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Abstract: In recent years, using deep learning for large area building change detection has proven
to be very efficient. However, the current methods for pixel-wise building change detection still
have some limitations, such as a lack of robustness to false-positive changes and confusion about
the boundary of dense buildings. To address these problems, a novel deep learning method called
multiscale attention and edge-aware Siamese network (MAEANet) is proposed. The principal idea is
to integrate both multiscale discriminative and edge structure information to improve the quality
of prediction results. To effectively extract multiscale discriminative features, we design a contour
channel attention module (CCAM) that highlights the edge of the changed region and combine it
with the classical convolutional block attention module (CBAM) to construct multiscale attention
(MA) module, which mainly contains channel, spatial and contour attention mechanisms. Meanwhile,
to consider the structure information of buildings, we introduce the edge-aware (EA) module, which
combines discriminative features with edge structure features to alleviate edge confusion in dense
buildings. We conducted the experiments using LEVIR-CD and BCDD datasets. The proposed MA
and EA modules can improve the F1-Score of the basic architecture by 1.13% on the LEVIR CD and by
1.39% on the BCDD with an accepted computation overhead. The experimental results demonstrate
that the proposed MAEANet is effective and outperforms other state-of-the-art methods concerning
metrics and visualization.

Keywords: building change detection; super-pixel objects; contour attention mechanism

1. Introduction

Building change detection (BCD) is the procedure of extracting the dynamic changes
in buildings in the same area based on remote sensing images acquired at different times.
This process is of great importance to many fields, such as land resource utilization [1],
urban expansion [2] and illegal construction management [3,4]. As more and more high-
quality sensors are launched (e.g., IKONOS, QuickBird, GeoEye-1), many remote sensing
images become accessible, which extensively drives the development of intelligent change
detection technology. Concurrently, high-resolution remote sensing images, with their rich
color information, clear textures and regular geometric structures [5], have become the
primary data source for BCD.

As a hot issue in remote sensing image interpretation, change detection (CD) has been
studied for several decades. The traditional CD methods can be categorized as follows:
(1) image algebra, (2) image transformation and (3) machine learning methods [6]. The
process of image algebra-based methods entail directly applying the spectral information
difference or change vector analysis (CVA) [7] of bi-temporal images to obtain a feature
difference map containing the magnitude of change. The final predicted map is obtained
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by clustering or threshold segmentation. Distinct from the image algebra-based methods,
image transformation-based methods aim to extract more useful change information, such
as histogram trend similarity [8] and principal component analysis (PCA) [9] and so on.
However, despite simple theory and efficient performance, these methods still suffer from
salt-and-pepper noise and poor promotion due to the lack of spatial context information or
self-adaptive thresholds. To untangle these problems, machine learning algorithms, such as
decision trees [10], random forests [11,12] and support vector machines [13], are designed
based on thresholding operator. In addition, spatial context information is introduced by
Markov random field [14] and Conditional random field [15] to reduce the noise influence.
Based on these methods, the automation of CD has been significantly improved. However,
the features used by the CD algorithm are artificially selected, so they have a poor image
representation and exhibit weak robustness.

Recently, powered by tremendous machine learning, deep learning methods have
achieved extraordinary achievements in the fields of object detection [16,17], image classifi-
cation [18], and CD [19,20] with their excellent learning capabilities and robust adaptability.
In contrast to traditional features, deep features generated based on convolutional neu-
ral networks (CNNs) effectively integrate abstract and conceptual high-level information
from bi-temporal satellite images and significantly distinguish between changed and un-
changed features. In general, deep learning methods for BCD contain two primary methods:
(1) post-classification based and (2) direct-detection based methods [21]. Normally, the
former extract buildings from different phase images independently, and the final building
change map is generated by analyzing their differences. Although it can easily handle
multi-model and multi-sensor images, it highly depends on the multi-temporal image
registration and classification performance. The latter adopts the end-to-end framework
that effectively overcomes the problem of insufficient semantic information due to manual
design features and is currently the mainstream approach for CD [22]. Generally, the direct-
detection-based methods can be simplified into two steps: (1) extracting discriminative
features, and (2) designing a decision process that can generate a predicted map according
to the extracted features [23,24].

Considering the problems of geometric misregistration and spectral difference caused
by factors such as illumination, noise and biological seasonality in the bi-temporal image,
mining more discriminative features with contextual information is an excellent way to
improve the CD accuracy as well as improve the robustness of the model to different scenes.
In [25], Chen and Shi proposed a STANet with a self-attentive mechanism, aiming to
construct a CD network based on the spatio-temporal relationships between different times
and locations of bi-temporal images. In [26], Mou et al. propose a ReCNN architecture
for bi-temporal multispectral remote sensing image analysis. Recurrent neural networks
(RNNs) are used to introduce temporal information to the network because they can
easily capture temporal dependence between multitemporal images. In [27], Chen et al.
designed SiamCRNN, combining convolutional and recurrent neural networks into one
framework. Both spectral-spatial information and temporal dependence are considered for
multispectral image change detection.

Furthermore, the process aims to generate a predicted map that plays a vital role in
change detection. The classification-based architecture, mainly based on the FCN structure,
has been widely used in CD [28–30]. Compared with metric-based architecture, which
determines the change by measuring the parameterized distance between the features,
classification-based architecture obtains the change map by calculating the change score for
each pixel. For changed pixels, a high score will be assigned, and for unchanged pixels,
a low score will be assigned. The classification-based architecture enables the CD task to
be viewed as a classification task, and its powerful nonlinear classification capability can
significantly improve the robustness of the CD.

Despite the remarkable achievements of deep learning methods [31,32], existing CD
methods still have some challenges. Several current studies have shown that introduc-
ing temporal dependence can effectively improve the differentiation of features [24,33].
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However, the false-positive changes caused by shadow and complex appearance are still
hard to distinguish based on temporal information. Therefore, exploring effective tech-
niques to extract discriminatory information and mitigate the false-positive changes is
worthwhile. Meanwhile, the deep semantic information often lacks detailed boundary
information, resulting in poor boundary integrity of detected change objects and boundary
confusion in dense buildings. Thus, it is a vital challenge to recover the morphology of the
changed objects.

To solve the issues of false-positive changes and boundary confusion in bi-temporal
images dense BCD, a novel end-to-end multiscale attention and edge-aware network
(MAEANet) is proposed in this article. Among them, we design two modules to improve
the change detection performance of the network. Concerning enhancing the discrimination
of features, we introduce a multiscale attention (MA) module, which mainly consists of the
convolutional block attention module (CBAM) [34] and a contour channel attention module
(CCAM). Meanwhile, we introduce an edge-aware (EA) module in the last two layers to
reduce the confusion between dense buildings.

