attention and then de-
composes the channel attention into two one-dimensional feature encoding processes 
(Figure 5c,d). Then, the above two features are aggregated along two spatial directions 
separately to obtain the remote dependencies in one spatial direction while preserving the 
precise location information in the other. The generated feature maps are encoded into 
direction-aware and location-aware attentional feature maps, which can be applied to the 
input feature maps in a complementary way, enabling the network to locate the object of 
interest more accurately. The CA workflow is shown in Figure 9. 

 
Figure 9. The Coordinate Attention workflow. C, H, and W are the number of channels, height, and 
width of the feature map, respectively. The r denotes the compression ratio of the channels. 

The CA channel attention module encodes channel attention blocks’ relationships 
and remote dependencies through two steps: embedding coordinate information and gen-
erating coordinate attention. The embedding of coordinate information is a global average 
convergence operation along with the horizontal and vertical directions for a given input 

, to obtain the location information associated with the one-dimensional fea-
ture in the horizontal direction (Figure 5c) and the one-dimensional feature in the vertical 
direction (Figure 5d), and is expressed as follows: 

 
(5) 

 
(6) 

In Equations (5) and (6), at channel C, the input  with height  and 
width , encode along the horizontal direction to get , and along the verti-
cal direction to get . 

In the generation step of the coordinate attention, all channels of  and  are con-
nected together to obtain  and . Then, they are concatenated 
and send to a shared 1×1 Convolutional transformation function  for the compres-
sion transformation of the channel dimension; the hyperparameter r controls the compres-
sion ratio, is the concatenation operation along the horizontal and vertical features, 

Figure 9. The Coordinate Attention workflow. C, H, and W are the number of channels, height, and
width of the feature map, respectively. The r denotes the compression ratio of the channels.

The CA channel attention module encodes channel attention blocks’ relationships
and remote dependencies through two steps: embedding coordinate information and
generating coordinate attention. The embedding of coordinate information is a global
average convergence operation along with the horizontal and vertical directions for a
given input Fin ∈ R1×H×W , to obtain the location information associated with the one-
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dimensional feature in the horizontal direction (Figure 5c) and the one-dimensional feature
in the vertical direction (Figure 5d), and is expressed as follows:

f c
h(h) =

1
W ∑

0≤i<W
Fc

in(h, i) (5)

f c
w(w) =

1
H ∑

0≤j<H
Fc

in(j, w) (6)

In Equations (5) and (6), at channel C, the input FC
in ∈ R1×H×W with height H and

width W, encode along the horizontal direction to get f c
h ∈ R1×H×1, and along the vertical

direction to get f c
w ∈ R1×1×w.

In the generation step of the coordinate attention, all channels of f c
h and f c

w are con-
nected together to obtain fh ∈ RC×H×1 and fw ∈ RC×1×W . Then, they are concatenated and
send to a shared 1 × 1 Convolutional transformation function F1×1 for the compression
transformation of the channel dimension; the hyperparameter r controls the compres-
sion ratio, [·, ·] is the concatenation operation along the horizontal and vertical features,
and δ represents the Relu (max(0, x)) function here, and finally, the batch normalization
operation (BN) is performed to obtain fhw ∈ RC/r×(H+W). The representation is as follows:

fhw = BN(δ(F1×1([ fh, fw]))) (7)

Then, split fhw along the spatial dimension into two separate tensors f ′h ∈ RC/r×H

and f ′w ∈ RC/r×W , followed by two 1 × 1 convolutional transformations F1×1
h and F1×1

w ,
next multiplied by the sigmoid function σ to obtain the attention weights.

Finally, the horizontal and vertical attention weights are dimensionally expanded to
RC×H×W , and multiplied with the input data Fin to obtain the coordinate attention output
feature map Fout ∈ RC×H×W , which can be formulated as:

fh
′′ = σ

(
F1×1

h
(

fh
′)) (8)

fw
′′ = σ

(
F1×1

w
(

fw
′)) (9)

Fout = Fin(i, j)× f
′′
h (i)× f

′′
w (j) (10)

The coordinate attention module applies horizontal and vertical attention weights to
the input feature map to more accurately locate the exact position of the object of interest,
thus helping the entire model better identify objects.

