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Abstract: Chlorophyll-a (Chl-a) is an important characterized parameter of lakes. Monitoring it
accurately through remote sensing is thus of great significance for early warnings of water eutrophi-
cation. Sentinel Multispectral Imager (MSI) images from May to September between 2020 and 2021
were used along with in-situ measurements to estimate Chl-a in Lake Chagan, which is located
in Jilin Province, Northeast China. In this study, the extreme gradient boosting (XGBoost) and
Random Forest (RF) models, which had similar performances, were generated by six single bands
and six band combinations. The RF model was then selected based on the assessments (R2 = 0.79,
RMSE = 2.51 µg L−1, MAPE = 9.86%), since its learning of the input features in the model conformed
to the bio-optical properties of Case 2 waters. The study considered Chl-a concentrations in Lake
Chagan as a seasonal pattern according to the K-Nearest-Neighbors (KNN) classification. The RF
model also showed relatively stable performance for three seasons (spring, summer and autumn)
and it was applied to map Chl-a in the whole lake. The research presents a more reliable machine
learning (ML) model with higher precision than previous empirical models, as shown by the effects
of the input features linked with the biological mechanisms of Chl-a. Its robustness was revealed by
the temporal and spatial distributions of Chl-a concentrations, which were consistent with in-situ
measurements in the map. This research was capable of revealing the current ecological situation in
Lake Chagan and can serve as a reference in remote sensing of inland lakes.

Keywords: Chlorophyll-a; Lake Chagan; Sentinel-2; seasonal pattern; machine learning

1. Introduction

Gross primary productivity (GPP) is closely linked to various aspects of the global
carbon cycle [1]. Solar-induced chlorophyll-a (Chl-a) fluorescence (SIF), which is emitted by
Chl-a, has been beneficial for monitoring crop productivity, an important part of GPP [2].
Moreover, Chl-a is crucial for modeling plant health in the terrestrial carbon cycle [3]. In
another major area, Chl-a is one of the primary pigments in the phytoplankton of water
bodies and can be used to describe phytoplankton biomass [4]. Accordingly, the ecological
condition of lakes, which is strongly linked to GPP and the global carbon cycle, can be
observed through the Chl-a concentration.

With the emergence of remote sensing, the measurement of water quality parameters
has been greatly simplified [5]. Compared with traditional methods, the retrieval of Chl-a
by remote sensing has more temporal and spatial advantages [6]. Early studies using ocean
satellites found the band ratios of reflectance in the blue and green bands were useful for the
ocean [7,8]; these were mainly determined by Chl-a. Some inland and coastal waters (Case
2 waters), however, have more complex bio-optical properties because of the interaction
caused by Chl-a, total suspended sediment (TSS) and colored dissolved organic matter
(CDOM) [9]. In addition, Chl-a retrieval is also influenced by cloud cover. It is necessary to

Remote Sens. 2022, 14, 4924. https://doi.org/10.3390/rs14194924 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14194924
https://doi.org/10.3390/rs14194924
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8369-4452
https://doi.org/10.3390/rs14194924
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14194924?type=check_update&version=2


Remote Sens. 2022, 14, 4924 2 of 20

improve atmospheric correction algorithms specifically for Case 2 waters [10]. All these
factors make the retrieval of Chl-a a challenging task [11].

Many efforts have been made to retrieve Chl-a, including selecting the appropriate
sensor or satellite and optimizing the model based on band combinations. The temporal
resolution of the Moderate Resolution Imaging Spectroradiometer (MODIS) is 1 day, which
makes long-term observations feasible [12]. However, its spatial resolution of 250–1000 m
makes observations difficult in some regional lakes, since medium or small lakes require a
higher spatial resolution (10–30 m). With a medium spatial resolution (30 m), Landsat’s
Thematic Mapper (TM) and Operational Land Imager (OLI) sensors have been applied
for Chl-a retrieval [13,14]. However, considering the limited spectral bands of the sensors
onboard Landsat and the longer revisit period, it is difficult to retrieve Chl-a accurately [15].
The Sentinel Multispectral Imager (MSI) has a good overall temporal resolution of 5 days
and a spatial resolution of 10–60 m [16]. It contains three bands in the red-edge range
(705 nm, 740 nm and 783 nm), which are able to capture the subtle Chl-a information [17].
Therefore, the Sentinel Multispectral Imager (MSI) can be a more suitable sensor for
Chl-a estimations.