The main contributions of this article are as follows:
(1) In this article, a novel network called MAEANet is proposed for BCD. Both dis-

criminative and prior edge information are combined into one framework to enhance the
quality of binary BCD results.

(2) We focus on two aspects to improve the performance of BCD networks, respectively.
In terms of enhancing the discriminability of features, we proposed a MA module, including
the classical CBAM module and a CCAM module designed to be able to highlight the edge
of changed objects. The CBAM is used in deep features with more semantic information,
while CCAM is more concerned with recovering boundary information. In terms of
improving the quality of building boundary, we introduced an EA module that can better
maintain the building boundary while generating binary change detection results, which
can successfully overcome the boundary confusion problem of buildings.

(3) The results of a series of experiments show that the proposed MAEANet outper-
forms other state-of-the-art methods in metrics such as F1-Score and Kappa Coefficient on
remote sensing image BCD datasets. Meanwhile, the advantage is that it does not need
post-processing to obtain better pixel-level binary prediction maps.

The remainder of this article is organized as follows: we describe the detailed network
composition parts in Section 2. Then, the experimental results and their visualization are
presented in Section 3. Next, building edge performance comparison and some parameteri-
zation setting experiments are discussed in Section 4. Finally, Section 5 presents a summary
of the proposed method.

2. Methods

In this section, we further describe the detailed information about the MAEANet
network. Then, the specific information on Siam-fusedNet network (Siam-fusedNet), MA
module and EA module is introduced. Finally, we further explain the principle of the
hybrid loss function used for BCD.

2.1. Overview of MAEANet Network

The proposed MAEANet network mainly consists of three parts: the base architecture
of the Siam-fusedNet, the MA module and the EA module. The first step of MAEANet is
to crop the bi-temporal images into 256 × 256 and feed them into Siam-fusedNet to extract
the initial features. Then, the MA module is added to extract discriminative information
from the multiscale features after upsampling. The final binary predicted map is generated
by adding a multilevel EA module that effectively introduces the edge information. More
specific descriptions are shown in Figure 1.
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2.2. Siam-fusedNet

We adopt the Siamese network as the basic reference to design the bi-temporal BCD
network. In terms of feature extraction, since the binary BCD task can be seen as a classical
semantic segmentation task, UNet [35] with an encoder-decoder structure is utilized to
obtain abundant multiscale features. Meanwhile, to exploit as much helpful information as
possible, a bi-temporal feature fused mechanism (FFM) is added after UNet. Here is the
detailed workflow of Siam-fusedNet.

The bi-temporal images are fed into the network independently. First, the encoder
of the network has two streams with shared weights and the pre-trained module of
ResNet34 [36] is introduced. Then, in the decoder, we use upsampling to recover the
image’s resolution and adopt skip-connection to combine the underlying location informa-
tion with the deep semantic information to recover the edge detail information lost during
the encoding process.

To improve the learning of parallel feature differences between two-branch decoders
in the same scale layer, a bi-temporal FFM [37] is used. As shown in the bottom left part
of Figure 1, it consists of two branches: the difference and the concatenation. Firstly, we
take the parallel features Ft1 and Ft2 from the same scale layer as the input. Then, in the
concatenation branch, for the adaptive acquisition of local features critical to change, fusion
features Ft1 are generated by parallel features between Ft1 and Ft2. Finally, the fused features
Ft1 and Ft2 learned from two distinct branches are integrated and then processed through
the Batch normalization (BN) and LeakyReLU operations to obtain the eventually fused
feature Ff . The detailed calculation formulas are as follows:

Ff 1 = Ft1 − Ft2 (1)

Ff 2 = Conv1×1(Concat(Ft1, Ft2)) (2)

Ff = LeakyReLU
(

BN
(

Conv1×1

(
Ff 1, Ff 2

)))
(3)

2.3. Multiscale Attention (MA) Module

One of the most critical issues in the feature extraction process is compressing the
information of irrelevant features and better highlighting the information of changed
features. Therefore, the MA module is designed in this paper. The MA module covers three
kinds of attention mechanisms: channel, spatial and contour attention mechanisms, and its
main component models are CBAM and CCAM.
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2.3.1. Channel Attention Mechanism

The channel attention mechanism focuses on “what” benefits the original image [34].
Therefore, we commonly use the method of computing channel attention maps to ac-
quire the inter-channel relationships of features. For example, feature channels associated
strongly with change detection will be emphasized, while feature channels unassociated
strongly with change detection will be suppressed. Figure 2 shows the detailed structure of
the channel attention mechanism and the formula of the channel attention map (Mchannel)
is calculated as follows:

Mchannel = σ(MLP(MaxPool(F)) + MLP(AvgPool(F))) (4)

where F denotes the original feature of size C × H ×W. Firstly, we calculate the input
features’ max pooling and average pooling separately to generate two C× 1× 1 aggregation
vectors. Then, two C× 1× 1 aggregation vectors are input into a weight-shared multilayer
perception (MLP) layer, which mainly consists of reducing the number of channels to r and
recovering them. Finally, an element-wise sum is adopted for two types of vectors and a
nonlinear operation is used to obtain the final channel attention map.
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2.3.2. Spatial Attention Mechanism

The spatial attention mechanism concentrate on “where” is helpful to the input image.
Therefore, a spatial attention map is computed to capture the location relationship of
features. For example, locations in the features consistent with changed pixels will be
given higher weights, while inconsistent locations will be given lower weights. The spatial
attention mechanism is shown in Figure 3 and the formula of the spatial attention map
(Mspatial) is calculated as follows:

Mspatial(F) = σ
(

f (k×k)([AvgPool(F); MaxPool(F)])
)

(5)

where F denotes the original feature of size C × H × W. Firstly, we calculate the input
features’ max pooling and average pooling separately to generate 1 × H ×W aggregation
vectors. Then, two vectors are concatenated, and a Conv operation is applied with a kernel
size of 7 × 7 to generate a highlighting feature of size 1 × H × W. Finally, a nonlinear
operation is used to obtain spatial attention map.

