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Abstract: The Hunza Valley, in the northwestern Karakoram Mountains, North Pakistan, is a typical
region with many towns and villages, and a dense population and is prone to landslides. The
present study completed landslide identification, updating a comprehensive landslide inventory
and analysis. First, the ground surface deformation was detected in the Hunza Valley by SBAS-
InSAR from ascending and descending datasets, respectively. Then, the locations and boundaries
were interpreted and delineated, and a comprehensive inventory of 118 landslides, including the
53 most recent InSAR identified active landslides and 65 landslides cited from the literature, was
completed. This study firstly named all 118 landslides, considering the demand for globally intensive
research and hazard mitigation. Finally, the deformation, spatial–topographic development, and
distribution characteristics in the Hunza Valley scale and three large significant landslides were
analyzed. Information on 72 reported landslides was used to construct an empirical power law
relationship linking landslide area (AL) to volume (VL) (VL = 0.067 × AL

1.351), and this formula
predicted the volume of 118 landslides in this study. We discovered that the landslides from the
literature, which were interpreted from optical images, had lower levels of velocity, area, elevation,
and height. The SBAS-InSAR-detected active landslide was characterized by higher velocity, larger
area, higher elevation, larger slope gradient, larger NDVI (normalized difference vegetation index),
and greater height. The melting glacier water and rainfall infiltration from cracks on the landslide’s
upper part may promote the action of a push from gravity on the upper part. Simultaneously, the
coupling of actions from river erosion and active tectonics could have an impact on the stability of the
slope toe. The up-to-date comprehensive identification and understanding of the characteristics and
mechanism of landslide development in this study provide a reference for the next step in landslide
disaster prevention and risk assessment.

Keywords: landslide; InSAR; landslide inventory; slope displacement; Hunza; Pakistan

1. Introduction

Landslides are one of the most common and widespread natural hazards, and they
cause major damage to properties, infrastructures, and communities, as well as numerous
casualties worldwide [1–3]. The Indus River Basin in northern Pakistan hosts high moun-
tains and is prone to multiple hazards [4,5]. In this region, the Hunza Valley with a high
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population density is one part of Gilgit-Baltistan and has been marked by its vulnerability
to multiple geo-hazards including landslides, avalanches, and flash floods. On 4 January
2010, a huge landslide triggered by thrust fault activities caused 20 fatalities at Atta Abad
and formed a 120 m high dam [6–8]. The landslide deposition blocked the Hunza River
and subsequently impounded a reservoir with a length of 21 km, and the Karakoram High-
way along the bank of Hunza River was disrupted [8]. Recently, a catastrophic rock-ice
avalanche on 7 February 2021 at Chamoli in the Indian Himalayas caused severe damage to
the ecology and safety of downstream areas [9]. A rock avalanche occurred in the channel
of the Boultar Glacier within the Hunza River watershed in 1986, which was the first rock
avalanche event reported in Karakoram [10]. The deposits of the rock avalanche covered
an area of 3.5 km2 and were transferred by glaciers for many years. The Ganesh-Saukien is
another example of a rock avalanche [8,11]. Widespread landslides expose this area to the
potential for building collapse and ever-present damage. These catastrophes usually oc-
curred without warning and were not predicted by researchers, resulting in underestimated
adverse consequences and loss. A comprehensive landslide inventory, however, would
provide the fundamental information base for further assessment of landslide susceptibility
and risk [12]. Knowledge of the location and distribution of landslides is vital for predicting
affected areas and for quantifying hazard risk. An up-to-date landslide inventory of the
Hunza Valley including the deformation velocity, pattern of the deformation process, and
field surveyed features would be significant.

Landslide identification and a survey on a regional scale have been the main challenges
for geologists and geological hazards managers in recent decades. The technology used
for landslide surveys has experienced a long-term evolution and advancement with the
development of surveying and mapping science and satellite technology [13–15]. In past
decades, because the technology was backward, landslide investigation was conducted
with limited available technologies. Unlike the previous era, researchers can now utilize
the optimal instruments and techniques to design the research and missions. Various tech-
niques including GNSS, remote sensing, satellite radar, and antenna or ground-based SAR
have been used in landslide identification [16], routine monitoring [17], early warning [14],
and risk emergency response [18].

To some extent, many disasters occur because of the lack of coordination between
management measures and the mapping and zonation of hazards and risk [19,20]. It has
been reported that errors in the input data of landslide inventory maps are a major limitation
on the reliability of landslide hazard assessment [21]. In and around the study area, the
effects of landslide inventories prepared from satellite data on landslide hazard assessment
in the High Himalayas terrain of India have been discussed [22]. Landslide inventory
mapping in the Hunza Valley region was conducted based on image interpretations or
direct field surveys without referring to recent deformation information [6,8]. The goal of
this study is to acquire the location; velocity of recent ground surface deformation, updated
landslide inventory; and the deformation, development, and distribution of landslides in
the Hunza Valley using multi-look SAR datasets.

SBAS-InSAR (Small Baseline Subsets-Synthetic Aperture Radar Interferometry) is
an advanced remote sensing technique that has been widely applied in displacement
monitoring and the detection of geo-hazards in mountainous regions [23–25]. Displacement
rates during the monitoring period are potentially capable of analyzing the landslide failure
process on a single slope unit. A comprehensive landslide inventory produced using
the combination of time-series InSAR, visual interpretation, and field investigations can
potentially determine the susceptibility of terrain to the occurrence and development of
landslides [26]. Similarly, there is a demand to determine the slope risk on a regional scale
using InSAR monitoring data. Landslide, in general, is a geological process that causes a
slow-moving deformation over a long period or a rapid, large deformation in a relatively
short time. It eventually experiences failure in the types of slide, flow, fall, and topple along
the slip surface or structures such as a soft layer or joint plane under various causes such as
gravity, earthquakes, rainfall, and human activity or a combination of these factors [27].
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The slope consequently slides integrally or segmentally. In this way, the slope deformation
in the long term is a key point in the monitoring and intensive investigation. Sentinel-1
SAR data can support operational applications such as the observation and mapping of
land surfaces, including vegetation coverage (e.g., forest), geohazards, and crises [28–30].
The relatively high temporal resolution and wide scanning mode of Sentinel-1A allow for
continuous time-series monitoring in the Karakoram high-altitude valley.