3.4. Model Evaluation Methods

The confusion matrix-based method is commonly used to evaluate the performance of
the object detection model, but it can only evaluate the model’s overall performance. This
study introduces the COCO detection evaluation metrics [45], which consist of 12 metrics
to evaluate the performance of the target detection model in detail. The COCO metrics are
defined based on the confusion matrix, which is explained in detail below.

The confusion matrix evaluation metrics include precision (P), recall (R), and average
precision (AP). Precision indicates the probability of being correct among the targets
detected as positive samples. Recall indicates the probability of being correctly identified
among all positive samples. AP is a comprehensive evaluation index calculated by the area
under the Precision and Recall curves. Higher AP means better model performance. The
definitions are as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)
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AP =
∫ 1

0
P(R)dR (13)

IoU(pbox, gt) =
area(pbox∪ gt)
area(pbox∩ gt)

(
pbox : predictionbox

gt : groundtruth

)
(14)

In the above equation, the IoU (intersection over union) between the prediction box
and the ground truth is used to determine the class of the prediction result, and the most
common IoU threshold is 0.5. If the IoU is greater than 0.5, the prediction box is labeled as
true positive (TP), else the prediction box is labeled as false positive (FP). False negative
(FN) is missed detection. In this study, TP, FP, and FN represent the number of correctly,
incorrectly, and missed detected landslides.

The COCO evaluation metrics (Figure 10). AP is a primary challenge metric and is
the average AP value when the IoU threshold increases from 0.5 to 0.95, with the step size
being 0.05. AP0.5 and AP0.75 were the AP value when the IoU threshold was separately
set to 0.5 and 0.75. AP0.75 is a strict evaluation metric.
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The average recall (AR) is the maximum recall given a fixed number of detections per
image, averaged over categories and IoUs, and the IoU value is set to 0.5 in this study. AR
is divided into two categories. The maximum number of targets in the detected objects
is divided into AR1, AR10, and AR100, reflecting the model’s detection performance for
multi-target objects. The pixel area is divided into APsmall, APmedium, and ARmax,
reflecting the detection performance of the model for targets of different scales, where the
pixel area less than 322 was marked as the small target, and the area between 322 and 962

was marked as the medium target. The rest was marked as the large target. The AR formula
is as follows.

AR =
Recall

n
(15)

The units of the above evaluation metrics are all in percentages. Some of the above
metrics were selected to comprehensively evaluate the models used in this study. AP0.5,
Recall, and Precision metrics were selected to evaluate the overall detection performance of
the model. AP, AP0.75 are more strict evaluation metrics for comparing subtle differences
in model performance. APsmall, Arsmall, and AR10 were used to evaluate the model’s
detection performance for minor landslides and cluster landslides.

4. Experimental Setup and Results

In this section, we first described the setup of the experiment. Then, we added three
attention modules to the base model for comparison and selected the best model to form the
YOLOX-Pro model. Next, the YOLOX-Pro was compared with other models and analyzed
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in detail. Finally, we present and analyze the landslide detection results of the YOLOX-Pro
model, including the CN test set, the Mibei area, and the UAV landslide images.

4.1. Experimental Setup

The CN dataset was randomly divided into training, validation, and test sets with a
ratio of 6:2:2, and the number of images is 1440, 480, and 480, respectively (Table 3). Then,
the image sizes of the training and validation sets were resampled to 640 × 640 pixels,
and the rectangular bounding boxes and labels of the landslides were labeled using the
LabelImg software. Landslide experts verified the annotation results to ensure the accuracy
of the annotation. The training set was utilized for training the model, the validation set
was employed to select the optimal model, and the test set was not processed and used to
evaluate the model’s performance (Figure 11).

