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Abstract: Tornadoes are highly destructive small-scale extreme weather processes in the troposphere.
The weather radar is one of the most effective remote sensing devices for the monitoring and
early warning of tornadoes. The existing tornado detection algorithms based on radar data are
unsupervised and have strict multi-altitude constraints, such as the tornado detection algorithm
based on tornado vortex signatures (TDA-TVS), which may lead to high false alarm rates, and the
performance of the detection algorithm is greatly affected by the radar data quality control algorithm.
A novel TDA-RF algorithm based on the random forest (RF) classification algorithm is proposed
for real-time tornado identification of the S-band China new generation of Doppler weather radar
(CINRAD-SA). The TDA-RF algorithm uses velocity features to identify tornadoes and adds features
related to reflectivity and velocity spectrum width in radar level-II data. Historical CINRAD-SA
tornado data from 2006–2015 are used to construct the tornado dataset and train the TDA-RF model.
The performance of TDA-RF is evaluated using CINRAD-SA data from five tornadoes of 2016–2020
with enhanced Fujita(EF) scale ratings ranging from EF0 to EF4 and distances from 10 to 130 km to the
radar. TDA-RF performs well overall with the probability of detection (POD), false alarm ratio (FAR),
and critical success index (CSI) of 71%, 29%, and 55%, respectively. Moreover, the TDA-RF improves
POD and CSI, and reduces FAR compared to the TDA-TVS. The maximum tornado early-warning
time of TDA-RF is 17 min, and the average is 6 min; TDA-RF can provide classification probability
according to the tornado generation and development process to facilitate tracking ability.

Keywords: tornado; weather radar; random forest; identification

1. Introduction

Tornadoes are small-scale cyclones generated in convective clouds and are usually
closely associated with thunderstorms. The central speed of extreme event tornadoes can
exceed 100 m/s, which is highly destructive, causing massive loss of life and property [1].
Tornadoes can be classified as EF0 to EF5 according to damage level and wind speed [2–4].
In the United States, multiple tornadoes occur in the Tornado Alley and Dixie Alley [5].
The tornado regions in the United States have a more favorable environment for supercell
thunderstorms, with an average annual number of about 1200, while the annual tornado
incidence in China is about 5% to 10% of that in the United States [6]. The economic losses
and social impact caused by tornadoes in China are huge because tornadoes mainly occur
in the densely populated and economically developed Jiangsu Province [7], although the
average annual number of tornadoes in China is small. Tornadoes frequently occur in
different Plains, river valleys, and coastal area provinces in the afternoon or evening during
the summer months from June to August [8,9].

The Doppler weather radar is an effective device for monitoring clouds and precipita-
tion [10]. The Doppler weather radar emits electromagnetic waves that can be scattered
back to the radar by objects, such as raindrops, snowflakes, hail, bugs, and birds. The
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Doppler weather radar obtains weather information based on a portion of the energy
returned [11]. When the weather radar observes tornadoes, different from observing
raindrops (precipitation particles are relatively uniform in size), there is much debris of
inconsistent sizes in tornadoes [12]. The non-uniformity of these debris makes it diffi-
cult for reflectivity to reflect tornadoes accurately. Doppler weather radars usually suffer
difficulties detecting tornadoes, including speed blur, distance folding, and insufficient
resolution [13–15]. Due to the high cost of advanced phased array radars, the use of existing
operational weather radar networks to detect tornadoes has always been the focus and
difficulty of meteorological researchers.

In 1975, Burgess discovered a Doppler velocity shear signature consistent with the
tornado location [16], now known as the tornado vortex signature (TVS). The research on
observing TVS, cyclones, and tornadoes with the Doppler weather radar [17,18], signifi-
cantly promoted the development of tornado detection algorithms. In 1977, the National
Severe Storms Laboratory (NSSL) analyzed multiple tornado cases and proposed the tor-
nado vortex signature (TVS) algorithm for a tornado warning [19]. A mesocyclone is a
rotating updraft within a thunderstorm, usually a supercell. Under the right conditions, a
mesocyclone will tighten and intensify to produce a tornado. The mesocyclone detection
algorithm (MDA) was proposed in 1985 [20], the optimization of MDA in 1998 [21], and a
new tornado detection algorithm (TDA-TVS) was proposed in 1998 [22]. The TDA-TVS
identifies tornado vortex signatures in radial velocity data of radar level-II data and de-
termines whether the signatures have continuity without using reflectivity and spectral
width data. As the Doppler weather radar upgraded to dual-polarization, the NSSL found
the tornadic debris signature (TDS) (low cross-correlation coefficient and differential re-
flectivity, usually ρHV approximately 0.8 and ZDR close to 0) and proposed the TDA-TDS
algorithm in 2004 [23]. In 2015, Wang combined TDS and the Sugeno fuzzy inference
system and proposed a novel tornado detection algorithm (NFTDA) [24]. The NFTDA
uses differential reflectivity, cross-correlation coefficient, velocity difference, and spectrum
width of the dual-polarized radar as features. With the popularity of artificial intelligence
(AI) technology, complex models have been applied to the early warning and forecast of
tornadoes in recent years. In 2020, Hill used several meteorological variables, including
CAPE (Convective Available Potential Energy), CIN (Convective Inhibition), and wind
shear, to construct a random forest prediction model for the probabilistic forecasting of
severe weather in the next 1–3 days [25]. Lagerquist et al. used grided radar echo images
from the fusion of multiple weather data to construct CNN networks to predict next-hour
tornado occurrence [26,27]. However, the research of AI algorithms in tornado detection
and prediction for CINRAD-SA is limited by radar data samples, and the research is
relatively insufficient.