Landslide hazard in northern Pakistan is an increasingly catastrophic issue because of
regional tectonic activity, topography, human activity, and climate change [31,32]. Focusing
on the kinds of geohazards in a mountainous area such as northern Pakistan and the key
core area along the KKH (Karakoram Highway), there have been several studies conducted
with the construction of the China–Pakistan Economic Corridor (CPEC). These studies
emphasized the growing need for landslide hazard analysis and prevention. Especially in
the Hunza Valley, landslides induced by earthquakes, floods, and engineering projects have
caused severe damage that has been reported and evaluated in previous research [6,8,25,31].
As the only route in the CPEC, the KKH utilized the existing old Silk Road to connect
China and Pakistan and beyond. It is strategically meaningful to study the landslides in the
Hunza Valley because many roads and communities are vulnerable to hazards along the
KKH, and the KKH runs close to the valley floor over much of its length and is susceptible
to geohazards [33]. The InSAR technique has been applied in the landslide identification
and analysis along the KKH and in the Hunza Valley, and it effectively analyzed landslides.
However, in the Hunza Valley, the InSAR observation was limited to applying single track
Sentinel-1A data to analyze some landslides [25]. The application of both ascending and
descending SAR data in this study can overcome the shortcoming of missed detection
attributed to the limited observation geometry.

The present study achieved the landslide inventory updating and risk slope identifica-
tion and comprehensively analyzed the landslide development and distribution mechanism
in the Hunza Valley based on the SBAS-InSAR monitoring with the comprehensive appli-
cation of ascending and descending Sentinel-1A and existing landslide inventory datasets,
exploration of optical images, and investigation. Based on the fitting of the published
data, the empirical power law relationship between area and volume was constructed and
used to predict the volume of landslides in this study. Overall, this study will contribute
to the advancement of landslide mapping and an improved understanding of landslide
development in the Hunza Valley. This ideology and methodology can be applied to other
mountainous hazard-prone segments of the China–Pakistan Karakoram Highway.

2. Study Area

The study area was the Hunza Valley, a key part of the Hunza Basin in the upper
Indus River Basin, northern Pakistan (Figure 1). The elevation varies from 1503 m to
higher than 7000 m (Figure 1c); the highest peak in the study area, Rakaposhi, is 7788 m
above sea level (Figure 2a). This is a unique area hosting the highest relief and featuring
multiple hazards and topographic processes in the harsh environment in northern Pakistan.
Topographically, the features in this area consist of higher mountains covered by glacier
ice (such as the Pisan Glacier below Rakaposhi, Figure 2b) and debris flows, and deposits
of various originals such as GLOFs (glacial lake outburst floods), floods, river terraces,
and slope debris flows [8,34–36] (Figure 2c). Because of the complex influence of the NW–
SE-oriented faults, the region has glacially scoured valleys and abundant late Quaternary
and Holocene sedimentary deposits [25,32] consisting of unsorted glacial deposits, debris
flows, rock avalanches, and river gravels along the Hunza River Valley [37] that pose
substantial secondary hazards (Figure 2c). The Passu, Hussaini, Gulmit, and Hoper Rivers
are a major influence on landslide activity since they provide both sedimentary materials
and hydrodynamic energy [33]. Supplemented by snow melting in the higher mountains,
the discharge of the Hunza River increases substantially in summer, causing overbank flow
and inducing a potential landslide hazard [8].
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Figure 1. (a) Location of the Hunza Basin in upper Indus River Basin in North Pakistan. (b) Study 
area is represented by the red line in the Hunza River Basin, and the stream network, history of 
earthquake events, and the Sentinel-1A datasets in ascending and descending track are shown. (c) 
Topography environment, faults, and glacier distribution in the study area. 

 

Figure 1. (a) Location of the Hunza Basin in upper Indus River Basin in North Pakistan. (b) Study area
is represented by the red line in the Hunza River Basin, and the stream network, history of earthquake
events, and the Sentinel-1A datasets in ascending and descending track are shown. (c) Topography
environment, faults, and glacier distribution in the study area.
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Figure 2. The geology environment for landslide development in Hunza Valley. (a) View of Raka-
poshi (7788 m asl.). (b) The Pisan Glacier below Rakaposhi. There is intensive cultivation and quite 
dense rural settlement that extends from the terraced valley fill on the left bank of the Hunza River 
up to the middle slopes of moraines. (c) A geological perspective of the river terrace, glacier mo-
raines, and landslide deposits. (d) South of Atta Abad, there are five open tunnels constructed to 
reduce the direct impact of landslides on the highway along the new KKH that was relocated be-
cause of submersion by the Atta Abad landslide dam lake. 

As a result of the collision of the Indian and Asian plates, the principal tectonic ex-
pression in the Hunza area is the thrust slip between the Main Karakoram Thrust (MKT) 
and the Karakoram Fault [25] (Figure 1c). The complex landforms represented by the criss-
crossing gullies and fragmented bedrock are evidence of active movement related to the 
MKT and other small faults [38]. As a zone with intensive tectonics, this area has been 
reported as the highest in the world in terms of frequent seismicity and earthquakes ex-
ceeding Mw 6 [39]. Therefore, the study area is heavily affected by widespread slope 
movement [40,41] owing to the complex impact of the intensive tectonic activity and frag-
ile geology. Landslide hazards in the Hunza Valley are also closely related to the engi-
neering work along the KKH, and the erosion of the Hunza River. The large landslide Atta 
Abad dammed the Hunza River and blocked the KKH in 2010. This prompted KKH relo-
cation and upgrading after submersion by the Atta Abad landslide dam lake. Five open 
tunnels were constructed to reduce the direct impact of landslides on the highway along 
the new KKH (Figure 2d). Landslide hazards are frequent and have resulted in traffic dis-
ruption and severe material losses, which are major constraints on human life and socio-
economic development [7]. They therefore require intensive study. 

3. Methodologies and Datasets 
The methodologies and processing used in the present study consisted of the follow-

ing steps: data preparation, displacement and velocity monitoring based on SBAS-InSAR 
and preliminary interpretation, field survey, validation of landslide inventory, compila-
tion of a dataset of the latest landslides, and landslide distribution mechanism analysis. A 
flow chart of this methodology is illustrated in Figure 3. 

Figure 2. The geology environment for landslide development in Hunza Valley. (a) View of Rakaposhi
(7788 m asl.). (b) The Pisan Glacier below Rakaposhi. There is intensive cultivation and quite dense
rural settlement that extends from the terraced valley fill on the left bank of the Hunza River up to
the middle slopes of moraines. (c) A geological perspective of the river terrace, glacier moraines,
and landslide deposits. (d) South of Atta Abad, there are five open tunnels constructed to reduce
the direct impact of landslides on the highway along the new KKH that was relocated because of
submersion by the Atta Abad landslide dam lake.