On the other hand, numerous algorithms have been proposed for estimating Chl-a,
including empirical algorithms and analytical algorithms. Analytical algorithms focus
on the mechanism of radiation in water, making the model physically explainable [18,19].
However, the cumbersome analysis of complex formulas requires a higher level of compu-
tation and model derivation. Empirical algorithms include the band ratio algorithm [20],
the three-band algorithm [21], the four-band algorithm [22] and the enhanced three-band
index [23]. These algorithms choose appropriate bands from different satellites to develop
models in the form of a regression based on in-situ measurements. Since different waters
always have various parameters, the interactions among TSS, CDOM and Chl-a cause
difficulties for large-scale applications [24]. As a branch of artificial intelligence, Machine
Learning (ML) algorithms have been applied to retrieve Chl-a [25].

ML algorithms can have multiple input variables and have achieved great robustness
in estimation [26,27]. These ML models include convolutional neural networks [28] (CNN),
neural networks (CNN-LTSM) [29], Random Forest (RF) [10], extreme gradient boosting
(XGBoost) [30], support vector machine (SVM) [24], and the light gradient boosting machine
(LGBM) [1]. However, it is hard to observe the learning process of ML models due to their
opaque structures. Analyzing the features’ importance is useful [15], but the explanations
are still limited. The recently developed Shapley additive explanation (SHAP) is able
to provide further visualization in ML models [31,32]. SHAP is capable of interpreting
complex ML models by observing how the features influence the predicted values in the
learning process and assessing the interactive effects of the input features with a series of
graphs. Thus, the validity of model can be evaluated with high ecological relevance for
Chl-a retrieval [33].

This study combined Sentinel-2 images with in-situ measurements to develop a reliable
ML model for Chl-a retrieval with good performance, as determined through an assessment
of the ML models. Specifically, the major contributions of this study included (1) developing
XGBoost and RF models for Chl-a retrieval with higher accuracy compared with empirical
algorithms; (2) assessing the two models on the basis of the bio-optical properties of
Case 2 waters through SHAP, after which the RF model was selected to estimate Chl-a
concentration; and (3) applying the K-nearest neighbors (KNN) method to observe the
seasonal patterns in Lake Chagan and analyze the temporal and spatial variations in the
Chl-a concentration between 2020 and 2021. The article is structured as follows. The
datasets are described in Section 2, RF model is presented and its seasonal performances
are analyzed in Section 3, and Section 4 presents a discussion on the experimental results,
followed by the conclusion in Section 5.
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2. Study Area and Data
2.1. Study Area

Lake Chagan (45◦09′–45◦30′N, 124◦03′–124◦34′E) is one of the largest freshwater lakes
in northeast China [34]. It is located in the hinterland of the Northeast Songnen Plain,
most of which is located in the former Golros Mongolian Autonomous County in the
northwest of Jilin Province, as shown on the left of Figure 1. Lake Chagan spans 38 km
from east to west and 14 km from north to south. Since Lake Chagan is a National Natural
Reserve, the lake and water network provide protection for many large fish breeding
bases. As a typical Case 2 water, its eutrophication needs to be monitored. With the
continuous development of tourism in recent years, the environment is being threatened.
In this study, 5 periodic field measurements in Lake Chagan were conducted and a total of
98 samples were collected between 2020 and 2021, with a seasonal coverage from spring to
autumn (May to September). The entire area of Lake Chagan can be divided into two parts.
Alongside the main lake area, Lake Xinmiao is located to the southeast of the main lake
area, as shown on the right of Figure 1.
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Figure 1. Study area and field measurements. The left-hand part shows the geographical location
and the right-hand part shows the composition of the lake and distribution of sampling points in
the field.

2.2. In-Situ Data Collection

This study used an irradiance sensor and two radiance sensors which can measure
wavelengths ranging from 320 nm to 950 nm with a spectral sampling interval of 3.3 nm to
measure the in-situ hyperspectral data. One radiance sensor pointing to the sky was set
at 40◦ from the normal direction of the surface to measure the sky’s radiance (Lsky), one
radiance sensor pointing to the water’s surface was set at 40◦ from the normal direction of
the surface to measure the total radiance leaving the water (Lsw) and one irradiance sensor
pointed vertically to the sky to measure the total downwelling irradiance (Ed (0+)). Remote
sensing reflectance (Rrs) was then obtained as shown in Equation (1) [35]