The S-band China new generation of Doppler weather radar (CINRAD-SA) network
is the most widely deployed radar network in China [28,29]. The CINRAD-SA Doppler
radar can detect the tornado parent vortex and judge the possibility of a tornado based on
the characteristics of the parent vortex with algorithms such as MDA and TDA-TVS [30].
The following two problems are usually encountered when the TDA-TVS is applied to
the CINRAD-SA radar. (1) The presence of noise in weather radar data, including signal
processing noise and ground clutter, can significantly impact tornado identification perfor-
mance; (2) The TDA-TVS algorithm determines tornado area by simultaneously finding
tornado vortex signatures at multiple elevations, usually 0.5◦, 1.5◦, and 2.5◦ elevations. The
effective detection distance of the TDA-TVS algorithm is about 10–100 km. The tornado
vortex signature may not be detected in some elevations when the tornado occurs beyond
the effective distance, which causes the TDA-TVS algorithm to fail to identify the tornado.

Machine learning can effectively reduce the impact of noise on algorithm performance
and is an effective way to solve problem (1). Machine learning algorithms have specific
noise adaptability [31,32] and can learn from examples, thereby reducing the impact of
noise on tornado identification. For problem (2), when the vertical continuity of the tornado
vortex signature cannot be satisfied, and the TDA-TVS algorithm cannot effectively identify
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tornadoes, applying machine learning algorithms to tornado detection is an effective
way to solve this problem. However, tornadoes are low-probability and rare events in
China, and the observed number of historical tornadoes is small. Deep learning methods
may face the dilemma of insufficient training samples, so only machine algorithms based
on small samples are available. Among the relatively mature classification techniques,
such as supporting vector classifier (SVC) [33,34], logistic regression classifier (LR) [35,36],
and random forest classifier (RF) [37,38], the RF has excellent advantages in nonlinearity,
especially on high-dimensional datasets. In addition, tornadoes are rare events [39], and
other classifiers usually overfit, while the randomness of RF can prevent overfitting [40].

This paper provides a feasible data processing method and a general framework
for machine learning applications in CINRAD-SA radar for real-time tornado detection.
This work uses the historical radar level-II data, reflectivity, radial velocity, and velocity
spectrum to produce a tornado dataset for CINRAD-SA. A tornado detection algorithm,
called TDA-RF, is constructed using the random forest algorithm. This paper is organized
as follows: Section 2 presents the data format of CINRAD-SA and the process of generation
of tornado samples using historical radar data. Section 3 briefly introduces the methods.
Section 4 describes the model training and optimization, while Section 5 contains the
experiments and results. The discussion is placed in Section 6, and the conclusions are in
Section 7.

2. Data
2.1. Weather Radar Data

The CINRAD-SA radar network was gradually upgraded to dual-polarization in
around 2020 in the Jiangsu Province. The tornado cases captured by the dual-polarization
radar are insufficient to construct the TDA-RF model. Therefore, the historical CINRAD-SA
single-polarization data was used to make the dataset. CINRAD-SA level-II data include
reflectivity, radial velocity, and velocity spectrum width data. Most CINRAD-SA radars
work in precipitation mode. The radar in precipitation mode scans in volume coverage
pattern 21 (VCP21), and takes 6 min for each volume scan. After completing a volume
scan, the level-II data is stored as radar data, containing nine elevations (0.5◦, 1.5◦, 2.5◦,
3.4◦, 4.3◦, 6.0◦, 10◦, 14.5◦, 19.5◦) and 360 different radials (azimuth angle 0◦ to 360◦). The
CINRAD-SA’s resolution and detection range are shown in Table 1. For more details on
CINRAD-SA radar, see Appendix A Figure A1.

The Next Generation Weather Radar (NEXRAD) is a network of 160 high-resolution S-
band Doppler weather radars. The NEXRAD level-II data also contains three meteorological
fundamentals: reflectivity, radial velocity, and spectrum width. Polarization data includes
differential reflectivity, correlation coefficient, and differential phase. The NEXRAD has
720 radials with a distance resolution of 0.25 km between gates, and a maximum detection
range is 458 km, as shown in Table 1. All the NEXRAD base data can be acquired from the
NCDC website (http://www.ncdc.noaa.gov/nexradinv/, accessed on 30 September 2022).

Table 1. The level-II data information for CINRAD and NEXRAD. The reflectivity, radial velocity,
and spectrum width are three meteorological fundamentals for weather radars. The polarization data
are not listed.