As a result of the collision of the Indian and Asian plates, the principal tectonic
expression in the Hunza area is the thrust slip between the Main Karakoram Thrust (MKT)
and the Karakoram Fault [25] (Figure 1c). The complex landforms represented by the
crisscrossing gullies and fragmented bedrock are evidence of active movement related
to the MKT and other small faults [38]. As a zone with intensive tectonics, this area has
been reported as the highest in the world in terms of frequent seismicity and earthquakes
exceeding Mw 6 [39]. Therefore, the study area is heavily affected by widespread slope
movement [40,41] owing to the complex impact of the intensive tectonic activity and fragile
geology. Landslide hazards in the Hunza Valley are also closely related to the engineering
work along the KKH, and the erosion of the Hunza River. The large landslide Atta Abad
dammed the Hunza River and blocked the KKH in 2010. This prompted KKH relocation
and upgrading after submersion by the Atta Abad landslide dam lake. Five open tunnels
were constructed to reduce the direct impact of landslides on the highway along the new
KKH (Figure 2d). Landslide hazards are frequent and have resulted in traffic disruption
and severe material losses, which are major constraints on human life and socioeconomic
development [7]. They therefore require intensive study.
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3. Methodologies and Datasets

The methodologies and processing used in the present study consisted of the following
steps: data preparation, displacement and velocity monitoring based on SBAS-InSAR and
preliminary interpretation, field survey, validation of landslide inventory, compilation of
a dataset of the latest landslides, and landslide distribution mechanism analysis. A flow
chart of this methodology is illustrated in Figure 3.
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3.1. SBAS-InSAR Techniques and SAR Data

The time-series SBAS-InSAR technique with its deformation-detection ability that
was proposed and developed by Berardino et al. and Lanari et al. [42–44] was applied
and demonstrated in studying surface deformation and analysis in various fields, includ-
ing ground subsidence detection, landslide identification, and glacier tracking [26,45–47].
Compared with PS-InSAR (Persistent Scatters Interferometry), SBAS-InSAR has a greater
capability of monitoring deformations over the rugged mountainous area [48] and can pro-
vide valuable information for detecting surface deformation and time-series characteristics
for analyzing the pattern and cause of active landslides [49,50].

Forty-five ascending (27) Sentinel-1A images from 2 January 2019 to 13 June 2020 and
forty-two descending (107) Sentinel-1A images from 8 January 2019 to 19 June 2020, for
a total of eighty-seven images, were acquired and applied to monitor slope deformation
in Hunza, based on SBAS-InSAR (Table 1). Digital elevation model (DEM) data with a
pixel size of 30 m, generated by the Shuttle Radar Topography Mission (SRTM), were
used to eliminate the residual topographic phase for analyzing deformation results. Basic
parameters of optical images and SAR datasets are listed in Table 1.
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Table 1. Basic parameters of optical images and SAR datasets in this study.

Satellite Mission (Source) Sentinel-1A Sentinel-1A Google Earth Data

Purpose Time-series displacement
analysis

Spatial pattern analysis of
displacement Evolution precession

Band C C Optical

Wavelength (cm) 5.6 5.6 -

Incidence of LOS (◦) 32.3–36.3 34.5–38.1 -

Average Incidence of LOS (◦) 34.02 36.35 -

The azimuth of LOS (◦) 83.94 −83.94 -

Path Ascending (27) Descending (107) -

Frame 117 473 -

Resolution in azimuth (m) and
range (m) ~20 × 5 ~20 × 5 <2

Minimum temporal baseline (days) 12 12 -

Number of images 45 42 -

Temporal span 2 January 2019–13 June 2020 8 January 2019–19 June 2020 2017–2020

Multi-looking (azimuth × range) 1 × 4 1 × 4 -

In the methodology process, all images were first resampled and processed to generate
interferograms with the following parameters: multi-looking factor of 4 in range and 1 in
azimuth; temporal and spatial baselines of less than 70 d and 210 m, and 70 d and 200 m,
respectively, for ascending and descending Sentinel-1A images [51,52] (Figure 4). Addi-
tionally, the Goldstein Filter [53,54] and the Minimum Cost Flow (MCF) algorithm [43,55]
with a coherence threshold of 0.3 were used for filtering to increase the SNR and the co-
herence of interferograms and phase unwrapping. After the estimation of residual height
and displacement information via the process of refining, re-flattening, and inversion, the
atmospheric signal phase was observed and removed by the application of high-pass and
low-pass filters in the temporal and spatial domains, respectively [56,57]. Singular value
decomposition (SVD) was applied to estimate the deformation at each SAR acquisition date
since more than one subset was available [42,43,58]. The final results enabled the detection
of annual surface deformation rates in the study area.
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3.2. Interpretation of Displacement Velocity and Landslides Inventory

To achieve the goals of comprehensive landslide identification and analysis in the
Hunza Valley, a landslide inventory was conducted by integrating the displacement rates
derived from the ascending and descending data by SBAS-InSAR monitoring, the visual
interpretation of optical remote sensing images, a literature review, and field investigations.

However, in some cases, the velocity along the line of sight could not directly indicate
the actual movement of slope materials. In the case of landslide detection, most landslide
or ground surface deformation occurs along the direction of the slopes, and therefore,
the deformation velocity along the slope (Vslope) was calculated for both ascending and
descending paths with reference to the methods in the literature [23,59,60].

Vslope =
Vlos

Index
, (1)

Index = nlos · nslope, (2)

nlos=(−sinθcosα,sinθsinα, cosθ), (3)

nslope=(−sinβcosϕ,−cosβcosϕ, sinϕ), (4)

nslope · nlos = (sinθ · cosα · sinβ · cosϕ)− (sinθ · sinα · cosβ · cosϕ) + (cosθ · sinϕ) (5)

where the Vslope is velocity along the slope, Vlos is the velocity along the line of sight. β is
the aspect of slope, ϕ is the slope gradient, θ is the angle of incidence of the satellite sensor,
α is the angle between the direction of the satellite orbit and true north (which is the radar
satellite flight direction), ascending data are negative, and descending data are positive.
Based on the statistics and previous research in this study area, before the conversion, we
set the value in the section of (−0.3~0) as −0.3, and set the value in the section of (0~0.3)
as 0.3.