Rrs = (Lsw − r× Lsky)/Ed(0
+) (1)

where r refers to the wind speed, which was assumed to be 0.025. The water surface
spectrometer was about 1 m over the hull and the benchmark was projected plus or minus
15 degrees. Each point was measured 10 times. Considering the extent and water quality of
the area, 20 sample points were evenly selected, which were able to cover the main area of
the entire lake (Figure 1).
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An EXO multi-parameter water quality meter from YSI was used to measure six pa-
rameters simultaneously including the water surface temperature, the Chl-a concentration,
the pH value, depth, etc. The sky was clear, and the sampling time was mostly between
10:00 and 14:30 each day, which is near the overpass time of the Sentinel-2 satellite. Each
sampling point covered an interval longer than 3 min and was measured two times then
averaged (Table 1). Water samples collected in situ were analyzed for TSS content (mg L−1)
in the laboratory (Equation (2)). A certain volume of the samples was filtered through a
filter membrane and dried at 103–105 ◦C for 1 h. The sample was then cooled at room tem-
perature and weighed by repeated drying. When the weight difference between the latest
two times of drying was less than 0.4 mg, Weight A was recorded. The filter membrane
was pre-processed in a drying oven at 103–105 ◦C for one hour, and was also cooled at
room temperature, weighed and dried repeatedly. When the weight difference between the
latest two times of drying was less than 0.2 mg, Weight B was recorded.

TSS =
(A− B)× 106

V
(2)

where V refers to the volume of the samples; A refers to the total weight of the TSS, the
filter membrane and the weighing bottle; and B refers to the weight of the filter membrane
and the weighing bottle.

Table 1. In-situ measurements of Chl-a.

In-Situ Date Number of Points Average (µg L−1)

22 July 2020 20 20.78
21 August 2020 18 19.61

26 September 2020 20 24.46
26 May 2021 20 15.60
18 July 2021 20 28.47

2.3. Satellite Data

Sentinel-2 offers valuable information for remote sensing of inland water [36]. Remote
sensing images of Sentinel-2 (Sentinel-2A and -2B) were accessed from the Sentinel data
distribution system (https://scihub.copernicus.eu./). The parameters of Sentinel-2 are
shown in Table 2. Since the Sentinel-2A and Sentinel-2B satellites have the same sensor on
board, the revisit period of five days has advantages for long-term observations because
of the collaboration of the two satellites. Bands in the MSI images consist of visible light,
near infrared (VNIR) and short-wave infrared (SWIR), which can achieve a high level of
monitoring. ESA provides Level 2A products that include atmospheric corrected bottom
layer reflectance data, known as Bottom-Of-Atmosphere (BOA) reflectance. In this study,
20 cloud free Level-2A images were downloaded and matched with the in-situ measure-
ments. The matched dataset considered a time window with a maximum of 8 days, and the
average was 3.2 days (Table 3). All bands of the images were resampled to a 10 m spatial
resolution through the bilinear sampling method.

Table 2. Bands of Sentinel-2 used in this study and their parameters.

Sentinel-2 Bands Central Wavelength (nm) Resolution (m)

Band 1—Coastal aerosol 443 60
Band 2—Blue 490 10
Band3—Green 560 10
Band 4—Red 665 10

Band 5—Vegetation red edge 705 20
Band 6—Vegetation red edge 740 20

Band 8—NIR 842 10

https://scihub.copernicus.eu./
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Table 3. Comparison of selected Sentinel-2 images and in situ measurements.

Year In-Situ Date Sentinel-2 Date

2020 22 July 22 July
2020 21 August 21 August
2020 26 September 30 September
2021 26 May 18 May
2021 18 July 22 July

3. Methodology

All input variables were used for training the XGBoost and RF models, and their
performance on the validation set was evaluated (Figure 2). An assessment based on SHAP
was used to observe the learning of each point in these two models, and the more reliable
model was selected in combination with the bio-optical properties of Case 2 waters. KNN
analysis was used to classify the Chl-a concentrations and obtain the seasonal patterns.
RF was further applied in different seasons, and, finally, the Chl-a was mapped across the
whole lake.
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3.1. Model Structure

In this study, models were developed using field measurements and Sentinel-2 BOA
reflectance to estimate the Chl-a concentration. The selection of input variables included
the first six bands of Sentinel-2 (443 nm, 490 nm, 560 nm, 665 nm, 705 nm, 740 nm) and
six band combinations based on empirical algorithms that have been applied in inland
lakes. The bands listed in the reference model were replaced with the similar bands from
Sentinel-2 (Table 4). The output was the Chl-a concentration (Figure 2). In total, the
98 points included the BOA reflectance and the relative Chl-a concentration measured in
situ. The training set and the validation set were at a ratio of 7:3. The average Chl-a concen-
tration in the training set (N = 68) and validation set (N = 30) was similar, 21.87 µg L−1 and
21.72 µg L−1, respectively. Before we used SHAP to explain the model, it was necessary to
develop a ML model with relatively strong robustness and good performance [37]. A grid
search strategy combined with 10-fold cross-validation was used to tune the hyperparame-
ters of the XGBoost and RF models.