Radar Information Reflectivity Radial Velocity Spectrum Width

CINRAD-SA
Distance resolution 1 km 0.25 km 0.25 km

Maximum detection range 460 km 230 km 230 km
Format for each data 9 × 360 × 460 9 × 360 × 920 9 × 360 × 920

NEXRAD
Distance resolution 0.25 km 0.25 km 0.25 km

Maximum detection range 458 km 458 km 458 km
Format for each data 9270 × 1832 9270 × 1832 9270 × 1832

http://www.ncdc.noaa.gov/nexradinv/
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2.2. Tornado Dataset

Level-II radar data must be preprocessed when generating tornado samples due to
inconsistent distance resolution (reflectivity:1 km, radial velocity, and velocity spectrum
width: 0.25 km). The 1× 1 km reflectivity (1 point) was directly interpolated to 4 × 0.25 km
(4 points) in order to keep the radar base data at the same resolution. Then, we combined
the reflectivity, radial velocity, and velocity spectrum width data in the elevation and
position and divided the radar data into 4× 4 blocks. The blocks with too much invalid
data and the blocks near the radar center (noisy data, about 1 to 5 km) and in the far region
(distance folded or velocity ambiguity [41], usually greater than 150 km) are discarded.
Each block has 4× 4 size reflectivity, radial velocity, and velocity spectrum width, and
features related to a tornado can be identified.

Tornadogenesis usually requires several conditions: shear, lift, instability, and moisture.
Radar reflectivity can indicate precipitation and, to some extent, correlates with moisture
conditions for tornadoes [42,43]. Therefore, the reflectivity block’s maximum, minimum,
and average values are designed as features.

Weather radar radial velocity provides information about wind speed and direction,
which is the component of the target’s motion along the direction of the radar beam.
Positive values in radial velocity indicate wind moving from the radar, with negative
values representing wind moving toward the radar. The velocity data plays an essential
role in the identification of tornadoes. MDA and TDA-TVS algorithms realize early warning
by detecting the radial velocity feature of the tornado vortex. In the velocity block, the
features were calculated, including the radial velocity difference: ∆V (1) (to determine
whether there is a positive velocity and a negative velocity, and the value of the difference),
angular momentum: L (2) (calculate angular momentum between gate and gate), velocity
shear: S (3) (determine the shear value of the tornado in the horizontal direction), rotational
velocity: V (4) (calculate rotation speed value between gates) [44].

∆V =| Vin −Vout | (1)

L = (| Vin|+ | Vout|)× R (2)

S =
| Vin|+ | Vout |

R
(3)

V =
| Vin | + | Vout |

2
(4)

Basic velocity spectrum width measures the variability of the radial velocity estimates
(movement) due to wind shear, turbulence, and the quality of the velocity samples. In
the presence of tornadoes, the features presented in the velocity spectrum width are not
apparent compared to the radial velocity, and the spectrum width data are seldom used.
Usually, low (smooth) values of spectrum width are associated with the supercell’s rear
flank downdraft, and high (chaotic) values of spectrum width are associated with tornado
location. Wei [45] found that the tornado area exhibits a high spectral width value feature.
Therefore, when calculating the spectral width features, the maximum, minimum, average
value, the range of the spectral width block, and the thresholds were calculated in the
spectral width block. Details of the above features are shown in Table A1.

After the features were calculated, all values were stored as a vector sample, the sam-
ples without Nan (NULL) value were recorded as valid data, and the location information
of each block was saved. Each sample was manually labeled according to the official
historical tornado records of the Jiangsu Provincial Meteorological Bureau, including time
and location information. If one block was located at the tornado’s location, the vector
sample corresponding to the block was marked as yes (class = 1); if the blocks did not
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correspond to the tornado position, the samples were labeled as no (class = 0). The flow of
the tornado dataset generation is shown in Figure 1.

The dataset mainly used the lowest two-layer elevation data of radar data, including
0.5◦ and 1.5◦ elevations because most tornadoes are evident below 3 km. When the tornado
exceeds 100 km from the radar, the vertical distance to the ground at elevation 2.5◦and
above is far more than 4 km, and weather radars are usually unable to obtain low-level
information on tornadoes. This experiment mainly used the historical tornado data of
Jiangsu Province from 2006 to 2021. The data from 2006 to 2015 was used to construct
the tornado dataset and obtained 3590 samples, including 90 samples (class = 1) and
3500 samples (class = 0), see Table 2. There are usually 7 to 12 tornadic datapoints (class = 1)
per tornado event.

Figure 1. The generation flow of tornado dataset. (Firstly, divide the radar into many blocks; then,
calculate the tornado-related features in each block; finally, label the samples according to tornado
time and position information, and obtain the tornado dataset).

Table 2. Historical tornado events from 2006–2015 were used to build the tornado dataset and train
the TDA-RF model. The position represents latitude and longitude, respectively.

Date (UTC+8) Position Intensity Radar

20060703 20:01–20:13 119.781,33.551 EF1 Z9515,Z9516
20070703 16:40–17:20 119.229,32.650 EF3 Z9250
20080817 15:05–15:15 120.355,33.581 EF2 Z9515
20090827 15:30–16:15 120.980,31.385 EF0 Z9513
20100717 19:30–19:35 116.563,34.677 EF1 Z9516
20110822 06:00–06:10 120.042,31.873 EF0 Z9519
20130707 16:40–17:15 119.645,32.833 EF0 Z9517,Z9523
20140824 15:40–15:50 119.656,32.629 EF2 Z9523
20150724 12:15–12:18 119.436,32.776 EF0 Z9523

3. Methods

In the subsequent sections, this paper describes how to use the random forest algorithm
to construct the TDA-RF model and the testing of real tornado cases. The workflow is
shown in Figure 2. The general workflow can be summarized in three parts. 1: process radar
data and obtain dataset; 2: use the random forest to train the TDA-RF model, including
optimization and evaluation; 3: test the optimal TDA-RF model using real tornado cases,
obtain the skill scores, and compare with the TDA-TVS algorithm.
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Figure 2. The workflow of this paper. The part 1 corresponds to Section 2, part 2 represents
Sections 3 and 4, and part 3 indicates Section 5.