Table 3. The details of dataset division. The UAV dataset does not have validation set. The Mibei
landslide area is only divided into test set for landslide detection.

CN Dataset UAV Dataset Mibei Landslide Area

Data Composition Landslide images Negative images Landslide images Negative images images
Train 770 670 150 400 -
Val 180 300 - - -
Test 250 230 100 100 26
Total 1200 1200 250 500 26
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The optical remote sensing image of the Mibei landslide area was cropped into
1920 × 1920 pixels patches from the top left corner. Twenty-six images were obtained
and fed to the optimal model for additional landslide detection. The overlap size of each
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crop direction is 300 pixels to ensure that each landslide has a complete image for detection.
(Figure 11).

The UAV dataset was divided into training and test set, consisting of 500 and 250 im-
ages, respectively. Due to the small number of samples, there is no validation set. The
training images were resampled to 640× 640 pixels, and the test images were not processed.
First, the UAV training images were fed into the first optimal model for the second training.
Then, the UAV test images were fed into the second optimal model for testing (Figure 11).
The detailed information of the dataset is shown in Table 3.

The experiments were conducted on a workstation equipped with an Intel I CoITM)
i7-12700 processor, 32 GB Random Access Memory (RAM), and NVIDIA RTX 3090 graphics
processor with 24 GB of video memory, built on the deep learning framework PyTorch and
implemented using the Python programming language.

To accelerate and enhance the learning ability of the model, the model was initialized
with weights obtained from the ImageNet dataset before training, based on a transfer
learning approach [56,57]. The Stochastic Gradient Descent (SGD) [58] optimizer was used
for all training processes. The freeze training epochs was 50, and the initial learning rate
was 10−3, and the batch size was 32. The thaw training epochs was 100, and initial learning
was 10−4, and batch size was 16. The weight decay factor is 0.005, with a momentum factor
of 0.9. The second experiment was trained for 50 epochs with the same parameter settings
as the first.

4.2. Model Assessment

The images from the test set were not used for model training and are unknown to the
model. Therefore, the trained models are used to perform landslide detection on the test
set images to compare the performance of different models.

4.2.1. Comparing Different Attention Mechanisms

We added SE, CBAM, and CA attention modules to the base model for comparison to
select the most appropriate attention module to form the optimal model. Large-size network
YOLOX (m) and small-size network YOLOX (nano) were selected as representatives for the
experiment, and the result is shown in Table 4.

Table 4. The effect of different attentional mechanisms on the YOLOX-Pro model.

Model Params (Mb) AP (%) AP0.75 (%) APsmall (%) ARsmall (%)

YOLOX (m) 25.30 47.00 48.30 32.50 46.80
YOLOX-CA (m) 26.50 47.80 51.50 36.50 49.50

YOLOX-CBAM (m) 26.68 47.70 50.10 35.30 47.90
YOLOX-SE (m) 26.59 47.50 49.80 35.70 48.10

YOLOX (nano) 0.91 45.10 44.60 31.30 45.00
YOLOX-CA (nano) 1.42 46.10 46.90 33.70 47.50

YOLOX-CBAM (nano) 1.44 45.70 46.70 33.10 47.20
YOLOX-SE (nano) 1.43 45.60 46.60 32.80 46.90

In the CN dataset, the pixel area of landslides in many images is less than 32 × 32
pixels corresponding to the actual size of landslides as less than 322 or 162 square meters
(Optical remote sensing images of these landslide samples have a resolution of 1 m or 0.5 m).
So, the four metrics AP, AP0.75, APsmall, ARsmall, and AR10 are selected to compare the
detection performance of different modules in detail.

Table 4 shows that adding the CA module increases the number of parameters less
than the CBAM and SE modules compared to the standard YOLOX model. The YOLOX-CA
obtains an overall advantage over other models and improves APsmall and ARsmall by
more than 2%. In later experiments, we used the YOLOX-CA as the improved model and
named YOLOX-Pro.
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4.2.2. Comparing Different Detection Models

To determine the performance of YOLOX-Pro, a comparison was made with four clas-
sical detection models: YOLOX, YOLOv5, Faster-RCNN, and SSD. Three comprehensive
metrics, AP0.5, Recall, and Precision, were used to evaluate the detection performance of
the above models in our CN dataset.

