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Abstract: Air quality monitoring in cities is significant for both human health and environment. 

Here, an innovative miniaturized active air sampler wearable by free-flying birds is presented. The 

device integrates a GPS logger and atmospheric calibrated sensors allowing for high spatiotemporal 

resolution measurements of carbon dioxide (CO2) concentration, barometric pressure, air tempera-

ture, and relative humidity. A field campaign, carried out from January to June 2021, involved the 

repeated release of homing pigeons (Columba livia) from downtown Rome (Italy), to sample the air 

on their way back to the loft, located in a rural area out of the city. The measurements suggest the 

importance of green urban areas in decreasing CO2 levels. Moreover, a positive relation between 

CO2 levels, relative humidity, and air temperature was revealed. In contrast, a negative relation with 

distance from the point of release, month, and time of day was found. Flight speed and the altitude 

of flight were related to rising CO2 levels. The easy use of such devices paves the way for the appli-

cation of miniaturized air samplers to other synanthropic species (i.e., gulls), making birds conven-

ient biomonitors for the urban environment. 

Keywords: urban pollution; air quality; atmospheric monitoring; urban boundary layer;  

active air sampler; carbon dioxide concentration; homing pigeons 

 

1. Introduction 

During the last decades, large rural regions have been converted into urbanized ar-

eas, with an increase in traffic volume and a deterioration in air quality. An ever-increas-

ing fraction of the global population resides in cities, and it is estimated that, in 2050, this 

percentage will reach the record level of 68.4% [1]. 

The continuous building expansion leads to an escalation in the energy demand of 

cities, which contributed to 80% of the global primary energy demand [2]. Moreover, 

among greenhouse gases, carbon dioxide (CO2) is the most worrying, as it represents 

about 80% of the total emissions [3]. In 2019, atmospheric CO2 levels were higher than at 

any time in at least two million years, with an increase of 47% since 1750 [4]. The signifi-

cant growth in concentration, along with other greenhouse gases, has increased global 

average temperatures in the first two decades of 21st century by 0.99 ± 0.15 °C [4], also 

contributing to severe climatic events [5,6]. 

Although CO2 is one of the main gases responsible for climate change, surface/at-

mosphere fluxes are generally evaluated only above vegetative canopies (e.g., see the EU-

ROFLUX [7] and AMERIFLUX [8] projects). CO2 emissions can be indirectly estimated 

from emissions inventories, which are rarely validated in the presence of traffic and do-

mestic heating, while the direct measurements of urban CO2 concentration are still very 

rare. For example, Morikawi and Kanda [9] used micrometeorological sensors to assess 

the diurnal and seasonal variability of CO2 in a suburban area of Tokyo (Japan). They 

found a daily trend closely related to anthropogenic emissions, and peaks associated with 
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morning and evening rush hours traffic and population density. Seasonal CO2 fluxes show 

a minimum in summer, related to the greater absorption of vegetation, and a maximum 

during wintertime because of the increased fossil fuel consumption [9,10]). Although a 

few other studies have focused on CO2 levels in cities [11–13], a lack of knowledge regard-

ing the temporal and spatial variability of CO2 concentration in urban environments re-

mains. In particular, the campaigns carried out so far have considered in situ measure-

ments at the ground level, not allowing for the investigation of the Planetary Boundary 

Layer (PBL), especially in built-up areas, where local scale topographic and meteorologi-

cal features (e.g., sea/land breeze, valleys, plateaus) might produce variable conditions. 

In this context, the atmospheric monitoring through small, dedicated air samplers, 

wearable by birds freely moving in the urban environment represents an innovative tech-

nique. In fact, the use of birds could be convenient, especially in urban areas, where nu-

merous limitations must be observed (e.g., flight of drones and release of atmospheric 

probes are restricted) and where most of the anthropogenic CO2 sources are located. 

The development of miniaturized sensors is pushing the frontiers of animal ecology 

through biologging. Biologging refers to the use of devices (biologgers) attached to ani-

mals, that collect data about the wearers’ movement, behaviour, physiology, and/or envi-

ronment [14]. The use of wild animals to measure the state of the environment has been a 

topic of interest since the first International Biologging Symposium in 2003 [15]. Marine 

animals were used as ‘oceanographers’ in areas not easily reachable by standard monitor-

ing systems. Equipped with wearable global positioning systems (GPS) loggers integrated 

with environmental sensors, the animals could measure the chemical and physical param-

eters of the water they moved in [16]. For many years, this application has mostly been 

limited to marine biology, primarily due to size constraints. Since then, technological im-

provements have been producing increasingly frequent calls to use terrestrial animals to 

measure environmental parameters [17,18]. 

The main objective of this paper was to introduce and test an innovative miniaturized 

set of sensors, integrated with a small GPS data logger for deployment on homing pigeons 

(Columba livia) and other birds. So far, the application of GPS loggers on birds has been 

used to collect qualitative information on the development of thermals in relation to orog-

raphy and winds in soaring vultures [19], on wind intensity and flight direction in sea-

birds [20], and for the quantitative study of atmospheric variables [21]. 