3.1. Random Forest

Random forest is a tree-based ensemble classification algorithm [37]. Random forests
tend to provide a higher prediction accuracy compared to other models in classification
settings [46]. A significant benefit of using random forests for classification modeling is the
ability to handle datasets with a large number of predictors [47].

The random forest has sampling randomness (randomly sample the original training
set to construct new training sets) and features selection randomness (randomly select
a subset from all features). The randomnesses makes the algorithm usually suffer less
from overfitting. About 37% of the original samples are not chosen when the samples are
randomly selected. These samples are out-of-bag and can be used to evaluate and optimize
the model. The random forest classifier contains multiple classification trees. When the
test vector is input into the random forest classifier, each classification tree outputs the
classification result, and the random forest outputs the final classification result according
to the voting results of all trees and converts the voting results into probability, as shown in
Figure 3.

In random forest construction and optimization, the scores of the original training set
are first calculated using two criteria, Gini or Entropy. Subsequently, a subset is randomly
selected from all features, and the best splitting feature is obtained using the Gini gain or
Information gain algorithms, and two child nodes are obtained [48–50]. Finally, the above
process is repeated for all child nodes until all nodes contain only one class of samples.
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Figure 3. The random forest classifier. The random forest outputs the final class and probabilities
based on the voting results.

3.2. Features Importance

The out-of-bag samples can also evaluate the feature importance in the current
dataset [51]. For a trained random forests model’s feature i, firstly, obtain the reference
score (OOBScorei) according to the out-of-bag samples:

importancei = OOBScorei −OOBScorers
i (5)

Secondly, randomly shuffle all the data of the out-of-bag samples under the feature i,
and obtain a new score (OOBScorers

i );
Finally, calculate the difference according to equation (5); the more significant the

difference, the more critical the feature [52]. The importance of all variables can be obtained
by repeating the above operations for all features. In scikit-learn, the method is ensembled
as a ‘permutation feature importance’ [53].

4. TDA-RF Model Training and Optimization

When training a random forest model, it is necessary to adjust several parameters to
obtain the optimal model, including the {criterion (using gini or entropy)}, {n estimators
(the number of trees in the forest)}, {max features (the number of split features)}. Manually
changing these parameters is usually tedious and time-consuming. The grid search algo-
rithm is an exhaustive algorithm that obtains the optimal hyperparameters of a model over
a user-specified range and interval [54].

Before model training, the dataset was randomly divided into the training set and
testing set with a ratio of 0.8 and 0.2, the training samples were used to train the TDA-RF
model, and the testing set was used to evaluate the TDA-RF model. In the training set,
there were 72 samples (class = 1) and 2800 samples (class = 0); In the testing set, there were
18 samples (class = 1) and 700 samples (class = 0); Figure 4 shows the procedure of training
and optimization.

The grid search algorithm can obtain optimal parameters over a large range after
separating the training and testing sets. The parameters {criterion: entropy, n estimators:
110, max features: 5} were obtained. The grid search algorithm was used to obtain optimal
parameters within a small range, and the parameters {criterion: entropy, n estimators:
102, max features: 5} (Model-1 in Figure 4) were obtained. This model was the optimal
model with 32 features. After the optimal parameters, the permutation feature importance
algorithm was used to obtain the features’ importance, and the results are shown in Figure 5.

In order to improve the TDA-RF model’s efficiency and reduce the negative impact of
some features, the last 12 features were discarded, and the top 20 features were retained.
The critical 20 features are bolded in Table A1.

In order to obtain the optimal model after optimizing the features, the TDA-RF model
was retrained using the 20 features retained. The grid search algorithm was used to search
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the best parameters in a wide range (parameters {criterion: entropy, n estimators: 150, max
features: 15} were obtained), and the optimal parameters in a small range{criterion: entropy,
n estimators: 150, max features: 14} (Model-2 in Figure 4) were obtained. Under the optimal
parameters, the testing set was put into the TDA-RF to obtain the evaluation scores, as
shown in Section 5.1 Additionally, the TDA-RF model was tested with actual tornado cases,
and the results are demonstrated in Section 5.2.

Figure 4. The flow of the TDA-RF model training and optimization. (The ‘parameters’ obtained from
the GridSearch were used as input for the next GridSearch or to obtain the optimal model; Model-1
was the optimal model with 32 features, and Model-2 was optimal with 20 features).

Figure 5. The score of features’ importance, top 20 essential features score greater than 2.77.