2.3.3. Contour Attention Mechanism

The contour attention mechanism is more concerned with the internal consistency of
the changed objects. Therefore, a contour attention map that introduces the super-pixel
objects is calculated to ensure the pixels within an object only own one category, either
changed or unchanged. The internal pixel consistency will be enhanced for changed objects
and weakened for unchanged objects. As a result, compared with the original pixel-wise,
super-pixel objects have superior performance in presenting the local structural information
of the image.
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In comparison with various super-pixel generation methods proposed so far, Simple
Linear Iterative Clustering (SLIC) [38] is an effective algorithm with comparative perfor-
mance in terms of metrics such as under-segmentation error, boundary recall and explained
variance [39]. Meanwhile, it also has outstanding advantages in boundary preserving.
The SLIC aims to build region clusters based on the k-means algorithm with seed pixels
initialization. Each pixel on the image is described as a five-dimensional feature vec-
tor [l, a, b, x, y]T . The parameter to be customized is K, which indicates the number of
super-pixel objects expected to be generated. The optional parameter m represents the com-
pactness of the super-pixel objects. After comparing several different sets of experiments,
we find that the best segmentation results are obtained when we set the value of K to 900
and the value of m to 30. The specific process of super-pixel segmentation can be divided
into three steps:

(1) Divide the image uniformly according to the number of segmented objects and
calculate the interval size;

(2) Adopt the location with the smallest gradient in the 3 × 3 neighborhoods of
the cluster center as the new cluster center to avoid placing seeds on edges or noisy
pixels [38,40];

(3) Through a multiple iteration process, disjoint pixels are assigned to nearby super-
pixel based on the distance measure D. Typically, the number of iterations will be set to 10.
The formula for calculating the distance D is as follows:

dc =
√(

li − lj
)2

+
(
ai − aj

)2
+
(
bi − bj

)2 (6)

ds =
√(

xi − xj
)2

+
(
yi − yj

)2 (7)

D =

√(
dc

m

)2
+

(
ds

S

)2
(8)

where (xi, yi) represents the location of pixel i and (li, ai, bi) represents the color component
of pixel i in the CIELAB color space [41]. dc and ds denote the color proximity distance and
spatial proximity distance, respectively.

As shown in Figure 4, the framework of the contour attention mechanism has two
inputs, the original feature F and the super-pixel segmented reference image S. The
super-pixel segmentation map S after one-hot processing will be used as the guide image
for subsequent original feature extraction. In this way, we aim to describe the internal
consistency information more closely, especially for complex and diverse buildings. The
formula of contour attention (Mcontour) is calculated as follows:

P = Sone−hot·Pool(F) (9)
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w =
∑n

i=1 ∑m
j=1 P

∑n
i=1 ∑m

j=1 S
(10)

Fn = reshape
(
∑m

j=1(Sone−hot·w)
)

(11)

Mcontour(F) = σ
(

f (k×k)
([

Fn−MaxPool ; Fn−AvgPool

]))
(12)

where F represents the original image feature and S represents the super-pixel segmented
post-temporal image. Firstly, we compute the max pooling and avg pooling of the original
features separately. Meanwhile, the one-hot processed super-pixel segmentation image is
produced and multiplied with the pooled feature to obtain P. The number of segmented
objects is n, and m is the total number of pixels. Calculated P contains the original feature
information and the index information of the super-pixel segmented objects. Then, we
calculated the w to describe the average of the original feature in super-pixel segmented
objects. Furthermore, we multiply w with the one-hot processed super-pixel segmentation
image to generate the new feature Fn. Finally, we concatenate two new features generated
by averaging and pooling features to obtain more channels to feature. Meanwhile, a Conv
operation with the kernel size of 7 × 7 and a nonlinear operation are adopted to obtain the
final contour attention map (Mcontour).
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The structure of the MA module mainly contains two parts: CBAM [34] and the
proposed CCAM module, respectively. The detailed description is shown in Figure 5.
CBAM focuses on the changed information and is composed of the channel and spatial
attention mechanisms. CCAM integrates information about changed objects and comprises
channel and contour attention mechanisms. In the proposed MAEANet network, we
introduce CBAM after deep features with more semantic information and CCAM after
shallow features with more detailed location information. The formula of CBAM and
CCAM is calculated as follows:

For CBAM:
F′ = Mchannel(F)× F (13)

F′′ = Mspatial
(

F′
)
× F′ (14)

F = F′′ + F (15)

For CCAM:
G′ = Mchannel(G)× G (16)
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G′′ = Mcontour
(
G′
)
× G′ (17)

G = G′′ + G (18)

where F represents the deep feature and G represents the shallow feature. After introducing
the Mchannel , Mspatial and Mcontour to CBAM and CCAM successively, more discriminative
features about F and G are acquired.
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2.4. Edge Aware Module

Recent studies have shown that introducing the building edge information in deep
supervision can effectively generate better quality BCD results [32,42]. The main reason
is that the edge information of buildings has a distinct geometric structure, which is very
effective for determining the location of buildings. At the same time, adequate edge
information can guide the network to generate better binary prediction results, especially
in dense building areas. Based on the above considerations, we introduce the EA module
to MAEANet.

As shown in Figure 6, we combine our module’s edge estimation task and building
change prediction task to achieve a mutually reinforcing effect. Firstly, we use the Conv
block, which includes a convolution kernel with the size of 3 × 3, BN and Relu to extract
edge information. The C1 represents the channel number of the original feature and C2
is set to 2. After the above operation, we obtain the edge information from the output.
Then, we adopt the BN and Relu to further obtain nonlinear boundary information. Finally,
original features are concatenated with edge information to estimate the binary change and
edge prediction maps. The advantage of the EA module is that the edge feature can be
integrated directly into the discriminant feature, thus improving the accuracy of detecting
building changes and alleviating the mixing and misclassification of building edges.

2.5. Loss Function Details

To achieve training and optimization of the network, we design a deep hybrid loss
function which not only includes a loss function that tends to focus on change detection
(Ewbce) but also a loss function that focuses on edge detection (EDice). Since the unchanged
sample counts are much higher than the changed sample counts in the actual change
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detection task, we introduce a weighted binary cross-entropy loss to modify the imbalance
training samples. The specific binary cross-entropy loss can be described as:

Ewbce =
1
N
×
[

ω ∑
yn=1

yn × log(pn) + (1−ω) ∑
yn=0

(1− yn)× log(1− pn)

]
(19)

where N is the total pixel count of the image; ω is defined to reduce the weight of negative
samples and increase the focus on positive samples during the training process of the
network; yn is the n-th sample pixel, when yn = 0 means that the pixel is unchanged, while
yn = 1 denotes the changed pixel. pn is the expression of the probability of change.
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In addition, the dice coefficient loss can weaken the category imbalance and work well
in change detection tasks. Therefore, we adopt the dice coefficient loss to describe the edge
detection. The formula for dice coefficients loss is expressed as:

Edice = 1− 2γγ̂

γ + γ̂
(20)

where γ denotes the predicted probability value of all change class pixels in the image, and
γ̂ denotes the ground truth value of the image.