Table 5 shows that YOLOX-Pro (m) has an obvious advantage over YOLOX (m).
AP0.5 reached 84.85%, Recall improved by 6.43%, Precision improved by 3.06%, while
the parameters increased slightly by 1.2 Mb. YOLOv5 (m) has the least parameters, but
low recall leads to poor performance. The Faster-RCNN has the most parameters and
higher Recall but the lowest Precision. The Recall of the SSD is the lowest and performed
the worst.

Table 5. Comparison of detection performance of different models.

Model Params (Mb) AP0.5 (%) Recall (%) Precision (%)

YOLOX-Pro (m) 26.50 84.85 81.52 85.36
YOLOX (m) 25.30 81.73 75.09 82.30
YOLOv5 (m) 21.20 74.30 68.95 80.25

Faster R-CNN (resnet-50) 107.87 71.35 77.37 67.56
SSD (vgg) 90.07 69.15 57.29 76.19

In the CN dataset, the number of landslides in most images is within 10, so the AR10
metrics was added to compare the detection performance of YOLOX and YOLOX-Pro
models for images containing multiple landslides.

Compared with standard YOLOX, the YOLOX-Pro has improved all evaluation metrics
with a slight parameter increase (Table 6). In particular, the AP0.75 of the S network
increased by 5.8%, and the ARsmall of the M network increased by 4.0%. Specifically,
the increase of AP for each network of YOLOX-Pro is slight. However, the rise of AP0.75
is apparent, indicating that the model has a greater improved comprehensive detection
performance for high-quality objects. The increase of APsmall and ARsmall is significant,
and the average rise of AR10 is 2.86%, indicating that the model improves the detection
performance of multi-target objects significantly, especially small targets.

Table 6. Comparison of detection performance between YOLOX and YOLOX-Pro models.

YOLOX YOLOX-Pro

l m s Tiny Nano l m s Tiny Nano

Params (Mb) 54.20 25.30 9.00 5.06 0.91 57.51 26.50 10.30 6.51 1.42
AP (%) 47.20 47.00 45.30 45.10 45.10 48.30 47.80 47.00 46.70 46.10
AP0.75 (%) 48.70 48.30 45.00 45.20 44.60 52.40 51.50 50.80 48.80 46.90
APsmall (%) 33.40 32.50 32.10 31.40 31.30 37.50 36.50 35.30 34.82 33.70
ARsmall (%) 47.00 46.80 45.70 45.40 45.00 49.80 49.50 49.20 48.60 447.50
AR10 (%) 58.60 58.60 57.70 57.80 57.40 61.70 61.20 60.90 60.50 60.10

To demonstrate the difference in detection performance between YOLOX and YOLOX-
Pro, we compared their landslide detection results. As shown in Figure 12, YOLOX
performs poorly in detecting small landslides in complex environments, with more missed
detections. YOLOX-Pro has significantly improved the problems above, with few missed
detections and strong detection performance.
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ical landslide areas are very similar to the surrounding environment or some areas have 
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rectly identify small landslides along the road, which is essential for determining danger-
ous hidden areas and ensuring transportation safety. In general, the YOLOX-Pro model 
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Figure 12. Comparison of detection results of YOLOX(M) and YOLOX-Pro(M) models. The red target
boxes indicate the landslides automatically detected by the model, and the green target boxes are the
manually labeled missed landslides. (a1–c1): the detection effect of small landslides is poor, and there
are many missed detections; d1: the debris flow in the lower left corner of the image was missed;
(a2–d2): better detection performance, least missed detection.

4.3. Landslide Detection Results

We present the results of the landslide detection of YOLOX-Pro on the CN test set.
Some representative detection results are shown in Figure 13. The red target boxes mark the
boundaries of the landslides and the corresponding confidence scores. A higher confidence
score means a higher probability that the detected object is a landslide.