5. Experiments and Results
5.1. TDA-RF Evaluation

The testing samples were used for quantitative testing to obtain the evaluation scores
for the TDA-RF model. Confusion matrices are usually used when obtaining numerical
metrics for a classification model [55]. This study is a binary classification, positive samples
(with a tornado in this block, class = 1) and negative samples (without tornadoes in this
block, class = 0), and the binary confusion matrix is used, as shown in Table 3.
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Table 3. Binary confusion matrix.

True Class

positive (yes tornado) negative (no tornado)

model predict class Y (yes tornado) TP (True Positives) FP (False Positives)
N (no tornado) FN (False Negatives) TN (True Negatives)
column counts PC = TP + FN NC = FP + TN

In the binary confusion matrix, TP is the number of positive samples the model
outputs correctly, FP is the number of positive samples the model misclassifies, and FN
is the number of negative samples the model falsely classifies. The TN is the number of
negative samples that the model correctly classifies. Once the testing samples are put into
the TDA-RF model, the model will output predicted labels and compare the actual labels
with the predicted labels. The ACC (6), PRE (7), F1-score (8) (Recall = TP/(TP + FN)),
G-mean (9), POD (10), FAR (11), and CSI (12) can be obtained [56] according to the binary
classification confusion matrix. These scores are shown in Table 4.

The POD-POFD and POD-SR curves are used to visualize the model’s performance,
as shown in Figure 6. More details about the curves can be observed in [57].

accuracy(ACC) =
TP + TN
PC + NC

(6)

precision(PRE) =
TP

TP + FP
(7)

F1− score =
2× Recall × Precision

Recall + Precision
(8)

G−mean =

√
TP

TP + FN
× TN

TN + FP
(9)

POD =
TP

TP + FN
(10)

FAR =
FP

TP + FP
(11)

CSI =
TP

TP + FN + FP
(12)

Figure 6. The POD-POFD and POD-SR curves on the testing set. The Area Under the Curve (AUC) is
0.84, and the maximum Critical Success Index (CSI) is 0.65.
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Table 4. The TDA-RF scores on the testing set.

ACC PRE F1-Score G-Mean POD FAR CSI

0.9903 0.8667 0.7878 0.8486 0.7222 0.1333 0.65

5.2. TDA-RF versus TDA-TVS

To compare the scores of the TDA-RF and TDA-TVS algorithms, the tornado cases of
2016, 2017, 2018, and 2020 were used for testing. The time window [22] was used as the
evaluation method, as shown in Figure 7. At each volume scan, if the location identified
by the algorithms does not exceed 1.5 km for the center of a tornado, it is recorded as one
hit; if the algorithms do not identify the tornado, it is recorded as one miss; if a tornado is
incorrectly recognized, it is recorded as one false alarm. The score table after testing and
statistics is shown in Table 5.

Figure 7. The time window used for scoring the TDA-RF and TDA-TVS. The beginning (Tbegin) and
ending (Tend) times of a tornado event are also indicated.

Table 5. TDA-RF and TDA-TVS scores. The position represents latitude and longitude, respectively.
H: numbers of hits, M: numbers of misses, F: numbers of false alarms (F). POD = H/(H + M),
FAR = F/(H + F), and CSI = H/(H + M + F).

TDA-RF TDA-TVS

Radar Date(UTC+8) Position Intensity H M F H M F

Z9515,Z9517 20160623
14:15–14:30 119.803,33.694 EF4 4 1 1 3 2 2

Z9517,Z9519 20160706
15:50–16:00 121.012,31.940 EF0 4 1 2 3 2 1

Z9515,Z9523 20170702
11:00–11:15 120.483,32.673 EF1 4 2 1 4 2 4

Z9527 20180818
18:40–19:05 117.052,34.339 EF2 3 2 2 2 3 2

Z9250 20200612
13:55–14:10 119.451,32.741 EF3 2 1 1 2 1 0

Total 17 7 7 14 10 9
Score POD:0.71

FAR:0.29
CSI:0.55

POD:0.58
FAR:0.39
CSI:0.42

5.3. TDA-RF Tornado Detection

In order to study the performance of the TDA-RF in the operational application, use
the tornado cases for evaluation. The cases met: (1) The tornado was recorded by the
Jiangsu Meteorological Bureau, and the disaster investigation information includes the
time, location, and intensity of the tornado. (2) The tornado occurred within 150 km from
the radar center. The tornadoes identified by the TDA-RF model were marked with asterisks
in the reflectivity echo map, and the values responded to the classification probability. The
black circles centered on the recognition results with a radius of 1.5 km were shown in
radial velocity and velocity spectrum width echo maps. The following cases were used.

The first tornado case occurred on 23 June 2016 in Funing around 14:30 (Beijing time,
UTC+8). The tornado killed 99 people and injured 807. According to the data of Funing
and Sheyang sounding stations (08:00, UTC+8, on 23 June 2016), the Lifted Index (LI) was
−3.5 ◦C. The CAPE was 1408 J/kg, and the Lifting Condensation Level (LCL) was 700 m.
The low-level (0–6 km) vertical wind shear reached 17 m/s. This environment was unstable,
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which was conducive to supercell occurrence. The tornado was an EF4, according to the
disaster investigation. The Z9517 radar data was used, and the tornado was 102 km from
the radar center. TDA-RF identified the tornado at 0.5◦ and 1.5◦, as shown in Figure 8.