The final hybrid loss function can be calculated as follows:

E = Ewbce + λEdice (21)

where the weight ratio λ is used to balance the influence of change detection and edge
detection, we set it to 10. Through the continuous training of the hybrid loss, the eventually
obtained building change results will present more accurate bounds while maintaining
higher accuracy.

3. Experiments and Results
3.1. Data Description

To prove the validity of MAEANet, we conduct experiments on two publicly available
datasets: LEarning VIsion Remote Sensing (LEVIR CD) [25] and WHU Building Change
Detection Dataset (BCDD) [30]. Figure 7 shows some images obtained from LEVIR CD
and BCDD.

LEVIR CD dataset is a public, large-scale CD dataset with a total of 637 pairs of images.
The dataset is a 3-band multi-temporal image with a 0.5 m spatial resolution. The images
covering building changes vary from 2002 to 2018 in 20 regions of Texas, USA. In addition,
some influencing factors such as illumination and seasonal changes are considered, which
help us in developing more robust methods. Taking into account the limited memory of
our GPU, we chose to crop the image to 256 × 256 pixels without overlap. Furthermore,
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since the changed building instances account for a relatively small amount of the whole
dataset, some data augmentation operations, such as random rotation, are used. Finally,
we obtain 8256/1024/2048 pairs of images to generate training, validation, and test set.
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WHU Building Change Detection Dataset (BCDD) is a public dataset containing
two scenes of aerial data acquired in Christchurch, New Zealand, in 2012 and 2016. This
bi-temporal dataset is 32,507 × 15,354 pixels in size with a total of 11,328 pairs of images
and has a 1.6 m spatial resolution. In addition, we crop each image into the patch of
size 256 × 256 pixels without overlap, obtaining 7434 image pairs. Finally, we obtain
5204/744/1486 pairs of images for training, validation and test.

3.2. Comparison Methods

We selected four deep learning-based CD methods to objectively evaluate the perfor-
mance of the MAEANet, as described in below.

MSPSNet [22] is a deeply supervised multiscale Siamese network. The network learns
effective feature maps through the convolutional block. Furthermore, it integrates feature
maps by parallel convolutional structure, while self-attention further enhances the CD
representation of image information.

SNUNet [31] is proposed for CD based on densely connected Siamese networks. The
network reduces the localization information loss during feature extraction through dense
connections between encoders and decoders. In addition, the Ensemble Channel Attention
is introduced to advanced representation features at different semantic levels.

STANet [25] is a metric-based Siamese neural network that identifies bi-temporal
image CD. The network feeds ResNet18 as a backbone, introduces the self-attention to
build the temporal and spatial relationship, and then uses it to capture various scales of
spatial-temporal dependencies at multiscale subregions.

EGRCNN [32] uses the convolutional neural network for BCD. The network feeds
bi-temporal images into a weight-shared Siamese network for extracting primary multilevel
features. It then provides a long short-term memory (LSTM) module to produce the feature.
In addition, the edge structure of the building is introduced into the network, aiming to
improve the BCD’s quality.
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3.3. Implementation Details and Evaluation Metrics

In this article, all of the experiments were implemented based on the Pytorch frame-
work, and the network was conducted on a single Nvidia Tesla V100 (16 GB of RAM). We
performed data augmentation on the training data, such as rotation and flipping. During
training, we used the Adam optimizer with an initial learning rate of 10−4 and the learning
rate decay strategy was also used. The batch size was set to be 4 and the epoch was 100.
If the F1-score did not increase after 15 epochs, we would reduce the learning rate by
10 times. The parameterω in the Ewbce was set to be 0.25. The comparison methods were
the same as the public code and all parameter settings were the default parameters of the
original papers.

To quantitatively verify the performance of the network, five general used metrics were
used: Precision (P), Recall (R), F1-score (F1), Overall Accuracy (OA), and Kappa Coefficient
(KC). The P is the proportion of correctly detected changed pixels to all identified changed
pixels. The closer the value of P to 1, the lower the error detection rate of the predicted
value. The R is the proportion of correctly detected changed pixels relative to all pixels that
should be recognized as changed. The closer the R value is to 1, the lower the rate of missed
detections of predicted values. The F1 is the harmonic average of P and R. When one of
them decreases, the F1 also decreases. The OA indicates the ratio of correctly detected
change pixels in all samples. The KC represents the similarity between the predicted map
and the ground truth. The equations of these evaluation metrics are as follows:

P =
TP

TP + FP
(22)

R =
TP

TP + FN
(23)

F1 =
2PR

P + R
(24)

OA =
TP + TN

TP + TN + FP + FN
(25)

Pe =
(FP + TP)(FN + TP) + (TN + FN)(TN + FP)

(TP + TN + FP + FN)2 (26)

KC =
OA− Pe

1− Pe
(27)

where TP, FP, TN, and FN represent the correctly classified true positive count, the correctly
classified false positive count, the correctly classified true negative count, and the correctly
classified false negative count, respectively.

3.4. Ablation Study for the Proposed MAEANet

To prove the efficiency of each component in MAEANet, a series of ablation experi-
ments are conducted for the MA and EA module using the LEVIR CD and BCDD dataset.
In detail, we adopt the Siam-fusedNet as the base architecture to extract original features.
The MA module is introduced to enhance the discrimination of original features and refine
the misclassification. Introducing the EA module aims to improve the boundary quality of
dense buildings. Detailed experiments are shown in Table 1, and the most optimal results
are highlighted in bold.

Considering the data of LEVIR CD in Table 1, the results of the Siam-fusedNet for P,
R, F1, OA and KC are 85.80%, 91.95%, 88.77%, 88.15% and 98.81%. After adding the MA
module, P, R, F1, OA and KC are 89.36%, 90.24%, 89.80%, 89.25%, and 98.95%, respectively,
and metrics of P, F1, and OA are improved by 3.56%, 1.03%, and 1.1% compared with
Siam-fusedNet. When the EA module is added, we obtain the P, R, F1, OA and KC are
89.43%, 89.48%, 89.45%, 88.89% and 98.93%. Compared to the Siam-fusedNet, the P, F1
and OA metrics of the network with the EA module improved by 3.63%, 0.68% and 0.74%.
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When MA and EA modules are added to Siam-fusedNet simultaneously, the highest values
of 89.90%, 89.35% and 98.95% are achieved for F1, OA and KC, respectively.