As introduced in [38,39], XGBoost and RF are both tree models, which are both
made up of a number of trees and finally produce an abundance of trees. RF constructs a
decision tree by randomly adding back the extracted sampling set and randomly unpacking
the extracted feature set. Via the method of bootstrap resampling technology, the final
prediction results of the model are determined by voting on a number of key factors.
XGBoost explicitly adds regularization to the object function items to prevent the model
from overfitting and to control the complexity of the model.
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Table 4. Sources of the band combinations used in the existing algorithms.

Algorithm Index Reference

Band ratio Rrs(709)/Rrs(665) Duan et al. [20]
Three [Rrs(671)−1 − Rrs(710)−1] × Rrs(740) Gitelson et al. [21]

Enhanced Three
[Rrs (665)−1 − Rrs(705)−1]/
[Rrs (740)−1 − Rrs(705)−1]

Yang et al. [23]

NIRRI Rrs(865)/Rrs(655) Duan et al. [13]

NDCI [Rrs (708)−1 − Rrs(665)−1]/
[Rrs (708)−1 + Rrs(665)−1]

Mishra et al. [40]

BGI Rrs(443)/Rrs(561) Nguyen et al. [41]

3.2. SHAP Method

SHAP (SHapley Additive exPlanations) was applied to assess the ML models [32]. It
can be used for interpreting the predictions of ML models by calculating the contribution
of each feature to the prediction. The proposed SHAP value was used as a united approach
to explain the output of the ML model, including the benefits both in terms of global
interpretability and local interpretability. SHAP originates from the Shapley value, which
was initially a method of allocating expenditure according to individual contributions
through the average of the marginal contributions across all permutations. Interpretations
of the Shapley value are expressed as an additive feature attribution method by SHAP
and the predicted value of the model is interpreted as the sum of the attribution values of
each input feature in SHAP. SHAP thus actually attributes the output value to the Shapley
value of each feature. The calculation principle of the Shapley value can be expressed
as Equation (3)

Φj = ∑
S⊆{x1,··· ,xp}\{xj}

|S|!(p− |S| − 1)!
p!

( fx(S ∪
{

xj
}
)− fx(S)) (3)

where
{

x1, · · · , xp
}

is the set of all input features, p is the number of features,{
x1, · · · , xp

}
\
{

xj
}

is the feature set except for
{

xj
}

and fx(S) is the prediction for fea-
ture subset S. When the relationships among all the input features are nonlinear or the
features are not independent, the SHAP values calculate the weighted average value for all
possible features. SHAP combines these conditional expectations with the values from the
classical Shapley value of game theory to sum each attribution value to Φj.

3.3. KNN for the Seasonal Pattern Test

Chl-a concentrations showed a seasonal distribution in Lake Taihu [10]. After the Chl-a
concentrations had been labeled, KNN classification was used to analyze whether Lake
Chagan also had a seasonal pattern. The K-nearest neighbors (KNN) algorithm [42] was
successfully applied for this classification [43]. KNN decides the class which the sample
to be classified belongs to according to the class of the nearest sample or several samples.
Its performance thus largely depends on the distance metric used to identify the nearest
neighbors. The value of K is also of great importance. If a larger value of K is selected, it is
equivalent to using the training examples in a larger neighborhood for prediction, and the
approximate error of learning will increase. In this case, training instances far away from
the input instance would make the prediction wrong and prone to underfitting.

3.4. Accuracy Assessment

As is shown in Equations (4)–(6), the coefficient of determination (R2), the root mean
square error (RMSE) and the mean absolute percentage error (MAPE) were used to evaluate
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the models’ performance. The F1 score was applied for evaluating the results of the
KNN classification.

R2 =

N
∑

i=1
(Ei −

−
M)

2

N
∑

i=1
(Mi −

−
M)

2 (4)

RMSE =
1
N

√√√√ N

∑
i=1

(Mi − Ei)
2 (5)

MAPE =
1
N

N

∑
i=1

|Mi − Ei|
Mi

(6)

where N is the total number of points, i represents each sample, and M and E refer to the
measured and estimated Chl-a concentrations, respectively.

F1 Score = 2× Precision× Recall
Precision + Recall

(7)

where Precision represents the proportion that is actually positive in all cases where the
prediction is positive and Recall represents the proportion that has been predicted correctly
in all actual positive examples.