The analysis shows that the model can accurately delineate the landslide boundary
in the correctly detected area, especially distinguishing between landslides and roads or
rivers, as shown in Figure 13a–e. When detecting multiple landslide samples, the model can
accurately distinguish landslides of different sizes, as shown in Figure 13f–j. The model still
has a high discrimination ability for complex landslide areas when the historical landslide
areas are very similar to the surrounding environment or some areas have been covered
by surface vegetation, as shown in Figure 13k–o. The detection performance of the model
for minor landslides is demonstrated in Figure 13p–t. The model can correctly identify
small landslides along the road, which is essential for determining dangerous hidden areas
and ensuring transportation safety. In general, the YOLOX-Pro model has high detection
accuracy and strong robustness.
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Figure 14 shows that YOLOX-Pro still has a good detection performance for cluster-
type landslides, with only a few missed and false detection results. Part of the landslide 
in the yellow box in Figure 14a is blocked by the shadows of vegetation, which leads to 
missed detection. The bare ground eroded by rain in the blue boxes in Figure 14a,b is very 
similar to the landslide and is incorrectly detected as a landslide. The above two types of 
samples are added to the training to improve the model’s discriminative ability, thus solv-
ing the above problem. The bare land on the edge of Figure 14d is incorrectly detected as 
a landslide. The above problem can be avoided by keeping a certain image cropping 
threshold, as in Figure 14b, where this bare land is not identified as a landslide. 

Figure 13. Detection results of potential landslide areas by YOLOX-Pro(M). The partially represen-
tative detection results of YOLOX-Pro for potential landslide areas. The red rectangles mark the
boundaries of the landslide, which the model automatically detects. (Huge landslides) (a–e): the huge
landslides. (Multiple landslides) (f–j): the multiple landslides of different sizes; (Complex landslides)
(k,l): the historical landslides areas are very similar to the surrounding environment; (m–o): the
landslides that have been covered by surface vegetation in some areas. (Small landslides) (p–t): the
small landslides along the road.

4.4. Landslide Detection Results in The Mibei Area

To further measure the detection performance of the proposed model, YOLOX-Pro
was used to detect group-occurring landslides in the Mibei area. The detection results of
the densest area of the landslide are shown in Figure 14.
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The results of the YOLOX-Pro network for detecting landslides in the Mibei area are 
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Table 7. Results of the YOLOX-Pro network for detecting the Mibei area. 
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YOLOX-Pro (s) 10.30 81.86 82.51 80.86 

Figure 14. Detection results of Mibei area by YOLOX-Pro(M). (a,b,d): Detection results of dense
areas of landslides. (c): Landslide detection results for the Mibe area. The red, blue, and yellow
points indicate the correct, erroneous, and missed landslide detection locations, respectively. The red
rectangles mark the landslide boundaries, which the model automatically detects. The yellow and
blue rectangular boxes are the model’s missed and erroneously detected landslides, respectively.

Figure 14 shows that YOLOX-Pro still has a good detection performance for cluster-
type landslides, with only a few missed and false detection results. Part of the landslide
in the yellow box in Figure 14a is blocked by the shadows of vegetation, which leads to
missed detection. The bare ground eroded by rain in the blue boxes in Figure 14a,b is very
similar to the landslide and is incorrectly detected as a landslide. The above two types
of samples are added to the training to improve the model’s discriminative ability, thus
solving the above problem. The bare land on the edge of Figure 14d is incorrectly detected
as a landslide. The above problem can be avoided by keeping a certain image cropping
threshold, as in Figure 14b, where this bare land is not identified as a landslide.

The results of the YOLOX-Pro network for detecting landslides in the Mibei area are
shown in Table 7.
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Table 7. Results of the YOLOX-Pro network for detecting the Mibei area.