In addition to the optical remote sensing images and literature, the basic knowledge
and imprints of the landslides in this area enabled classifying the rendering of deformation.
In setting a stable threshold, the main principle is to indicate and distinguish the relative
stable zone and the deformation positions using high deformation velocity. In this process,
the optical image is available as supplement data to ensure the rendered higher deformation
matches well with slopes experiencing displacement, as shown in Figure 3. Based on
the principle explained above, this work used displacement information to identify and
delineate the landslide step by step. Some of these steps have proven useful for detecting
and identifying active landslides [61,62].

Firstly, an annual deformation velocity of −20 mm/y along the slope direction was
set as the threshold for distinguishing the relative stable area and the suspected active
slope in which the landslide will occur. Secondly, the preliminary mapping of suspected
active landslides was conducted by superimposition on optical remote sensing images with
reference to surface geomorphological features (e.g., scarps, sliding masses, and bulging
toes). Finally, a field investigation was conducted to delineate the landslide mapping. In the
field survey, landslide characteristics including topographic features, deformation evidence
such as cracks, fissure, scarp, and the depositions were the criteria to verify the SBAS-InSAR
monitored displacement information; the results will be presented in Section 4.1. In the
internal work, all landslides were uniquely numbered and named.

3.3. Analysis of the Landslides’ Development Characteristics

The landslide development is under the controlling impact of the geology tectonics
and the topographic geomorphology. The landslide identified in this study was the result
of various causes in the present environmental and geology conditions. These effects were
reflected in the SBAS-InSAR monitored displacement information to a degree. To explore
the landslide spatiotemporal characteristic, especially the active landslides detected by
InSAR, a spatial statistical analysis of the detected landslides and historical landslides can
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provide insight into understanding landslide hazards and their development in the Hunza
Valley and Karakoram Mountains.

The topographic condition exerts an impact on the landslide by controlling the shape,
slope, and position to influence the potential energy, which in turn further impacts on the
hydrothermal conditions, catchment conditions, infiltration conditions, and finally mass
movement processes. Differences in the topographic conditions certainly contribute to the
spatial development differences of landslides. In relation to the topographic features, the
landslide displacement velocity is the dependent variable and reflects the activity level and
activity pattern. The deformation pattern can also be investigated using the time series
information in the SBSA-InSAR results. This study explored the classes of deformation
pattern and compared the characteristics of landslides from different sources.

Here, the characteristic database was established on the basis of a comprehensive
landslide inventory. The landslide area, observed topographic features of elevation, relief
(height), aspect, slope, and NDVI (Normalized difference vegetation index) were extracted
and assigned to every landslide. The deformation rates of each individual landslide were
acquired based on the SBAS-InSAR monitoring. NDVI is the reflectance of the vegetation.
It is formulated as the following equation:

NDVI = (RNIR − RR)/(RNIR + RR) (6)

where RNIR is the reflectance of the near infrared band, and RR is the reflectance of the red
band. The data is derived using Landsat-8 images provided by National Aeronautics and
Space Administration (NASA).

4. Results and Analysis
4.1. Ground Surface Deformations and Landslides Inventory in Hunza Valley
4.1.1. Displacement Velocity along the Line of Sight

The decorrelation in the higher region that is covered by snow, ice, and glacier lim-
its the detection of ground surface deformation and brings more noise and uncertainty.
The deformation velocity along the line of sight (Vlos) from ascending and descending
Sentinel-1 datasets was detected using SBAS-InSAR, setting 0.3 and 0.4 as the coherence
thresholds, respectively.

The retrieved displacement Vlos was mainly concentrated nearly in the valley in Hunza,
as shown in Figure 5. The negative values (red color) indicate the ground moving away
from the sensor and its mean velocity in the monitoring period, and the positive values (blue
color) represent the displacement toward the satellite sensor and its mean velocity. There
are points with velocity values higher than 20 mm/y on the valley runout and toe of the
slope, which may indicate the process of the sliding. Regarding the density of the coherent
targets, 551,048 and 697,777 coherent targets points were obtained from the ascending
(Figure 5a) and descending Sentinel-1 (Figure 5b) datasets, respectively. The densities
of coherent points were calculated as 439 points and 557 points per square kilometer in
the study area with an area of 1252.6 km2 for the ascending and descending datasets,
and the detected displacement information covered the main part of the valley below the
elevation of 3500 m (Figure 5). Because of topography conditions such as an extremely
steep slope and environmental limitations of the glacier, ice, and dense vegetation, the
Sentinel-1 datasets had lower sensitivity over the higher alpine area, resulting in the limited
availability of coherent targets in these areas.
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Figure 5. Displacement velocity along the line of sight (Vlos) monitored by SBAS-InSAR applying
the ascending (Path 27, Frame 117, in (a)) and descending orbit data (Path 107, Frame 473, in (b))
Sentinel-1A dataset. The black line represents the roads in the Hunza Valley.

4.1.2. Displacement Velocity along the Direction of Slope

The simulation of the displacement velocity along the slope facilitated landslide
identification by providing a direct reference for deformation investigation, based on the
method in Section 3.2.

Figure 6 shows the results of displacement velocity along the slope (Vslope) acquired
from the ascending and descending Sentinel-1 datasets. After conducting the classifying
rendering, referring to the optical image, this study set the velocity threshold for landslide
identification. The maximum value of ground surface displacement velocity along the slope
was 311 mm/y and −490 mm/y, which were monitored by the ascending and descending
Sentinel-1A datasets (Figure 6). There were 109,687 of 118,315 (92.7%) detected coherent
points within the deformation interval of (0, −20) for the ascending dataset and 109,153 of
139,699 (78.13%) detected coherent points within the interval of (0, −20) for the descending
dataset. This indicated that most of the study area was stable.
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Figure 6. Displacement velocity along slope and landslides detected by SBAS-InSAR applying
the ascending (Path 27, Frame 117, in (a)) and descending orbit data (Path 107, Frame 473, in (b))
Sentinel-1A dataset. The black line represents the roads in the Hunza Valley.