Figure 8. 0.5◦ and 1.5◦ tornado detection results (TDA-RF), Z9517-20160623-14:32 (UTC+8), the
tornado was EF4. (asterisk corresponds to the identification center, and the value corresponds to the
probability; the black circle has a radius of 1.5 km centered on the identification result).

The second case was an EF0 tornado in Tongzhou District, Nantong, on 6 July 2016.
The tornado touched the ground around 15:50 (Beijing time, UTC+8), 46 km away from the
radar Z9513. The model was used to detect the tornado; the tornado was identified at 0.5◦

elevation at 15:52 and 15:58 (Beijing time, UTC+8), as shown in Figure 9.

Figure 9. 0.5◦ tornado detection results (TDA-RF), Z9513-20160706-15:52 and 15:58 (UTC+8), the
tornado was EF0. (asterisk corresponds to the identification center, and the value corresponds to the
probability; the black circle has a radius of 1.5 km centered on the identification result).
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The third tornado occurred in Gaoyou city on 12 June 2020. The tornado was EF3.
This tornado touched down around 13:55 (Beijing time, UTC+8) and lasted for ten min-
utes. The Nanjing sounding data (08:00, 12 June 2020, UTC+8) demonstrated that there
existed moderate-intensity CAPE (1562 J/kg), weak CIN (−6 J/kg), and strong low-level
(0–3 km) wind shear (7 m/s). Such an environment was conducive to the formation and
development of the convection. According to the tornado generation and development
analysis [58], the initial convection of the squall line was formed at 11:00 (UTC+8). The
convection continued to intensify and eventually organized into the squall line (length:
200 km, width: 25 km, and maximum reflectivity: >50 dBZ) around 12:30 (UTC+8). The
rotation speed of the mesocyclone increased slowly (remaining at 10–11 m/s at the 0.5◦

and 1.5◦ elevations) before 13:30 (UTC+8). After 13:30 (UTC+8), the rotation speed began
to intensify rapidly and reached the maximum around 13:48–13:54 (UTC+8). The rotation
speed of the mesocyclone gradually weakened after 14:00 (UTC+8), and the squall line
gradually dissipated after 14:30 (UTC+8). When the mesocyclone rotation speed reached
the maximum value, the tornado occurred, so the period 13:48–14:10 (UTC+8) was used
for TDA-RF testing. The 1.5◦ radar data of Z9250 was used for testing, and the TDA-RF
detection results are shown in Figure 10 (the velocity spectrum width maps are omitted).

Figure 10. 1.5◦ tornado detection results (TDA-RF), Z9250-0612-13:48 to 14:10 (UTC+8), the tornado
was EF3. (asterisk corresponds to the identification center, and the value corresponds to the probabil-
ity; the black circle has a radius of 1.5 km centered on the identification result; no asterisk and circle
indicate that the TDA-RF did not recognize the tornado).

The fourth case is the NEXRAD radar tornado. The tornado occurred on 11 December
2021, with a damage path length of 10.5 miles, a width of 400 yards, and EF2 scale. The re-
sults are shown in Figures 11 and 12. According to the NWS storm survey event report
(purple tornado icon in Figure 12), the tornado occurred at 08:56 (UTC) on 1 E White Bluff,
Dickson, Tennessee.



Remote Sens. 2022, 14, 4909 13 of 22

Figure 11. TDA-RF detection results on NEXRAD radar data. KHPX radar 2021-12-11 08:55 (UTC),
the tornado was EF2. (The inverted triangle is the warning result of GR2Analyst, and the asterisk
and circle are the warning result of TDA-RF).

Figure 12. TDA-RF detection results on NEXRAD radar data. KHPX radar 2021-12-11 08:58 (UTC),
the tornado was EF2. (The inverted triangle is the warning result of GR2Analyst, the asterisk and
circle are the warning result of TDA-RF).

6. Discussion

In Section 4, the importance of the features was obtained using the ‘permutation
feature importance’ approach. Among the 20 essential features, the c4_d_v_max, v_max,
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and v_min variables are related to the velocity difference, and the TDA-RF model can
use these features to determine whether velocities in different directions exist and how
much is the difference value in each block, which is actually consistent with crucial points
of the TDA-TVS. The vt_max, c4_vt_min, c4_vt_average, c4_vt_max, vt_average features
are associated with the rotational speed of a cyclone or tornado, and s_max, s_average,
c4_s_min, c4_s_average are the velocity shear values for tornadoes between gates. The
l_average, c4_l_average, c4_l_max, l_max are angular momentum values. The r_max,
r_average variables represent that the occurrence of tornadoes usually needs a certain
reflectivity value. The w_max and w_80 are spectral width features, indicating that the
higher the spectrum width, the higher velocity dispersion, and the higher the probability
of tornado occurrence, which is consistent with the study by Wei [45].