Model Params (Mb) AP0.5 (%) Recall (%) Precision (%)

YOLOX-Pro (l) 57.51 85.19 86.76 83.95
YOLOX-Pro (m) 26.50 83.77 83.88 81.37
YOLOX-Pro (s) 10.30 81.86 82.51 80.86

YOLOX-Pro (tiny) 6.51 80.55 80.22 80.35
YOLOX-Pro (nano) 1.42 79.30 79.18 79.56

4.5. UAV Landslide Detection

In geological disasters, using UAVs to conduct timely surveys of the affected area
is very important for disaster risk evaluation and rescue work. Therefore, we add UAV
images for landslide detection.

From Table 8, the results show that all five sizes of YOLOX-Pro networks have high
detection performance for UAV landslide images, and the differences are slight, especially
the YOLOX-Pro (nano) AP0.5 achieved 82.47%, and the parameters are only 1.42 Mb.

Table 8. Results of the YOLOX-Pro network for detecting the UAV dataset.

Model Params (Mb) AP0.5 (%) Recall (%) Precision (%)

YOLOX-Pro (l) 57.51 86.35 83.51 84.65
YOLOX-Pro (m) 26.50 85.87 82.37 83.28
YOLOX-Pro (s) 10.30 84.56 81.77 82.54

YOLOX-Pro (tiny) 6.51 83.28 80.82 81.66
YOLOX-Pro (nano) 1.42 82.47 80.36 80.88

The detection results are shown in Figure 15. YOLOX-Pro has good detection perfor-
mance for many types of landslides and is highly portable.
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This experiment used images taken by UAVs to perform landslide detection on a
server, providing a technical reference for using UAVs for large-area landslide detection.
With the development of related technologies, deploying lightweight landslide detection
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models directly to UAVs for real-time landslide detection is a more rapid method, which is
the focus of future research.

5. Discussion

Deep learning tasks usually use many data preprocessing operations and tricks to
improve model performance [48,59–64]. Nevertheless, it is critical to tailor the appropriate
technology to the task requirements. Since this study aims to establish a universal landslide
detection method and therefore does not use many tricks to avoid too much intervention.

In this section, the effect of the quantity and location of the CA modules on the base
model was first tested. Then, we discuss the limitations and future challenges of this study.

5.1. Comparing Different Locations and The Number of Attention Modules

The location and number of attention modules can affect model performance. In this
experiment, we add the CA module to the last layer of the CSP block. Three different
network locations were tested using different numbers of attention modules, corresponding
to the red dashed boxes at the dark2, dark3–5, and Neck locations in Figure 6. The dark2
position uses 1 CA module, and the remaining two positions use 3 CA modules each.
Experiments were performed on the M and Nano sizes of the base model, and the results
are shown in Table 9.

Table 9. The effect of the location and quantity of CA modules on the base model. The YOLOX model
with the VariFocal loss function was used as the base model for this experiment.

Description Params (Mb) AP AP0.75 APsmall ARsmall

base model(m) 26.50 47.50 49.50 34.90 47.80
YOLOX -CA _dark2(m) 26.50 47.80 51.50 35.80 49.50
YOLO -CA _dark3–5(m) 26.58 46.80 50.40 33.50 49.20
YOLOX -CA _neck(m) 26.55 47.40 49.90 34.70 48.50

base model (nano) 1.40 45.50 46.60 32.50 46.70
YOLOX -CA _dark2(nano) 1.42 45.90 46.90 33.70 47.50

YOLOX -CA
_dark3–5(nano) 1.44 44.60 46.80 31.20 47.50

YOLOX -CA _neck(nano) 1.44 45.30 46.60 31.90 47.40

In the following, the experimental results will be analyzed in two aspects.
Effect of CA module location: Placing the CA module in the dark2 position improves

the model’s overall performance, with AP, AP0.75, APsmall, and ARsmall improved,
whereas at dark3–5 positions decreased AP and APsmall, moreover, placed in the Neck po-
sition slightly affects the model performance. The attention module added to the Backbone
has a greater effect on the model performance than that added to the Neck because the
feature extraction of input mappings is performed in the Backbone, whereas in the Neck,
only fusion of the features.