Table 1. The ablation experiment results in LEVIR CD and BCDD adding MA and EA modules.

Methods MA EA Precision (%) Recall (%) F1-Score (%) OA (%) KC (%)

LEVIR CD

Siam-fusedNet × × 85.80 91.95 88.77 88.15 98.81
MAEANet

√
× 89.36 90.24 89.80 89.25 98.95

MAEANet ×
√

89.43 89.48 89.45 88.89 98.93
MAEANet

√ √
88.84 91.00 89.90 89.35 98.95

BCDD

Siam-fusedNet × × 94.02 86.66 90.19 99.28 89.81
MAEANet

√
× 92.61 89.36 90.95 99.31 90.61

MAEANet ×
√

93.31 88.74 90.96 99.32 90.62
MAEANet

√ √
92.82 90.38 91.58 99.36 91.25

Considering the data of BCDD in Table 1, the metrics of the Siam-fusedNet for P, R, F1,
OA and KC are 94.02%, 86.66%, 90.19%, 99.28% and 89.81%. The value of P is satisfactory,
but the value of R is poor, which means that the performance of Siam-fusedNet is unstable.
To improve the metric value of R, we observe that the value of R after adding the MA
module is nearly 2.7% higher than Siam-fusedNet and adding the EA module is almost
2.08% higher than Siam-fusedNet. When we add both the MA and EA module to the
Siam-fusedNet, the network’s capability is greatly enhanced, with F1, OA and KC values of
91.58%, 99.36% and 91.25%. From the above experimental results, when we introduce the
MA and EA module into the Siam-fusedNet, the difference between P and R is the smallest
while the F1 is the highest, thus strongly verifying the performance of the MAEANet.

To further illustrate the method’s superiority in change detection, some visual compar-
isons of the results in the ablation experiment are conducted, as shown in Figure 8. As we
can see, many false positives are classified as changes (rows 1 and 5 in Figure 8) and some
changed buildings without clear boundaries (rows 3, 4, 6 and 7 in Figure 8) in the Siam-
fusedNet model. The reason is that CD is affected by bi-temporal illumination, color and
other factors. Therefore, the feature information in bi-temporal images cannot be extracted
well using only the convolutional blocks in an ordinary Siam-fusedNet network. After
adding the EA module to the Siam-fusedNet network, we find the edge of building visual
effect is optimized to some extent (rows 1, 4 and 7 in Figure 8) because the EA module can
better mine the boundary information of buildings. When we introduce the MA module to
the Siam-fusedNet network, the problem of false positive changes has been significantly
solved and the quality of the building boundaries has been further improved (rows 2, 3, 4,
5 and 6 in Figure 8). When the MA module and EA module are consistently added to the
Siam-fusedNet, the misclassification change information is dramatically reduced, and the
boundary between adjacent buildings is clear and closer to the ground truth value.

3.5. Comparison Experiments

To objectively and quantitatively compare our proposed MAEANet with existing CD
methods, a series of comparison experiments are conducted on two datasets and three
evaluation metrics are calculated for analysis, P, R and F1, respectively. Specific results are
shown in Table 2.

By comparing the metric values in Table 2, it can be found that MAEANet obviously
outperformed the other networks in P, R and F1 metrics. Although MSPSNet and SNUNet
achieve promising accuracy values, more omissions exist for objects that have changed,
resulting in lower values of R and F1. When we compare STANet with the proposed
MAEANet, the P, R and F1 metrics of the MAEANet improved by 7.54%, 1.1% and 4.5%
on the LEVIR CD dataset and by 10.9%, 4.48% and 7.78% on the BCDD dataset. The main
reason is that our proposed attention module takes into account the internal consistency
of objects, thus reducing misclassification due to bi-temporal differences. Compared to
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EGRCNN, the F1 of MAEANet is 1.79% and 1.76% higher than EGRCNN on the LEVIR CD
and BCDD datasets, which proved its excellent performance in detecting changed buildings.
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Figure 8. The first to fourth rows are the predicted results of the LEVIR CD test set. The fifth to
seventh rows are the prediction results of the BCDD test set. (a) T1 images. (b) T2 images. (c) Ground
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module. (g) the proposed of MAEANet.

Table 2. The comparison experiments on the LEVIR CD and BCDD. (The best result is highlighted
in bold.).

Method
LEVIR CD BCDD

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

MSPSNet [22] 88.74 87.44 88.09 75.84 78.59 77.19
SNUNet [31] 88.14 77.31 82.37 76.73 72.12 74.35
STANet [25] 81.30 89.90 85.40 81.90 85.90 83.80

EGRCNN [32] 86.43 89.87 88.11 90.74 88.92 89.82
MAEANet 88.84 91.00 89.90 92.82 90.38 91.58
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Simultaneously, the visual results between the proposed MAEANet and other methods
are shown in Figure 9. By subjective visual comparison with the above-mentioned change
detection methods, it can be found that the binary CD results are superior to the other
existing methods. The comparison of the visible result in Figure 9 shows that for the dense
building, MSPSNet, SNUNet and STANet have significant boundary confusion problems
(rows 1, 3 and 4 in Figure 9). Still, the method of EGRCNN and our proposed MAEANet
overcome this problem. The main reason is that both EGRCNN and MAEANet introduce
the edge prior information, thus avoiding the problem of building boundary confusion.
For the changed large-size individual houses, the proposed MAEANet is most reliable to
other methods in maintaining the internal consistency of the building and the integrity of
its boundaries (rows 2, 5 and 6 in Figure 9).
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Figure 9. The first to fourth rows show the prediction results of the LEVIR-CD test dataset. Rows
5 and 8 are the prediction results of the BCDD test dataset. (a) T1 image. (b) T2 image. (c) Ground
truth maps. (d) MSPSNet. (e) SNUNet. (f) STANet. (g) EGRCNN. (h) the proposed of MAEANet.