4. Results
4.1. Development and Assessment of the Models
4.1.1. Performance of XGBoost and RF

Both the XGBoost model and the RF model performed well on the validation set, as
shown by the statistical metrics. The XGBoost model (R2 = 0.80, RMSE = 2.42 µg L−1,
MAPE = 9.55%) and the RF model (R2 = 0.79, RMSE = 2.51 µg L−1, MAPE = 9.86%) are
shown in Figure 3. The retrieved value and the real value were evenly distributed on both
sides of the line. In the XGBoost model, 13 points of the retrieved Chl-a concentrations were
smaller than the measured values and 17 points for the Chl-a concentration were larger
than the measured values, while the RF model showed a similar performance. At the same
time, both models had a tendency to overestimate the Chl-a values with a low concentra-
tion (<15 µg L−1) and slightly underestimate the Chl-a values with a high concentration
(>30 µg L−1). The performances of three evaluation indicators were close, and XGBoost
performed better. After this analysis, it was reasonable to select the XGBoost model to
estimate the Chl-a concentrations.
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4.1.2. Assessment through SHAP

The XGBoost model had better performance; however, the internal learning process of
the two ML models was unknown. The retrieval of Chl-a is mainly based on two absorption
peaks in the spectrum, usually located near 440 nm and 675 nm. The area around 440 nm is
greatly affected by TSS and CDOM, while the area around 675 nm is less affected by other
water factors. Therefore, the area around 675 nm is usually selected as the spectrum for
retrieving the concentration of Chl-a [44]. In the RF model (Figure 4), for the feature of
Band 1—443 nm and the feature of Band 4—665 nm, if the value was lower, the output
had a higher value of Chl-a, which was a very obviously negative correlation. This was
consistent with the principle of retrieving Chl-a in most inland lakes due to the strong
absorption of Chl-a at around 443 nm and 675 nm.
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For the XGBoost model, however, the feature of Band 1—443 nm also showed the same
negative correlation while the feature of Band 4—665 nm and the Chl-a values showed a
positive correlation, which was a violation of the bio-optical properties of Case 2 waters.
It should be noted that a few samples in the RF model appeared on the right half of the
RF model and seemed to be positively correlated. This may have been due to atmospheric
refraction. By contrast, almost all of the points in the XGBoost model appeared on the right
half, which was obviously abnormal for this band. Besides, the feature of NDCI should
have a single correlation with Chl-a that is positive. Conversely, the SHAP value in the
XGBoost model was zero, which meant this input variable was learned in such a way that
half had a positive correlation and half had a negative correlation. In the RF model, it
was positive.

Furthermore, the learning process of the other input features was also observed. The
features of Band 1—443 nm, Band Ratio (705/665), NIRRI (842/665), Enhanced Three,
Three and BGI were all consistent with the correlation of the corresponding empirical
algorithm in the RF model. Enhanced Three, Band Ratio (705/665), NIRRI (842/665) and
BGI all showed a positive correlation, which were also consistent with functional forms of
the related empirical algorithms. Thus, the XGBoost model showed incorrect learning of
the input features, especially for the features of Band 4—665 nm and NDCI. Accordingly,
the RF model was developed and selected for estimating Chl-a.

4.2. Spatial and Temporal Analysis of Chl-a
4.2.1. Test for Seasonal Patterns of Chl-a Concentrations

In order to verify the seasonal patterns of Chl-a concentrations in Lake Chagan, the
KNN method was applied to identify the Chl-a. During the process, each sample of Chl-a
concentration was labeled for the corresponding season and then analyzed to determine
whether the Chl-a concentrations had a seasonal pattern by considering the classification
results of the model (Figure 5). Since the observation period of the field measurements
was from May to September, the seasonal observations included three months in summer
and only one month each in spring and autumn. In the classification model, by taking the
F1 score (Equation (7)) as the index [45], a 6:4 division of the training and validation set
was generated. The concentration of measured Chl-a and retrieved Chl-a in each season
could be observed. The same method of k-fold (k = 10) cross-validation was used and a
F1 score of 0.81 was finally obtained. A few points in summer were misidentified as spring
and autumn, which may have been due to the range of Chl-a concentrations in summer
being larger and because there were more data points (N = 58). According to the results,
the Chl-a concentration for September in autumn was close to that of July and August in
summer, which caused a few misclassified points. However, the predicted values for the
three seasons are close to the average level of the true values. In addition, the points in
KNN are divided into groups according to the distance and weights [46]. Therefore, the
process of classification in the validation set refers to concentrations that were adjacent to
those presented in the training set, and these points were prone to be divided into labels
corresponding to the training set. In general, this result at least illustrates that the Chl-a
concentrations of Lake Chagan show a relatively seasonal trend and that it is necessary to
test the performance of RF in different seasons.
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Figure 5. Box plot of seasonal classification results of the validation set achieved by KNN.