Effect of the number of CA modules: The detection of complex landslides and small
landslides would increase their weights since the base model uses the VariFocal loss
function. Again, too many attention mechanisms will cause the model to focus too much
on a certain area. The overall detection accuracy of the landslide area will be reduced, and
overfitting problems will arise. Thus, three CA modules were placed in the dark3–5 and
Neck positions, respectively, leading to the model’s decrease of AP and APsmall. While
only one CA module was placed in the dark2 position, combining the impact of VariFocal,
the model’s performance was improved.

5.2. Limitations and Future Challenges

When using images for landslide detection, some landslides were difficult to observe
directly due to the influence of the shooting angle, resulting in missed detection. For
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example, the landslides in the blue box in Figure 16b and the orange box in Figure 16c were
missed. However, the landslide features are more obvious after switching the shooting
angle, and the model can detect them (the landslide in the blue box in Figure 16a). Therefore,
using multi-angle images for landslide detection can improve detection accuracy.
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Figure 16. (a): The yellow box is the landslide fissure, and the blue box is the landslide detected after
converting the angle; (b): the blue box is the missed landslide; (c): the orange box is the missed landslide.

The UAV can capture high-definition images of the ground at close range. Therefore,
subsequent research can use image recognition technology to detect fissures automatically
generated by landslides, which is essential for pre-disaster warning of landslides and
determination of landslides (e.g., the landslide fissures in the yellow box in Figure 16a).

To achieve automatic and fast detection of landslides, the YOLOX-Pro model uses
rectangular boxes to label the landslide area but fails to obtain more detailed information
about the landslide. Subsequent research focuses on using image segmentation algorithms
to obtain irregular bounding boxes of landslide areas, calculate their areas and obtain
landslide coordinates. In addition, more categories of landslides can be collected for
multi-category labeling to achieve automatic multi-category landslide detection. The above
studies are crucial to obtain more landslide hazard information and quickly assess landslide
hazard risk.

The use of deep learning techniques for landslide hazard detection is still in the pre-
liminary stage of application. Nevertheless, the method demonstrates good detection
performance when sufficient landslide data are obtained and has high application value
and broad development prospects. Future research can explore the combination of land-
slide area-related data (e.g., Digital Elevation Model (DEM)) to improve landslide detection
accuracy. Based on the rapidly developing artificial intelligence technology, it is of high
research significance and value to combine the massive landslide disaster-related informa-
tion (such as extreme weather warning, earthquake warning, etc.) for pre-disaster warning
of landslides. Ultimately, establishing a complete and efficient pre-disaster warning and
post-disaster analysis system for landslides is both a challenge and an opportunity for
researchers in related fields.

6. Conclusions

This paper established a dataset containing multiple types of remote sensing land-
slides using Google Earth images as the data source. Based on the deep learning model
YOLOX, a set of YOLOX-Pro networks containing five scales is constructed by replacing
the VariFocal loss function and introducing a lightweight Coordinate Attention mechanism
to propose a universal detection method for multi-category landslides. The model is highly
portable and can be used by selecting a network of the corresponding size according to
the detection equipment’s storage and computational capacity status, which has broad
application prospects. Then, to evaluate the model’s capability in detail, the COCO eval-
uation metrics were the first introduced into the landslide detection task. The results
show that the proposed method has high detection accuracy for small and complex mixed
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landslides. Finally, the detection results of the group-occurring landslide area and the UAV
landslide images verify the robust performance of the proposed model. In addition, we
discuss the limitations of this study and challenges for future research, which provides a
technical reference for further exploration of landslide hazard research using deep learning
techniques. Since the dataset is small, the proposed method still has some error detection,
which is an issue to be addressed in later work. In future work, we will investigate us-
ing semantic segmentation algorithms to obtain more information about landslides for
hazard surveys and explore deploying lightweight models to embedded devices to detect
landslides automatically.
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