4. Discussion
4.1. Quantitative Comparison of Binary Edge Prediction Results

To compare the performance of the proposed MAEANet with the above-mentioned
change detection methods in boundary maintenance, we generate the binary boundary
learning results by performing morphological processing within a 9 × 9 neighborhood on
the binary change detection images. Corresponding evaluation metrics are calculated,
as shown in Table 3. We can see that the best results are obtained for P, R, F1, OA,
and KC when MAEANet is used. Compared with three models that do not considering
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boundary factors, such as MSPSNet, SNUNet and STANet, all five metrics show significant
improvements. We also find that MAEANet still maintains an excellent performance
compared to EGRCNN with boundary factors, where the F1 improves by 2.01% and KC
improves by 2.49%. Therefore, it is powerfully demonstrated that the proposed MAEANet
has obvious superiority in the boundary maintenance of CD.

Table 3. The results of boundary maintenance with different methods. (The best result is in bold).

Precision (%) Recall (%) F1-Score (%) OA (%) KC (%)

MSPSNet 71.57 ± 2.54 (+16.5) 79.23 ± 0.11 (+8.54) 75.19 ± 1.39 (+12.73) 92.03 ± 0.40 (+4.29) 70.46 ± 1.10 (+15.29)
SNUNet 70.41 ± 2.37 (+17.66) 80.30 ± 0.19 (+7.47) 75.02 ± 1.28 (+12.9) 91.85 ± 0.41 (+4.47) 70.16 ± 0.93 (+15.59)
STANet 73.54 ± 2.32 (+14.53) 75.30 ± 0.69 (+12.47) 74.31 ± 0.90 (+13.61) 92.08 ± 0.52 (+4.24) 69.62 ± 0.50 (+16.13)

EGRCNN 84.51 ± 1.25 (+3.56) 86.50 ± 0.47 (+1.27) 85.49 ± 0.86 (+2.43) 95.53 ± 0.27 (+0.79) 82.84 ± 0.67 (+2.91)
MAEANet 88.07 ± 0.83 87.77 ± 0.11 87.92 ± 0.44 96.32 ± 0.30 85.75 ± 0.25

In our MAEANet method, the building edge information is mainly extracted by
the contour attention mechanism with the SLIC over-segmentation operator. Alongside
the edge information intuitively from the RGB images, extra information extracted from
the corresponding digital surface models (DSMs) has been introduced into the building
extraction tasks. It is obvious that the DSMs data can provide more edge information
of the flat roofs of buildings without the influence of building shadows or the spectral
confusion between buildings and roads. Intuitively, the introduction of DSMs data can
yield performance gain in the building extraction tasks, as well as the building change
detection tasks.

4.2. The Experiments on the Hybrid Loss

The weighted binary cross entropy loss focuses on image prediction and dice coeffi-
cient loss focus on edge map estimation. In the hybrid loss function proposed in this paper,
we set a scale factor λ to balance the effects of the two different loss functions mentioned
above. Meanwhile, to verify whether the edge-based dice coefficient loss is effective for the
whole MAEANet, we set four scale factors, 0, 0.1, 1, and 10 [32], and conducted experiments
on the BCDD dataset.

As shown in Figure 10, we calculate five different metrics for comparison and valida-
tion. When the parameter λ is 0, the performance in each metric is the lowest value. As
the value of λ increases, the value of F1 and KC show steady growth, although the value
of P tends to rise and then fall and the R tends to fall and then rise, which indicates that
the introduced distance loss can improve the change detection effect of the building. In
addition, we notice that when λ is 10, the difference between P and R is the smallest, which
leads to the maximum value of F1. We can see from Figure 11 that the change detection
results set to 10 can restore more details while reducing misclassification, especially for
fine boundaries. Therefore, in this paper, we select λ = 10 as the best parameter of the
loss function.

4.3. How to Combine the CBAM and CCAM in the MA Module?

The attention module aims to refine the features of an image and is now widely used in
various image interpretation tasks, especially for change detection. In our proposed model,
the multiscale attention model has four layers in total. To extract more discriminative
features from the different layers, we generally associate them with CBAM. At the same
time, CCAM focuses on the shallow layers containing more semantic information. However,
it is still worth exploring how many CCAMs can be introduced in the proposed MA module.
To verify the effectiveness of CCAM, we repeated the experiment MAEANet_n 3 times,
where n is the total number of CCAM in the MA model, n∈{0,1,2,3,4}. MAEANet_0
represents that no CCAM is introduced, but 4 CBAMs are used to construct the MA model.
MAEANet_1 means that only one CCAM exists in the MA, the first three layers are all
CBAMs, and the last layer is CCAM. MAEANet_4 represents that in the MA module, all
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four layers are CCAMs without the CBAM involved. Therefore, we compare the effect
of n on the performance of the BCD by calculating five objective metrics such as P, R, F1,
OA and KC. We noticed that the F1, OA, and KC values showed a trend of increasing and
then decreasing with the increase in n. As shown in Figure 12, several experiments with
n > 0 outperformed n = 0 in three indexes such as F1, OA and KC, especially when n = 2,
which reached the highest in all four indexes except precision. This experimental result
confirms that introducing CCAM can effectively extract features with better discrimination,
which is beneficial in enhancing the identification of the changed building. However, as the
number of CCAM increases, such as n >= 3, the model’s performance decreases because as
we introduce CCAM to the deep features, some semantic information peculiar to the deep
features will be lost, thus leading to misclassification. Therefore, we select the value of n
as 2 when constructing the MA model, using CBAM for the deep features in the first two
layers and CCAM for the shallow features in the last two layers, respectively.
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5. Conclusions

In this article, a novel building change detection framework called MAEANet is pro-
posed, which aims to enhance the robustness of false-positive changes and mitigate the
boundary confusion of dense buildings. The MAEANet method consists of three main
parts: bi-temporal feature fusion Siam-fusedNet with encoder-decoder structure as the
backbone, multiscale attention discriminative feature extraction, and multilevel edge-aware
binary change map prediction. The proposed CCAM module designs a contour attention
mechanism with a smoothing effect by introducing the contour information of super-pixel
segmented objects, which alleviates the problems such as misclassification of small targets
and poor robustness of false-positive changes. Furthermore, the EA module effectively
combines multilevel edge features and multiscale discriminative features to avoid the
boundary confusion of dense buildings in the prediction map. Meanwhile, we design an
edge constrain loss to learn the information about the changed buildings and their bound-
aries using gradient descent. The results show that the network achieves better numerical
indicators and visualization results on both available building change detection datasets.
In our future work, we will devote ourselves to mining more representative discriminatory
features, such as adding building DSM information as an object identifier and constructing
datasets from different sensors to improve the flexibility of the proposed MAEANet.