4.1.3. Landslides Inventory

Combined with the displacement velocity along the slope derived from the ascending
and descending datasets (Vslope), the visual interpretation of optical remote sensing images
and field investigations were conducted. First, the interpretation of the velocity along
the slope and optical images ensured the preliminary delineation of the boundary by
referring to deformation velocity with relatively high values, topographic characteristics
(obtained from DEM), and the optical image features. These slopes were the suspicious
objects prepared for the field investigation and validation. Moreover, the deformation
area and position on the slope, the scarps and fissures, and the boundary of the potential
landslide failure were the items that needed to be verified. Finally, any one slope that could
be acknowledged as consistent with the monitoring results was inventoried in the field.
From the survey, these landslides in the Hunza Valley were characterized by round-backed,
armchair-like back walls, cracks, fragmented rocks, and fragment deposition; additionally,
the absence or near-absence of vegetation cover on the talus deposits was also evidence of
active rock falls.
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Consequently, 53 potential landslides with a total area of 48.8 km2 were detected
and identified based on the SBAS-InSAR detected deformation velocity. In addition,
65 landslides were gleaned and delineated by referring to the literature [6,25,35] and
the remote sensing image combined with field investigation (Figure 7). We assigned
unique numbers and names to all landslides. Based on the inventory, we summarized
morphological features such as an irregular ellipse, long tongue, long rectangle, and wide
rectangle. The area of landslides ranged from 0.05 to 6.4 km2. In the 53 SBAS-InSAR
detected landslides, there were 20 landslides exclusively detected by ascending Sentinel-1
datasets and 28 detected especially by the descending Sentinel-1 datasets; the remaining
5 landslides were detectable by both ascending and descending Sentinel-1. These findings
indicated that the combined application of ascending and descending data can overcome
the limitations of the acquisition geometry of a single scanning posture.
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Figure 7. Distribution of landslides detected with multi-track Sentinel-1A data based on SBAS-InSAR,
and thrust faults and glaciers in the Hunza Valley, northern Pakistan. LA: the landslide detected
by ascending Sentinel-1A, LD: the landslide detected by descending Sentinel-1A, LB: the landslide
detected by both ascending and descending Sentinel-1A, LL: the landslide cited from literature.

In the detection and identification of landslides, the SBAS-InSAR detected deformation
and the features of images and field photograph were useful in combination. Figure 8
comparatively shows typical examples of detected landslides and two landslides that were
interpreted based on images and field investigation in the inventory. These landslides were
mostly covered by SBSA-InSAR-detected coherent targets. The first four landslides were
the active landslides identified based on the SBAS-InSAR monitoring (Figure 8a–f). Because
of the steeper slope or the actual inactive state, some landslides may not have strictly
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corresponded to the criteria of higher deformation velocity for identifying landslide and
experienced lower rates of deformation. These landslides were experiencing deformation
and occurred previously (in history) or had developed after the ancient events (Figure 8g,h).
These landslides were delineated through the field investigation and optical remote sensing
image interpretation in combination with referral to the literature (Figure 8g,h).
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Figure 8. SBAS-INSAR monitoring deformation and the optical image interpretation of identified
(a–f) and interpreted (g,h) landslides. (a): No. 72 Ghulmet landslide, (b) No. 2–6 landslides, (c) No.
18, 22 Humarri-1, Humarri-2 landslide, (d) No. 42 landslide, (e) No. 87-89 Mayoon-1~3 landslides,
(f) No. 94-96 Jizalabad landslides, (g) No. 1 Atta Abad landslide, (h) No. 9-10 landslides.
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4.2. Spatiotemporal Characteristics of Landslides in Hunza Valley
4.2.1. Development Characteristics of Landslides

Based on the comprehensive, updated landslide inventory, statistical analysis of spatial
topographic, deformation, and other attributes of the landslides from different sources can
improve our understanding of the spatial–topographic developments of landslides and
their related inner causal mechanism in the Hunza Valley. For the landslides interpreted
through images and investigation, the literature also provided useful information. Here,
we identified them as landslides as cited in the literature. To inquire about the detailed
characteristics, the detected landslides and landslides cited in the literature were plotted in
box plots and in the polar diagram. The landslides’ attributes including Vslope, area, volume,
max elevation (at the top point of the landslide), height (difference between the maximum
elevation and the minimum elevation), aspect, slope, and NDVI (normalized difference
vegetation index) were investigated.

(1) Deformation pattern and velocity

The SBAS-InSAR derived deformation velocity is valuable when delineating the
boundary of an active landslide. In addition, the time series analysis of deformation in the
monitoring period is useful for investigating the landslide development pattern. Previous
studies have proposed that the statue of deformation curve is of value when indicating
the pattern of landslide development, and the extra high acceleration is a criterion of the
possibility of failure [63–65]. It is vital to explore the deformation pattern in the moni-
toring period not only to gain the knowledge of potential landslides but also to choose
typical objects to study specifically for risk management. The displacement trends of
each landslide were checked using the time series displacement data and, considering
geomorphological features observed in the field and on images, were classified manually
to ensure accuracy. In this study, the trends of the landslide deformation process were
classified into constant rate (Figure 9a), accelerating (Figure 9b), decelerating (Figure 9c),
and fluctuating (Figure 9d). Of these landslides detected by SBAS-InSAR, 28 experienced
constant rate deformation, 20 experienced accelerating deformation, and 5 experienced
decelerating deformation (Figure 9e). On the other hand, the interpreted landslides expe-
riencing constant rate, accelerating, decelerating, and fluctuating were 31, 11, 4, and 19,
respectively (Figure 9e). It was determined that the majority of detected landslides (90%)
had experienced displacement with constant rate or accelerating rate, and the majority
of landslide supplied from the literature (77%) had experienced displacement with con-
stant or fluctuating rate (Figure 9e). It was clear that the landslides interpreted from the
literature experienced steady deformation or irregular surface movement, demonstrating
that the detected landslides were more likely to develop into accelerating rate and had an
approximate risk of failure in the future [35].

The landslides identified by the Sentinel-1A dataset (LA, LD, and LB) were char-
acterized by higher displacement velocities compared to the landslides derived from
the literature (LL) (Figure 9f). On the contrary, the landslides interpreted from the op-
tical images from the literature had unique features of lower velocity and smaller area
(Figures 9f and 10a). This was the reason that these smaller landslides were excluded in
the SBAS-InSAR-based landslide detection and identification: because they were relatively
stable with extra local deformation or extra slow-moving velocity and smaller area. This
reflected the purpose in basing the research on SBAS-InSAR when updating the landslide
inventory, and the literature review aided as the significant supplementary work.