In Section 5.1, the scores of the TDA-RF model on the test set and the curves are
obtained, where POD = 0.72, FAR = 0.13, and CSI = 0.65. Generally, for the classification
model performance, AUC = 0.5 is the worst, 0.5 < AUC < 0.7 is poor, 0.7 < AUC < 0.8 is
fair, 0.8 < AUC < 0.9 is good, and AUC > 0.9 is excellent [59]. From this point of view, the
TDA-RF model’s performance is good (AUC = 0.84). The performance of the TDA-RF when
tested on the actual tornado cases is slightly lower than the skill score on the testing set
(POD: 0.71 < 0.72, FAR: 0.29 > 0.13, CSI: 0.55 < 0.65). When tested on the same cases, the
TDA-RF algorithm scores are higher than the TDA-TVS algorithm (POD: 0.71 > 0.58, FAR:
0.29 < 0.39, CSI: 0.55 > 0.42), indicating that the TDA-RF outperforms the TDA-TVS.

In the first tornado case, the TDA-RF identified the tornado after it occurred. In addi-
tion to studying the effect of identification, this study examined the early warning time of
TDA-RF. For example, when TDA-RF warned the first tornado case, the first warning time
was at 14:15 (Beijing time, UTC+8), and the early warning time was 17 min, as shown in
Appendix A Figure A2. The events in Table 5 were used for the early warning time test and
yielded a maximum value of 17, a mean value of 6, and a standard deviation of 6.3.

In the second case, ∆V =| Vin − Vout |> 22 existed, but the radar products did not
issue M or TVS warnings for this tornado. The reason is that the requirements of the M
and TVS algorithms cannot be met at 1.5◦ elevation, as shown in Appendix A Figure A3.
To a certain extent, the TDA-RF algorithm overcomes the strict limitation of traditional
algorithms on multiple elevations and can play a role when the TDA-TVS algorithm fails.
The TDA-RF focuses on the features of the blocks, does not compare multiple continuous
elevations, and can warn more tornadoes.

In the third case, the radar Z9250 was used, which has been upgraded to dual-
polarization and has reached the distance resolution of 0.25 km, so no interpolation is
required when using the TDA-RF. The radar level-II data contains polarization parameters,
including differential reflectivity, correlation coefficient, etc. The polarization parameters
were not used when testing this case. Tornado detection results demonstrate that TDA-
RF can be used for the single-polarization Doppler weather radar and dual-polarization
Doppler weather radar. CINRAD-SA has only been upgraded to dual-polarization in recent
years. Tornado data with polarization parameters is insufficient to construct sample sets for
machine learning. Adding polarization parameters can greatly improve the identification
of tornadoes [60], and the introduction of more dual-polarization features can also improve
the identification effect of the TDA-RF.

In the fourth case, the NEXRAD’s KHPX radar was used. We found that the TDA-RF
model was less effective at identifying tornadoes using more KHPX data. When TVS is
very obvious, but the TDA-RF did not detect any tornadoes. We speculate that our model
is trained based on CINRAD-SA data, and the NEXRAD’s resolution between radials is
higher than CINRAD’s, which leads to the inapplicability of NEXRAD features to the
TDA-RF. Therefore, the blocks with size 4x4 cannot be directly applied to the NEXRAD,
and a larger block size is required.

The algorithm can provide tornado probability, which can help forecasters make better
decisions. When examining the probabilities in the results, we found that the values were
correlated with the tornado generation and development. The change in probability value
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for the third tornado case was counted and is shown in Figure 13a. For further research,
the tornado that hit the city of Suqian on 22 July 2020, Jiangsu Province, at around 21:47
(Beijing time, UTC+8), was tested using the TDA-RF. The tornado lasted 3 min, and the
radar Z9515 and Z9518 monitored the tornado process. The detection results are shown in
Figures A4 and A5. The change in statistical values is shown in Figure 13b.

Figure 13. The change of probability in the results of the third tornado case with time. (a): Tornado
case on 12 June 2020. (b): Tornado case on 22 July 2020. (When TDA-RF does not recognize a tornado,
the probability is set to 0. The shaded area is the tornado duration).

In these two cases, the tornado probability demonstrated an increasing trend before
the tornado occurred and gradually decreased after the tornado touched the ground.
We speculate that this changing trend is related to the life cycle of tornadoes, and perhaps
this trend change in tornado probability can be used to identify and warn of tornadoes.
However, due to the limited tornado cases of CINRAD-SA radar and the short duration of
tornadoes, it is impossible to conduct in-depth research on this trend. Subsequent research
can consider applying this method to the NEXRAD radar with sufficient tornado cases
while adding the relevant features of polarization parameters.

Tornadoes are rare events in China, and the class imbalance problem of samples exists
in the dataset. For example, the number of the negative class is much larger than the
positive class, which usually causes models to be more inclined to identify the negative
class correctly. This study uses the random forests’ weight parameter {class weight} to
solve this problem. Subsequent research can consider using data preprocessing and sample
synthesis methods [56,61] to solve the problem and improve the model’s performance.

7. Conclusions

This paper proposes an RF-based tornado detection algorithm and applies it to CIN-
RAD to detect tornadoes. The historical radar level-II data, including reflectivity, radial
velocity, and velocity spectrum width data, are processed. The data are divided into blocks,
and features are calculated. The tornado dataset is labeled according to the tornadoes’ loca-
tion and time information. The tornado detection algorithm (TDA-RF) is constructed based
on random forests, and the following main conclusions are obtained in the optimization
and tornado case testing of the TDA-RF.