4.2.2. Robustness Analysis of RF in Three Seasons

The retrieved Chl-a concentrations from spring to autumn in 2020 and 2021 were
compared with the measured Chl-a concentrations to observe the performance of the
RF model in each season. The RF model performed well overall in these three seasons
(Figure 6). The performance for summer is the best (R2 = 0.86, RMSE = 1.75 µg L−1,
MAPE = 5.75%), followed by spring (R2 = 0.62, RMSE = 1.25 µg L−1, MAPE = 6.40%) and
autumn (R2 = 0.56, RMSE = 1.74 µg L−1, MAPE = 5.22%). The performances for summer
and autumn were slightly lower in terms of R2, but the model also performed well in
terms of RMSE and MAPE. The reason for this may be that spring and autumn had fewer
sampling points compared with summer. On the other hand, the Chl-a concentrations at
each point within the months were close and there was no sudden increase or decrease in
the concentration. In summary, considering the comprehensive performance based on the
three evaluation indicators for the three seasons and all points (Figure 3b), the RF model
had relatively robustness and it is feasible for long-term retrieval of data for the whole lake.
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Figure 6. The RF model’s performance on validation set in different seasons: (a) spring, (b) summer
and (c) autumn.

4.2.3. Seasonal and Spatial Analysis

To observe the temporal and spatial distribution of Chl-a in Lake Chagan, the RF
model was applied to retrieve the Chl-a concentrations based on the field sampling points
and the Sentinel-2 images. The dates of the Sentinel-2 images used for seasonal averages of
Chl-a were close to those of the in situ measurements. Because of cloud and the limited
number of Sentinel-2 images, the annual seasonal average Chl-a concentrations may not
fully reflect the actual situation, especially in spring and autumn. In general, however,
a seasonal pattern of Chl-a was observed. Initially, the retrieved Chl-a concentrations
of RF related to the in-situ sampling points in each season were averaged for 2020 and
2021 (Figure 7).
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Figure 7. Average Chl-a concentrations retrieved by the RF model between 2020 and 2021 for
sampling points in the field.

It can be observed that the Chl-a concentration was lowest in spring during these
two years (16.05 ± 0.28 µg L−1) and it was close in summer (22.87 ± 1.21 µg L−1) and
autumn (22.75 ± 1.51 µg L−1). The retrieved Chl-a values were obtained pixel by pixel to
give a general view of the whole lake (Figure 8). MSI-derived Chl-a had distinct seasonal
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patterns across Lake Chagan from 2020 to 2021. Chl-a concentrations were substantially
higher during summer (June–August) and autumn (September) in comparison with spring
(May). Among the in situ points, the Chl-a concentration in spring and autumn in 2020
was higher than that it was in 2021, while that in summer was lower than and nearly equal
to that in 2021. The maximum value appeared in September 2020, which was consistent
with the results of the in situ measurements. Summer, a special season for the growth of
Chl-a, has some changes in the climate and environment. For lakes in northeastern China,
only the months from May to September are suitable for in situ sampling. More points of
data in summer are not only conducive to a comprehensive assessment of the growth of
Chl-a but also for monitoring the overall changes in the lake ecosystem, combined with
observations in spring and autumn.
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For the spatial distribution, the southwestern part of the lake was always the area
with the greatest average Chl-a concentration over these three seasons on the whole. The
concentration of Chl-a in the main lake area in the summer of 2021 was significantly
higher than that in 2020, while the concentration of Chl-a in the summer of 2021 was
slightly higher than that of 2020. Special temperature and climate conditions can cause
this [47]. Therefore, the importance of large-scale and long-term application has been
highlighted [48]. The Chl-a concentration in the autumn of 2020 was higher than that
in 2021, but both had higher distributions in the south of the main lake area, showing a
similar spatial distribution in different years and the same season. In situ sampling and
measurements were concentrated in the main lake area, but from the perspective of the
satellite images, when a more generalized model was developed, the distribution could
also be observed.