(2) Magnitude: area and volume

The landslide areas possessed unique differences among the four different resources
(Figure 10a). The areas of the landslides detected by descending data (LD) were obviously
greater than others and had a larger range of 0.06 km2 to the largest of 6.4 km2. On the
contrary, the largest area of the landslides detected by ascending dataset (LA) was 2.21 km2,
and largest area of the landslides cited from the literature (LL) was 1.16 km2 (Figure 10a).
The 42.39 km2 area of the 33 descending detected landslides accounted for 67% of the area
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of all sources of landslides (63.23 km2) and 86.7% of SBAS-InSAR-detected landslides by
Sentinel-1A datasets (48.8 km2). On the whole, the area of landslides in this study was in
the range of 2.5 × 104 m2 ≤ AL ≤ 6.4 × 106 m2.
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To model the empirical relationship between AL and VL, a distinct power law was
fitted to the published data [56]:

VL = a × AL
α (7)

where AL (m2) is the area of landslide, VL (m3) is the volume of landslide from the pub-
lished dataset [66], a and α are curve-fitting parameters to link landslide area (AL) to
landslide volume (VL) based on recent research [67–69]. The model fitted based on the
published data of landslides in the Hunza Valley was relevant to a broad range of land-
slide areas (2.426 × 103 m2< AL < 1.6 × 106 m2) [56] (Figure 11). The large landslide area
of the reported data covered same orders of magnitude as this study, and the maximum
magnitude was 106. We found that SBAS-InSAR-detected landslides were larger in volume
compared to the landslides interpreted by referring to the literature (LL) (Figure 10b). The
minimum magnitude of fitted data was relatively smaller than that in this study, and the
forecast revealed that the small and medium scale landslides had good prediction effect.
For example, the Humarri-1 landslide was predicted with a volume of 4.7 × 107 m3, which
matched well with that estimated to be a large fault controlled landslide with a volume of
4.1 × 107 m3 [25] (Table 2). According to the published data and the data predicted in this
study, their values were similar and of the same magnitude (Table 2).

Table 2. Comparison of the landslide areas and predicted volumes in this study with published
data [25,66].

Forecast in This Study Published Data

Landslide Name Area (104 m2) Volume (104 m3) Area (104 m2) Volume (104 m3)

Karimabad-4 61.801 446.384 45.225 135.675
Karimabad-3 20.383 99.747 17.105 153.948

Miachar-3 43.888 281.117 38.851 194.257
Karimabad 25.476 134.821 38.492 230.956
Humarri-1 353.527 4709.713 340 4100
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(3) Topography

There was a topography priority condition for landslide development in Hunza Valley.
The ranges of the elevation and height of the landslides detected from descending data
were broader than those of the landslides from ascending datasets (Figure 12a,b). The
maximum elevation of the landslides detected by the descending datasets (LD) ranged
from 2261 to 4583 m. This range was broader than that of the landslides detected by the
ascending datasets (LA), which ranged from 2245 to 3803 m. The point is that the landslides
cited from the literature (LL) had a relatively lower maximum elevation in the interval of



Remote Sens. 2022, 14, 4907 17 of 27

2023 to 3674 m (Figure 12a). The height of landslides also exhibited similar characteristics
to the maximum elevation (Figure 12b). The heights of the landslides detected by the
descending datasets (LD) had border ranges from 245 to 2128 m, compared to those of
the LA (215–1808 m) and LL (52–1278 m) (Figure 12b). This study claims that the Sentinel
datasets have a great potential in the comprehensive detection of landslides with high
altitude and high position. The Sentinel data from the descending track particularly
detected more high position huge landslides in the Hunza Valley.
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The spatial aspect distribution features revealed that the aspects from south to west
were the prior aspects of the landslides (Figure 12c,f). In this directional range, the statistical
analysis of the number and accumulating areas of landslides revealed the aggregation
phenomenon of landslides. There were 76 of 118 landslides in this superior condition.
Consequently, and accordingly, the sum area of these landslides was predominant at
43.75 km2. That accounted for 69% of the 63.23 km2 of total landslide area. It was also
revealed that the landslides cited in the literature (LL) had a border aspect distribution
of 20–331◦ (Figure 12c) and a border slope distribution of 18–47◦ (Figure 12d), but these
landslides were predominantly smaller landslides with lower area, velocity, elevation, and
height. The comprehensive application of ascending and descending Sentinel data detected
landslides with a slope gradient of 26–46.7◦ in the Hunza Valley (Figure 12d).

(4) NDVI

The NDVI (normalized difference vegetation index) attribution is one common substi-
tute for land use and land cover. It was revealed that the landslides detected by the Sentinel
had the NDVI attribution of 0.07–0.6. In contrast, the landslides cited in the literature (LL)
were characterized by a lower NDVI. The majority of LA, LD, and LB landslides had higher
NDVI attributions than LL landslides (Figure 12e). That matched well with a former study
revealing that the landslides mostly developed in the bare slope [35,70].

In summary, the landslides from the literature (LL), which were interpreted from
the optical image cited in the literature reference, had lower velocity, area, elevation, and
height. The landslides detected by Sentinel (LA, LD, and LB) had special attributions of
higher area, velocity, elevation, height, slope, and NDVI. This clarified that the reason
for the disappearance of some landslides in the InSAR detection was lower velocity, and
the InSAR monitoring detected landslides that were characterized by high altitude, high
position, and concealment by high vegetation cover.
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Figure 12. Analysis of multi-source landslide development characteristics of (a) elevation, (b) height,
(c) slope aspect, (d) slope, and (e) NDVI, and (f) the colorful dots of different sizes indicate the
landslide sources and their area. Its quadrant and radial locations represent the aspect and displace-
ment velocity. The landslide statistics include landslides detected by ascending (LA), descending
(LD), both ascending and descending datasets (LB) and the landslides from the literature (LL). The
max–min–mean are marked on the graph.

4.2.2. Development of Active Large Landslides

Active faults have more significant control over active large landslides. Based on
this investigation, the Atta Abad, Humarri-1 and 2, Mayoon, and Jizalabad landslides are
typical examples of large active landslides (Figures 8 and 13). They are labeled 1, 18, 87,
and 96, respectively, in the inventory shown in Figure 7. These three landslides are in close
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proximity to populated villages, KKH, and the Hunza River, and they coincidentally expe-
rienced high displacement velocity in different positions during and before the monitoring
period. The Atta Abad landslide dammed the Hunza River for 21 km with a 120 m high
and nearly 1 km wide barrier in 2010. The landslide deposits comprised colluvial material
of a fine, sandy matrix, with blocks of granite and granodiorite [8]. Although controlled by
opening the dam and dredge drainage, the dam and reservoir pose the risk of a dammed
lake outburst flood hazard chain to the settlements downstream (Figure 13a). A previous
study indicated that the local Humarri government was completely absent and failed to
identify physical evidence of potential landslides [71]. Consequently, all the households
surveyed in the Humarri community showed high institutional vulnerability [72]. Accord-
ing to a holistic multidimensional assessment, the Humarri community was exceedingly
vulnerable to hazards, especially in six dimensions [72].
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Figure 13. Photographs of a typical large landslide in the Hunza Valley controlled by the faults and
river erosion. (a) Atta Abad. (b,c) Humarri-2 and secondary landslide, toe of Humarri. (d) Mayoon.
(e) Jizalabad.