Author Contributions: Conceptualization, B.Y. and X.S.; methodology, X.S.; software, Y.H.; valida-
tion, B.Y., X.S. and Y.H.; formal analysis, Y.H.; investigation, H.G.; resources, X.S.; data curation,
Y.H.; writing—original draft preparation, B.Y.; writing—review and editing, X.S.; visualization, B.Y.;
supervision, Y.H.; project administration, X.S.; funding acquisition, X.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Chang’an University (Xi’an, China) through the National
Key Research Development Program of China (2020YFC1512000), the National Natural Science
Foundation of China under Grant 42230108 and 61801332. Corresponding author: Xin Su.

Data Availability Statement: The data used in this study are open datasets. The datasets can be found
from https://justchehao.github.io/LEVIR/ and https://study.rsgis.whu.edu.cn/pages/download/.

Acknowledgments: All authors would like to thank the anonymous reviewers whose insightful
suggestions have improved the paper significantly.

Conflicts of Interest: The authors declare no conflict of interest.

https://justchehao.github.io/LEVIR/
https://study.rsgis.whu.edu.cn/pages/download/


Remote Sens. 2022, 14, 4895 18 of 19

References
1. Zhang, H.; Wang, M.; Wang, F.; Yang, G.; Zhang, Y.; Jia, J.; Wang, S. A Novel Squeeze-and-Excitation W-Net for 2D and 3D

Building Change Detection with Multi-Source and Multi-Feature Remote Sensing Data. Remote Sens. 2021, 13, 440. [CrossRef]
2. Chen, J.; Liu, H.; Hou, J.; Yang, M.; Deng, M. Improving Building Change Detection in VHR Remote Sensing Imagery by

Combining Coarse Location and Co-Segmentation. ISPRS Int. J. Geo-Inf. 2018, 7, 213. [CrossRef]
3. He, Y.; Ma, W.; Ma, Z.; Fu, W.; Chen, C.; Yang, C.-F.; Liu, Z. Using Unmanned Aerial Vehicle Remote Sensing and a Monitoring

Information System to Enhance the Management of Unauthorized Structures. Appl. Sci. 2019, 9, 4954. [CrossRef]
4. Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A Survey on Deep Learning-Based Change Detection from

High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 1552. [CrossRef]
5. Asokan, A.; Anitha, J. Change Detection Techniques for Remote Sensing Applications: A Survey. Earth Sci. Inf. 2019, 12, 143–160.

[CrossRef]
6. Wen, D.; Huang, X.; Bovolo, F.; Li, J.; Ke, X.; Zhang, A.; Benediktsson, J.A. Change Detection from Very-High-Spatial-Resolution

Optical Remote Sensing Images: Methods, Applications, and Future Directions. IEEE Geosci. Remote Sens. Mag. 2021, 9, 68–101.
[CrossRef]

7. Johnson, R.D.; Kasischke, E.S. Change Vector Analysis: A Technique for the Multispectral Monitoring of Land Cover and
Condition. Int. J. Remote Sens. 1998, 19, 411–426. [CrossRef]

8. Lv, Z.Y.; Liu, T.F.; Zhang, P.; Benediktsson, J.A.; Lei, T.; Zhang, X. Novel Adaptive Histogram Trend Similarity Approach for Land
Cover Change Detection by Using Bitemporal Very-High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens.
2019, 57, 9554–9574. [CrossRef]

9. Byrne, G.F.; Crapper, P.F.; Mayo, K.K. Monitoring Land-Cover Change by Principal Component Analysis of Multitemporal
Landsat Data. Remote Sens. Environ. 1980, 10, 175–184. [CrossRef]

10. Im, J.; Jensen, J. A Change Detection Model Based on Neighborhood Correlation Image Analysis and Decision Tree Classification.
Remote Sens. Environ. 2005, 99, 326–340. [CrossRef]

11. Wessels, K.; van den Bergh, F.; Roy, D.; Salmon, B.; Steenkamp, K.; MacAlister, B.; Swanepoel, D.; Jewitt, D. Rapid Land Cover
Map Updates Using Change Detection and Robust Random Forest Classifiers. Remote Sens. 2016, 8, 888. [CrossRef]

12. Wang, J.; Li, K.; Shao, Y.; Zhang, F.; Wang, Z.; Guo, X.; Qin, Y.; Liu, X. Analysis of Combining SAR and Optical Optimal Parameters
to Classify Typhoon-Invasion Lodged Rice: A Case Study Using the Random Forest Method. Sensors 2020, 20, 7346. [CrossRef]
[PubMed]

13. Nemmour, H.; Chibani, Y. Multiple Support Vector Machines for Land Cover Change Detection: An Application for Mapping
Urban Extensions. ISPRS J. Photogramm. Remote Sens. 2006, 61, 125–133. [CrossRef]

14. Cross, G.R.; Jain, A.K. Markov Random Field Texture Models. IEEE Trans. Pattern Anal. Mach. Intell. 1983, PAMI-5, 25–39.
[CrossRef]

15. Li, Y.; Li, C.; Li, X.; Wang, K.; Rahaman, M.M.; Sun, C.; Chen, H.; Wu, X.; Zhang, H.; Wang, Q. A Comprehensive Review of
Markov Random Field and Conditional Random Field Approaches in Pathology Image Analysis. Arch. Computat. Methods Eng.
2022, 29, 609–639. [CrossRef]

16. Yang, J.; Price, B.; Cohen, S.; Lee, H.; Yang, M.-H. Object Contour Detection with a Fully Convolutional Encoder-Decoder Network.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30
June 2016; pp. 193–202.

17. Zhao, Y.; Zhao, L.; Xiong, B.; Kuang, G. Attention Receptive Pyramid Network for Ship Detection in SAR Images. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2020, 13, 2738–2756. [CrossRef]

18. Cheng, G.; Li, Z.; Han, J.; Yao, X.; Guo, L. Exploring Hierarchical Convolutional Features for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2018, 56, 6712–6722. [CrossRef]

19. Wang, D.; Chen, X.; Jiang, M.; Du, S.; Xu, B.; Wang, J. ADS-Net:An Attention-Based Deeply Supervised Network for Remote
Sensing Image Change Detection. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102348. [CrossRef]

20. Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A Deeply Supervised Image Fusion Network for
Change Detection in High Resolution Bi-Temporal Remote Sensing Images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200.
[CrossRef]

21. Jiang, H.; Hu, X.; Li, K.; Zhang, J.; Gong, J.; Zhang, M. PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network
for Remote Sensing Orthoimagery Building Change Detection. Remote Sens. 2020, 12, 484. [CrossRef]