• Features related to velocity are more critical in tornado detection; the velocity spectrum
width of weather radar should be used, and features related to velocity spectrum
width can improve tornado detection.

• The maximum early-warning time of the TDA-RF for tornadoes is 17 min, and the
mean value is 6 min.
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• Compared with the unsupervised tornado detection algorithm, such as the TDA-
TVS, the TDA-RF uses the features in the block, classification using random forests,
overcomes the limitation of multiple elevations, identifies more tornadoes, increases
the probability of detection and critical success index, and reduces the false alarm rate.

• The probability in the TDA-RF detection results is related to the tornadogenesis. The
probability increases and decreases before and after the tornado touches the ground.

There are some future research directions:

• Apply TDA-RF on NEXRAD radar data, change the block size (8 × 8 or larger), add
dual polarization parameters and features, test more tornado cases, and study the
change in probability;

• Optimize the class imbalance of the tornado dataset to improve the tornado detection
effect.
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Appendix A

Figure A1. The standard format of CINRAD-SA weather radar. The CINRAD-SA’s Nyquist velocity
is 27 m/s, Pulse Repetition Frequency (PRF) 1410 Hz, and Pulse Repetition Time (PRT) 0.709 ms. The
radar Level-II data were corrected, including clutter removal and velocity dealiasing.

Table A1. The 32 features and their explanations, with the critical 20 features bolded (Z: reflectivity,
V: radial velocity, W: spectrum width).

Feature Implication Unit

r_average The average value in the 4 × 4 Z block dBZ
r_max The maximum value in the 4 × 4 Z block dBZ
r_min The minimum value in the 4 × 4 Z block dBZ

v_average The average value in the 4 × 4 V block m/s
v_max The maximum value in the 4 × 4 V block m/s
v_min The minimum value in the 4 × 4 V block m/s

w_average The average value in the 4 × 4 W block m/s
w_max The maximum value in the 4 × 4 W block m/s
w_min The minimum value in the 4 × 4 W block m/s

s_average The average value of velocity shear in the 4 × 4 V block 1/s
s_max The maximum value of velocity shear in the 4 × 4 V block 1/s
s_min The minimum value of velocity shear in the 4 × 4 V block 1/s

l_average The average value of angular momentum in the 4 × 4 V block m2/s
l_max The maximum value of angular momentum in the 4 × 4 V block m2/s
l_min The minimum value of angular momentum in the 4 × 4 V block m2/s

vt_average The average value of rotation speed in the 4 × 4 V block m/s
vt_max The maximum value of rotation speed in the 4 × 4 V block m/s
vt_min The minimum value of rotation speed in the 4 × 4 V block m/s



Remote Sens. 2022, 14, 4909 18 of 22

Table A1. Cont.

Feature Implication Unit

c4_d_v_max The maximum value of velocity difference in the 2 × 2 V block m/s
c4_s_average The average value of velocity shear in the 2 × 2 V block 1/s

c4_s_max The maximum value of velocity shear in the 2 × 2 V block 1/s
c4_s_min The minimum value of velocity shear in the 2 × 2 V block 1/s

c4_l_average The average value of angular momentum in the 2 × 2 V block m2/s
c4_l_max The maximum value of angular momentum in the 2 × 2 V block m2/s
c4_l_min The minimum value of angular momentum in the 2 × 2 V block m2/s

c4_vt_average The average value of rotation speed in the 2 × 2 V block m/s
c4_vt_max The maximum value of rotation speed in the 2 × 2 V block m/s
c4_vt_min The minimum value of rotation speed in the 2 × 2 V block m/s
w_range The range value of velocity spectral width in the 4 × 4 W block m/s

w_40 The threshould greater than 40% velocity spectral width in the 4 × 4 W
block m/s

w_60 The threshould greater than 60% velocity spectral width in the 4 × 4 W
block m/s

w_80 The threshould greater than 80% velocity spectral width in the 4 × 4 W
block m/s

Figure A2. 1.5◦ and 0.5◦ Tornado early warning results (TDA-RF), Z9517-2016-0623 14:15 and 14:21
(UTC+8), the tornado was EF4. (asterisk corresponds to the identification center, and the value
corresponds to the probability; the black circle has a radius of 1.5 km centered on the identification
result.)
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Figure A3. 1.5◦radar data for the second tornado case, Z9513-2016-0706 15:52 and 15:58 (UTC+8), the
tornado was EF0. The radial velocity has not any tornado vortex signaures, and TDA-TVS algorithm
fails to warn the tornado.

Figure A4. The TDA-RF detection results on radar Z9515, 0.5◦ and 1.5◦, Z9515-2020-0722 21:41 to
21:53 (UTC+8), the tornado was EF1. (asterisk corresponds to the identification center, and the value
corresponds to the probability; the black circle has a radius of 1.5km centered on the identification
result; no asterisk and circle indicate that the TDA-RF did not recognize the tornado.)
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Figure A5. The TDA-RF detection results on radar Z9518, 0.5◦ and 1.5◦, Z9518-2020-0722 21:40 to
21:51 (UTC+8), the tornado was EF1. (asterisk corresponds to the identification center, and the value
corresponds to the probability; the black circle has a radius of 1.5 km centered on the identification
result; no asterisk and circle indicate that the TDA-RF did not recognize the tornado).
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