The Humarri village is situated on the slope composed of glacial–fluvial deposits that
are underlain by high-grade metamorphic rocks of Karakoram block, on the left bank of
the Hispar River (Figure 13b,c). There are two landslides at Humarri, named as Humarri-1
and Humarri-2, larger than the Atta Abad landslide, and it experiences displacements
on the entire slope unit owing to it being controlled by the faults and affected by river
erosion and human activities. The Huamrri-1 landslide has an elevation from 3519 m to
2127 m and a north-east sliding direction, with a length of 2.4 km and a width of 1.8 km.
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The Humarri-2 landslide has a similar sliding direction and an elevation from 3386 m
to 2126 m, with a length of 2.3 km and width of 1.5 km. According to the field survey,
the tensile fractures and scarps were developed over the upper part, and the boundary
can be delineated based on the fissures, which was the evidence for the active sliding
(Figure 13b,c). SBAS-InSAR monitoring determined the landslide displacement velocity
along the slope direction, which is higher than 100 mm/y on the upper parts, and revealed
that the lower part experienced lower deformations soon after the activity of the upper
part. The time series displacement analysis at the positions of Humarri-1 and Humarri-2
landslides showed that the upper parts experienced persistent deformation and had higher
deformation rates during the monitoring period. The lower part experienced relatively
slow deformation (Figure 14a,b).
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Figure 14. The deformation time series of large landslides. (a) Humarri-1; (b) Humarri-2; the analysis
points a–e are identified in Figure 8c; (c) Mayoon; the analysis points a and b are identified in
Figure 8f.

Tectonically, the Mayoon and Jizalabad landslides lie at the northern margin of the
Kohistan Island Arc (KIA), bounded between the Main Karakoram Thrust (MKT) and the
South Murtzabad Fault. The present investigation and the previous GPR tests declared that
there are highly heterogeneous materials deposited in the top layers of Mayoon [5]. The
head and body of the Mayoon landslide are covered by unconsolidated material and have
fractures of varying lengths and widths (Figure 13d), and the fragmented and accumulated
materials are obviously from the Jizalabad landslide (Figure 13e). The time series analysis
revealed that the displacement histories of the Mayoon upper and lower parts are similar,
but the upper part experienced larger accumulative deformations, three times greater than
the lower body during the monitoring period (Figure 14c).
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In summary, regarding the development mechanism of the landslide, the Humarri
fault passes through the back wall of the Humarri slope over the ridge, and the South
Murtzabad fault passes the ridge over the Mayoon landslide. The faults serve as controllers
of the top limit on the slope and contribute to the sources of the kinetics and materials by
cutting through mountains and breaking rocks. Structural uplift combined with erosion
incision plays an important role in the shaping of steep slope landforms. The glacier
denudation and the river erosion created a developed free face on the toe of the Humarri,
Mayoon, and Jizalabad landslides. Thus, the river incised fluently, interacting with glacial
debris flows. For the deformation pattern, the melting glacier water and rainfall infiltration
from cracks on the upper part may have promoted the pushing action from the gravity of
the upper part. Simultaneously, the coupled comprehensive actions from river erosion and
active tectonics could have impacted on the stability of the slope toe.

4.3. Distribution Pattern and Causes of Landslides in Hunza Valley

The spatial distribution of the active slow-moving landslides in the Hunza Valley has a
unique elevation zonality. Based on the average level of min elevation (at the toe) and max
elevation (at the crown), the compiled landslides in this study mainly occurred in the areas
with elevation between 1997 and 3379 m, indicating that the landslides mostly developed
in the near valley of the Hunza River. Exploring the reasons, the distribution characteristics
of landslides in the Hunza Valley are coincidently limited by the elevation of 3525 m given
by Hassan in 2021 [36], above which the permafrost is distributed, and this elevation level
is near to the zero-degree isotherm of 3400 m in Hunza reported by Hasson in 2014 [73]. In
summary, along with the landslide development characteristics related to the terrain factors
indicated in the previous chapter, the landslide distribution has a zonality of elevation.
Because of the distribution of the permafrost in high-altitude areas, the slope rock and soil
mass are less weathered and eroded, and the material transport process is infrequent or
insignificant. Therefore, land sliding with monitorable deformation is less developed in the
higher altitude area in the Hunza Valley. As to the reason for the clustering of landslides in
this elevation interval of 1997 to 3379 m, except for the near proximity of river erosion and
fault activities, the terrain in this section has less snow cover, is infiltrated by high-altitude
meltwater, and experiences the process of seasonal freeze–thaw, which means theses slopes
are more likely to experience weathering and failure.

A series of parallel tectonic faults dominated by the MKT controls the distribution
and development pattern of the landslides. Complicated geology conditions controlled by
the thrust tectonic activities from the Indian Plate to the Eurasian Plate contributed to the
formation of a series of active thrust faults in northern Pakistan, especially in the Hunza
Valley. The Hunza Valley features a dynamic geology background and various landforms
and terrains including alpine landform, glacier, debris flows, terrace, and alluvial-platform
and fan. The MKT is predominantly thrust and is responsible for brittle deformation in this
area. Owing to the tectonic activity around the MKT and a series of smaller thrust faults,
many earthquake activities have occurred in this area, and the long-term effect of seismic
forces has made this area prone to landslide hazards [8]. It is clear that the detected active
landslides, especially the large landslides, are predominantly developed nearly along these
faults and influenced by river erosion (Figures 7 and 13). A typical large bedrock landslide
such as the Atta Abad rock avalanche is commonly controlled by discontinuities related to
the thrust fault activities, and the head-scarp regression and rainfall infiltration affect the
stability [8].

In addition to the landslides, rock glaciers are abundant and typical nature hazards in
the Karakoram region of northern Pakistan [74,75], although they have not been thoroughly
studied [76]. The distribution of the rock glaciers in the entire Hunza basin compiled by
visual analysis of high-resolution images is closely linked to the 0 °C isotherm between 3400
and 4600 m [36]. This zone is a universally high permafrost area in which the destabilized
rock glaciers developed [74,75,77]; it is closely related to the climate changes and the
increase in melt water attributed to the increase in temperature [78]. These characteristics
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also explain the fundamental reason for the landslide developing on the slopes in a certain
elevation range that is controlled mainly by the structures and interacts with the river and
its erosion in the Hunza Valley.