22. Guo, Q.; Zhang, J.; Zhu, S.; Zhong, C.; Zhang, Y. Deep Multiscale Siamese Network with Parallel Convolutional Structure and
Self-Attention for Change Detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [CrossRef]

23. Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change Detection from Remotely Sensed Images: From Pixel-Based to
Object-Based Approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [CrossRef]

24. Shi, Q.; Liu, M.; Li, S.; Liu, X.; Wang, F.; Zhang, L. A Deeply Supervised Attention Metric-Based Network and an Open Aerial
Image Dataset for Remote Sensing Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [CrossRef]

25. Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection.
Remote Sens. 2020, 12, 1662. [CrossRef]

26. Mou, L.; Zhu, X.X. Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change
Detection in Multispectral Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 57, 924–935. [CrossRef]

http://doi.org/10.3390/rs13030440
http://doi.org/10.3390/ijgi7060213
http://doi.org/10.3390/app9224954
http://doi.org/10.3390/rs14071552
http://doi.org/10.1007/s12145-019-00380-5
http://doi.org/10.1109/MGRS.2021.3063465
http://doi.org/10.1080/014311698216062
http://doi.org/10.1109/TGRS.2019.2927659
http://doi.org/10.1016/0034-4257(80)90021-8
http://doi.org/10.1016/j.rse.2005.09.008
http://doi.org/10.3390/rs8110888
http://doi.org/10.3390/s20247346
http://www.ncbi.nlm.nih.gov/pubmed/33371381
http://doi.org/10.1016/j.isprsjprs.2006.09.004
http://doi.org/10.1109/TPAMI.1983.4767341
http://doi.org/10.1007/s11831-021-09591-w
http://doi.org/10.1109/JSTARS.2020.2997081
http://doi.org/10.1109/TGRS.2018.2841823
http://doi.org/10.1016/j.jag.2021.102348
http://doi.org/10.1016/j.isprsjprs.2020.06.003
http://doi.org/10.3390/rs12030484
http://doi.org/10.1109/TGRS.2021.3131993
http://doi.org/10.1016/j.isprsjprs.2013.03.006
http://doi.org/10.1109/TGRS.2021.3085870
http://doi.org/10.3390/rs12101662
http://doi.org/10.1109/TGRS.2018.2863224


Remote Sens. 2022, 14, 4895 19 of 19

27. Chen, H.; Wu, C.; Du, B.; Zhang, L.; Wang, L. Change Detection in Multisource VHR Images via Deep Siamese Convolutional
Multiple-Layers Recurrent Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2848–2864. [CrossRef]

28. Liu, R.; Kuffer, M.; Persello, C. The Temporal Dynamics of Slums Employing a CNN-Based Change Detection Approach. Remote
Sens. 2019, 11, 2844. [CrossRef]

29. Zheng, Z.; Wan, Y.; Zhang, Y.; Xiang, S.; Peng, D.; Zhang, B. CLNet: Cross-Layer Convolutional Neural Network for Change
Detection in Optical Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 247–267. [CrossRef]

30. Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite
Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [CrossRef]

31. Fang, S.; Li, K.; Shao, J.; Li, Z. SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images. IEEE
Geosci. Remote Sens. Lett. 2021, 19, 1–5. [CrossRef]

32. Bai, B.; Fu, W.; Lu, T.; Li, S. Edge-Guided Recurrent Convolutional Neural Network for Multitemporal Remote Sensing Image
Building Change Detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [CrossRef]

33. Shi, C.; Zhang, Z.; Zhang, W.; Zhang, C.; Xu, Q. Learning Multiscale Temporal–Spatial–Spectral Features via a Multipath
Convolutional LSTM Neural Network for Change Detection with Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2022,
60, 1–16. [CrossRef]

34. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Computer Vision—
ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham,
Switzerland, 2018; Volume 11211, pp. 3–19.

35. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture
Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. ISBN 978-3-
319-24573-7.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

37. Zhang, L.; Hu, X.; Zhang, M.; Shu, Z.; Zhou, H. Object-Level Change Detection with a Dual Correlation Attention-Guided
Detector. ISPRS J. Photogramm. Remote Sens. 2021, 177, 147–160. [CrossRef]

38. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel
Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]

39. Tong, H.; Tong, F.; Zhou, W.; Zhang, Y. Purifying SLIC Superpixels to Optimize Superpixel-Based Classification of High Spatial
Resolution Remote Sensing Image. Remote Sens. 2019, 11, 2627. [CrossRef]

40. Csillik, O. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote
Sens. 2017, 9, 243. [CrossRef]

41. Connolly, C.; Fleiss, T. A Study of Efficiency and Accuracy in the Transformation from RGB to CIELAB Color Space. IEEE Trans.
Image Process. 1997, 6, 1046–1048. [CrossRef]

42. Xia, L.; Zhang, X.; Zhang, J.; Yang, H.; Chen, T. Building Extraction from Very-High-Resolution Remote Sensing Images Using
Semi-Supervised Semantic Edge Detection. Remote Sens. 2021, 13, 2187. [CrossRef]

http://doi.org/10.1109/TGRS.2019.2956756
http://doi.org/10.3390/rs11232844
http://doi.org/10.1016/j.isprsjprs.2021.03.005
http://doi.org/10.1109/TGRS.2018.2858817
http://doi.org/10.1109/LGRS.2021.3056416
http://doi.org/10.1109/TGRS.2021.3106697
http://doi.org/10.1109/TGRS.2022.3176642
http://doi.org/10.1016/j.isprsjprs.2021.05.002
http://doi.org/10.1109/TPAMI.2012.120
http://doi.org/10.3390/rs11222627
http://doi.org/10.3390/rs9030243
http://doi.org/10.1109/83.597279
http://doi.org/10.3390/rs13112187

	Introduction 
	Methods 
	Overview of MAEANet Network 
	Siam-fusedNet 
	Multiscale Attention (MA) Module 
	Channel Attention Mechanism 
	Spatial Attention Mechanism 
	Contour Attention Mechanism 

	Edge Aware Module 
	Loss Function Details 

	Experiments and Results 
	Data Description 
	Comparison Methods 
	Implementation Details and Evaluation Metrics 
	Ablation Study for the Proposed MAEANet 
	Comparison Experiments 

	Discussion 
	Quantitative Comparison of Binary Edge Prediction Results 
	The Experiments on the Hybrid Loss 
	How to Combine the CBAM and CCAM in the MA Module? 

	Conclusions 
	References