5. Discussion
5.1. Significance of the Input Features in ML

SHAP values can explain ML models by visualizing the learning of each feature and
sample in the model. The characteristics of the black box have always been a major problem
in ML algorithms. It appears that these models perform well for selected metrics, but the
learning process is difficult to observe, which may lead to misleading results. Relative
feature importance can reveal the importance of the features to the predictions [15]. In this
study, the results of relative feature importance for the two ML models (Figure 9) were
similar to those of the SHAP bar plots (Figure 10), which showed SHAP values on the
right-hand side of the bee swarm figure of the features’ density scatter (Figure 4). It can be
clearly seen that almost every feature made a contributions, with nonzero SHAP values
except for NDCI in the XGBoost model (Figure 10b), which showed the same result as
the evaluation of the relative feature importance (Figure 9b). This suggests that this input
feature has no effect on the Chl-a concentration. In addition, each feature was learned in
the RF model to a certain extent, while XGBoost focused mostly on the feature of Enhanced
Three, resulting in uneven learning of the features.
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Chl-a, TSS and CDOM jointly affect the optical signals of Case 2 waters. The com-
ponents are complex and changeable [49]. In line with the bio-optical properties of Case
2 waters, Chl-a exhibits strong absorption at 443 nm and 665 nm. Moreover, the band at
705 nm and the other six empirical algorithms also had relatively biological mechanisms
of Chl-a in lakes. Therefore, it is beneficial for assessing the XGBoost and RF models. As
discussed in Section 4.1.2, the inaccurate learning of the XGBoost model was because the
reflectance at 665 nm should have a negative correlation with the Chl-a concentration,
because of the strong absorption of Chl-a. In addition, the feature of NDCI and Chl-a con-
centration should have a positive correlation [40]. Moreover, the atmosphere had an impact
on the process of retrieval [10]. Strong absorption at around 665 nm may be interfered
with by clouds, resulting in the XGBoost model not catching the weak Chl-a information
hidden in the input features. This also appeared in the RF model, but most samples in
the RF model were learned normally. Furthermore, the selection of input features was
also considered. The best results (Table 5) were obtained when 12 variables were used as
input. The performance during the process fluctuated slightly, possibly due to positive
synergies or negative suppression between bands. After the feature of Band 4—665 nm was
added as the last feature, a sudden improvement was made. In fact, the feature of Band
4—665 nm contains abundant Chl-a information, as shown by absolute values in the plots
(Figures 9 and 10), thus not indicating that this feature contributes the least.

Table 5. Performance of the RF models with different input features. Numbers from 3 to 12 refer to
the first n ranks in the SHAP bar plot.

Model R2 RMSE (µg L−1) MAPE (%)

RF-3 features 0.71 2.91 11.41
RF-4 features 0.75 2.74 10.63
RF-5 features 0.75 2.71 10.81
RF-6 features 0.72 2.90 11.08
RF-7 features 0.73 2.83 10.87
RF-8 features 0.70 2.99 11.27
RF-9 features 0.74 2.76 10.67

RF-10 features 0.72 2.87 11.14
RF-11 features 0.73 2.80 10.64
RF-12 features 0.79 2.51 9.86

5.2. Comparison with Other Empirical Algorithms

For the retrieval of Chl-a concentrations, representative empirical models have achieved
good results for inland lakes (Table 4). However, these models depended on data from
certain research regions but may not have good performance in other areas, partly because
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of the various inherent optical properties (IOPs). The ML models performed well in terms
of accuracy, robustness and computational demand. Compared with the NIRRI algorithm,
which was developed for Lake Chagan [20], and Enhanced Three [23], which scored the
most for the SHAP values (Figure 11), the RF model in this study performed better on
the validation set. Though the bands from different satellites may have some effects, RF
conformed to the bio-optical properties of Case 2 waters in terms of the SHAP values,
which helped mitigate the impact of the black box characteristics of ML models. The
results demonstrated that ML models can improve their seasonal performances. Actually,
it would be possible to develop an independent model for each month [10]. However, since
the numbers of in situ points in spring, summer and autumn were not balanced, it was
more meaningful to develop a model with relatively stronger generalization. In addition,
ML models take the relationship between the bands and the Chl-a values into account
(Figure 10).
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The RF model had the ability to capture the relationships among the variables and the
nonlinear relationship between the input and the output, showing the marginal effect of
a feature on the predictions of ML models [50]. Each feature contributed the strengths of
the related empirical algorithms to the model, and may be beneficial by reducing impacts
of NAP and CDOM on Chl-a retrieval [15]. In addition, the red edge bands of Sentinel-2
data were more effective for monitoring Chl-a in lakes. Due to the continuous renovation
and development of the spectral bands of satellites, more information hidden in the pivotal
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bands may be gradually revealed, and the models with focused algorithms are being
developed for lakes of various sizes [51].

5.3. Validation of In Situ and Sentinel-2 Reflectance

In fact, there are two alternative products of Sentinel-2. The Level-1C products result
from using a digital elevation model to project the image onto a cartographic geometry. Per-
pixel radiometric measurements are provided in the Top-Of-Atmosphere (TOA) reflectance
data, along with the parameters used to transform them into radiance. Level-2A products
derived from the associated Level-1C products have been systematically generated by the
ground segment over Europe since March 2018, and their production was extended to
the global scale in December 2018. L1C products can be processed by the Sen2cor [33]
and CR2CC processors [24], a process which is somewhat complicated. TOA reflectance
has been applied for Chl-a retrieval [10]. To verify the availability of directly using the
Sentinel-2 BOA reflectance data published by the ESA, one group of in situ hyperspec-
tral measurements for 21 August 2020 simultaneously with the time of overpass in the
cloud-free Sentinel-2 images was selected for observation. Since the interval of the in situ
hyperspectral data was 3.3 nm, the bands were selected according to relative bands of the
Sentinel-2 data (Table 6).