The present study did not focus much on the rock glacier in the Hunza Valley, given
that its deformation is related to the permafrost creep, especially in the climate changing
area [79], and is not normally long-term and slow-moving, and is difficult to capture in
the steep cliff covered by ice and permafrost. The potential risk from the rock glacier in
the Hunza Valley should be further analyzed based on the previous studies [36,75]. The
sediments of most rock glaciers in the glacier valley are transferred on a long journey of
several to more than 10 km by the periodic flood along the channel of the glacier [8,11,36].
They pose potential threats to the river channels and infrastructures such as bridges [75,80].

5. Discussion

It is always challenging to identify slow-moving, active landslides, but these are
often the largest and most catastrophic mass wasting events and material movements
in mountainous areas such as the Hunza watershed [8]. Thus, early identification and
prevention of landslides are equally significant missions compared with hazard mitigation.

In the Hunza Valley, even in northern Pakistan, multiple remote sensing techniques
including optical remote sensing and InSAR have been utilized in landslide mapping
and detection for hazard assessment [6,8,25,81]. However, there are defects in the present
progress because the data used are relatively unitary, and the landslide dynamics devel-
opment analyses are mostly based on historical landslides and, especially in the Hunza
Valley, they have not been comprehensively discussed. This can be attributed to the lack of
comprehensive landslide inventory data [35].

Compared with these studies, on the one hand, the present study took advantage of
the multi-azimuth perspective of the ascending and descending Sentinel-1 datasets, thus
monitoring the more comprehensive ground surface deformation in the Hunza Valley. The
supplements of the literature and image interpretation were used indispensably. Conse-
quently, the high-deformation-rate regions were captured by SBAS-InSAR in most areas
in the Hunza Valley. On the other hand, this comprehensive inventory reports the latest
landslides; thus, it ensures the up-to-date reality and utilization values of the landslide
database for the Hunza Valley. The landslide identification based on the SBAS-InSAR
monitoring and field investigation aimed to update the landslide inventory that had the
potential of failure and the risk of leading to loess in the future. In this designed study, we
achieved the goal of conducting the deformation monitoring and reconnaissance survey
of landslides in the Hunza Valley. It is the advantage of this study that it can provide the
datasets for related in-depth global research in the future.

As analyzed in the results, the landslides detected in this study were fundamentally
validated by the field survey and the previous landslide reports [25,81]. This study also
found that the landslide inventory in Hunza Valley was much more complete in terms of
quantity and quality compared with the previous study conducted by Rehman et al. and
Hussain et al. [25,36]. SBAS-InSAR results indicated deformation velocity and determined
the active landslides, which contributed to the landslide assessment and exploration of the
landslide distortion mechanism. By fitting the landslide area and volume data reported, the
rule of power law exponent was constructed for the magnitude predication in this region.
This study achieved landslide deformation pattern classification and concluded that the
InSAR-detected landslides experienced significant deformation and had the potential for
further acceleration and failure. The comprehensive inventory was intended to improve
the support for in situ landslide monitoring and hazards management. Analysis of the
landslide development characteristics and deformation patterns in different basin scales has
improved our understanding of landslide hazards and called attention to the risk analysis
of the population-densified Hunza Valley.

We cannot ignore that the frequent changes and colluvial infilling could mollify
landslide boundaries [8] and admit that there are potential landslides that will become
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active in the coming stage and moderate the difference between individual boundaries and
the actual condition. Meanwhile, the findings demonstrated that, in this study, deformation
monitoring in the mountainous alpine area may be affected by the steep terrain and
dense vegetation cover. Specifically, owing to topography conditions such as extremely
steep slopes and the environmental limitations of the glacier, ice, and dense vegetation,
the Sentinel-1 datasets had lower coherence over the higher alpine area, resulting in the
limited availability of coherence targets in these areas. In the future, multiple band SAR
datasets with high resolution and high retravels should be applied. It will be meaningful to
reconstruct the deformation and sliding process and to explore the mechanism related to
landslide failure and the landslide–dam–flood hazards chain while taking landslides such
as the Atta Abad landslide in 2010 as the typical case.

6. Conclusions

The Hunza Valley northwest of the Karakoram Mountains in northern Pakistan, which
is a densely populated area with many villages and towns, is vulnerable to landslide
disasters. This study successfully applied SBAS-InSAR and multi-track ascending and
descending Sentinel-1A SAR datasets in the Hunza Valley to monitor the earth surface
deformation velocity and completed the comprehensive, updated landslide inventory and
development characteristics analysis combined with a field survey, image interpretation,
and literature review. The maximum ground surface displacement velocities along the slope
were calculated as −311 mm/y and −490 mm/y, based on the deformation velocity along
the line of satellite sight (Vlos) derived by SBAS-InSAR, respectively, from ascending and
descending datasets. The slope that was acknowledged as consistent with the monitoring
results was inventoried in the landslide field investigation. The comprehensive, updated
inventory of 118 landslides, including the 53 latest detected active landslides and 65 land-
slides cited in the literature review and field survey, was completed. These landslides were
numbered and named in the Hunza Valley, and the rule of power law exponent of landslide
and volume were fitted using reported data. This study revealed that these landslides
were predominantly characterized by a chair-like back wall, cracks, fragmented rocks, and
deposits; additionally, the absence or near-absence of vegetation cover on the talus deposits
was also evidence of active rock falls. The trends of the landslide deformation process were
classified into constant rate, accelerating, decelerating, and fluctuating. Analysis of spatial
development revealed that the aspects of the south, southwest, and west were the dominant
sections of the landslide development. The landslides interpreted by the optical images
from the literature (LL) had the unique features of lower velocity, area, elevation, and
height. The landslides detected by Sentinel (LA, LD, and LB) had the special attributions of
higher area, predicted volume, velocity, elevation, height, slope, and NDVI. The compiled
landslides in this study mainly occurred in the areas with elevation between 1997 and
3379 m, under the zero-degree isotherm of 3400 m in the Hunza Valley. Except for the fault
activities, the seasonal freeze–thaw procession in this altitude interval and the snow and ice
melting above the higher elevation should be further analyzed since they are two factors
connected to landslide failure, especially large-scale landslides. Large landslides have
development features of high altitude, high position, and concealment, and the fault impact
as controller and the inducing effect of river erosion are the two main causing factors. An
updated recognition of landslide identification and its development characteristics will
be useful for promoting scientific mitigation not only in the local communities but also in
the China–Pakistan Economic Corridor and the larger Himalaya–Karakoram–Hindukush
(HKH) region.
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