Table 6. Sentinel-2 MSI and selected relative in situ hyperspectral bands.

Sentinel-2 MSI (nm) In Situ Hyperspectral (nm)

443 442.1
490 491.6
560 560.9
665 666.5
705 702.8
740 739.1
783 782
842 841.4
865 864.5

The reflectance of 18 in situ points and the relative Sentinel-2 BOA reflectance was
averaged and plotted (Figure 12). Clouds in the sky, wind speed and the time of observation
between the in situ and satellite values were considered to have an influence. Though
reflectance appeared to have a numerical influence, from another perspective, the polyg-
onal trend implied that BOA reflectance had a similar changing tendency to the in situ
hyperspectral data. According to the results of the three correlations, the two curves had
a strong correlation (Table 7). In situ hyperspectral data and MSI data are fundamentally
in agreement [29]. This reveals the feasibility of using Sentinel-2 L2A reflectance data for
Chl-a retrieval.

Table 7. Three methods of r for the polygonal trend between the in situ hyperspectral data and the
ESA L2A products.

Method r

Pearson 0.99
Spearman 0.98
Kendall 0.94
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5.4. Ecological Variations across Lakes between 2020 and 2021

The type of land cover can influence variations in Chl-a [33]. As discussed in
Section 4.2.3, the distribution of high Chl-a concentrations in the main lake area in three
seasons was mainly located in the southeast part of the lake. In recent years, due to the
need to ensure food security, areas around Lake Chagan have made great efforts to build
saline alkali land irrigation areas. The water supply of Lake Chagan is relatively stable
and sufficient, mainly because of farmland recession and loose water diversion. However,
while ensuring the water supply of the lake, the backwater in the irrigation area has also
caused an excessive load of nutrients in the lake, and a large amount of farmland backwater
that is rich in a high concentration of nutrients, salinity and TSS was discharged, along
with the continuous development of tourism, threatening the environmental safety of Lake
Chagan’s water. The high nutrient concentration has led to eutrophication of the water
body, which is conducive to the growth of algae [52].

From May to September between 2020 and 2021, the average, maximum and minimum
Chl-a concentrations across the whole lake were retrieved by the RF model (Figure 13a).
None of the three fluctuated much, which indicates that there was no obvious influence of
anthropogenic activities as a whole between 2020 and 2021. On the other hand, Lake Chagan
was greatly affected by wind speed and shore collapse, which produced suspended mineral
and sediment particles [53]. A higher concentration of TSS will limit light transmission
and thus restrict the growth of phytoplankton [54]. The TSS concentration of the in situ
measurement points may reveal this phenomenon (Figure 13b). In the five groups of plots
between August 2020 and July 2021, there was a clear increase in the concentration of
TSS. This study undoubtedly provides a timely signal to local ecological management
authorities. However, the measured Chl-a concentration did not increase significantly. This
may indicate that TSS does not directly affect Chl-a unilaterally, and Chl-a concentration is
related to the location of the sampling points and the orientation of the water connecting
with the outside environment.
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Figure 13. Time series of (a) averaged Chl-a concentrations retrieved by the RF model and (b) TSS
concentrations of the in situ measurement points.

6. Conclusions

To estimate the Chl-a concentrations in Lake Chagan, a reliable RF model was de-
veloped based on in situ measurements and near-synchronous Sentinel-2 images. The
model was assessed according to the bio-optical properties of Case 2 waters for Chl-a, and
the disadvantages of XGBoost in this study were revealed. Compared with the empirical
NIRRI algorithm (R2 = 0.33, RMSE = 4.45 µg L−1, MAPE = 18.13%) and the enhanced
three-band index (R2 = 0.53, RMSE = 3.73 µg L−1, MAPE = 14.38%), the developed RF
model showed good performance (R2 = 0.79, RMSE = 2.51 µg L−1, MAPE = 9.86%) on the
validation set and conformed to the biological mechanisms of Chl-a in lakes. The model
also proved to be relatively robust to the seasonal changes that were observed by KNN.
The peak Chl-a concentration in the summer of 2021 was higher than that in 2020, but in the
spring and autumn of 2020, the Chl-a concentration was higher than that in 2021. The Chl-a
concentration fluctuated during the three seasons between 2020 and 2021, but remained
stable as a whole. Our results demonstrate that it is necessary to assess ML models for
retrieving Chl-a. The study also illustrates the feasibility of retrieving Chl-a concentrations
at large scales via the reflectance data of on-board satellite sensors. In future studies, models
with better precision will be developed based on more in situ measurements from different
types of Case 2 waters.
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