Domestic pigeons, selected for their homing ability, have been used throughout hu-

man history to carry messages [22], medication, and even to smuggle drugs [23]. Fa-

mously, during the 20th century, an aerial photography technique based on pigeons car-

rying lightweight miniature cameras was invented by Julius Neubronner [24]. Homing 

pigeons have been at the forefront of biologging, with the first GPS tracking studies pub-

lished in the early 2000s [25,26] and even neurophysiology studies using EEG-equipped 

GPS tags [27]. 

To the best of our knowledge, to this day, two attempts have been made to use hom-

ing pigeons as urban environmental monitors but neither yielded reproducible prototypes 

or any scientific output. The first one is “Pigeonblog”, an artistic and political endeavour 

by Beatriz da Costa [28]. Da Costa, inspired by Neubronner’s aerial photography and by 

the early scientific literature on pigeon tracks, collaborated with engineers and pigeon 

fanciers to develop a GPS unit with sensors for monitoring levels of carbon monoxide and 

nitrogen oxides. Within the project, three pigeon releases were carried out with data ac-

cessible during the project from a dedicated website. The other project, named “Pi-

geonAirPatrol” [29], aimed to use feral pigeons to investigate air pollution. The project 

made headlines [30] and raised public awareness around the issue of urban air quality 

monitoring in London, where the implementation took place. 

Here, we present a calibrated atmospheric sensor integrated on a GPS logger weara-

ble by homing pigeons. The pigeons, repeatedly released in the urban area of Rome (Italy), 

recorded atmospheric pressure, air temperature, humidity, and CO2 concentration at high 

spatial and temporal resolution. In particular, on their return flight to the home loft, the 
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birds flew above buildings, large urban parks, and crops, allowing for the measurement 

and the comparison of atmospheric variables within the PBL and in conditions typically 

difficult to investigate when employing fixed, ground-based instruments. 

2. Materials and Methods 

2.1. Development and Design of the Air Sampler 

The development of the miniaturized air samplers used in the present study is car-

ried out in collaboration with a private company specialized in devices for animal tracking 

(Technosmart Europe S.r.l., Rome, Italy). The device is based on the integration of a set of 

sensors on an existing GPS data logger with a wire antenna powered by a 200 mA LIPO 

battery (AxyTrek). 

The boards and the battery are arranged in a flat and aerodynamic design (50 mm × 

20 mm) to reduce possible drag to the birds in flight. The weight of the complete system 

(Figure 1) is 14.6 g, including the battery, and therefore at the limit of the recommended 

3% of the bird’s body mass, considering that the pigeons weighed around 450 g [31]. In 

any case, the units are used for short-term deployments of 1–2 h. 

 

Figure 1. Photograph of the device attached on a homing pigeon (a), schematic view of printed 

circuit board with CO2 and atmospheric sensors (b), CO2 sensor (Senseair Sunrise, Senseair AB, 

Delsbo, Sweden) with the gas diffusion area represented by the white membrane (c), and AxyTrek 

data logger (d). 
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The atmospheric sensors (BME280 Environmental sensor, Bosch Sensortec, Reut-

lingen, Germany) measure temperature (operational range: −40–85 °C, absolute accuracy: 

±1 °C, resolution: 0.01 °C), barometric pressure (operational range: 300–1100 hPa; absolute 

accuracy: ±1 hPa, resolution: 0.18 hPa), and relative humidity (operational range: 0–100%, 

absolute accuracy: ±3%, resolution: 0.008%). The CO2 sensor (article n. 006-0-0007, Senseair 

Sunrise, Senseair AB, Delsbo, Sweden) is based on non-dispersive infrared (NDIR) tech-

nology and could measure CO2 concentrations from 400 to 5000 ppm, with an accuracy of 

±30 ppm + 3% of reading (operating range temperature: 0–50 °C, operating range relative 

humidity: 0–85%). The CO2 sensor measures the light absorption emitted by a light-emit-

ting diode (LED) into a dark chamber employing a photodiode (Figure 1). The number of 

CO2 particles contained in the airflow is related to the light intensity detected by the pho-

todiode at a specific wavelength, which for CO2 is 4.26 µm. The CO2 sensor measures 

33.5(L) × 19.7(W) × 11.5(H) mm3 and weighs 5 g. 

2.2. CO2 Calibration and Configuration of Environmental Sensors 

A variety of calibration options are made available for the CO2 sensors by the pro-

ducer, such as the Automatic Baseline Correction (ABC) algorithm [32] and manual cali-

bration. The former works in the background over 180 h cycles, provided the sensor is 

exposed to “fresh air” (a customizable baseline concentration value, 400 ppm by default) 

at least once during the cycle. For each cycle, the sensor stores the lowest value recorded, 

which is assumed as the “fresh air” reference to calculate a correction factor for the data, 

ensuring data is reliable in the long run. The latter requires the use of a reference gas 

mixture and does not correct drift in long-term acquisitions. 

For this study, being the data collected only for short periods during homing flights, 

we ensured different tags have similar sensitivity. Therefore, CO2 sensors were placed 

indoors for a week-long test, close to an open window, in a room occasionally occupied, 

increasing CO2 levels significantly. As shown in Figure 2, the two sensors tested show very 

similar sensitivity, with comparable responses to variations in CO2 concentration in the 

test room. Granger tests were performed over all the combinations of sensors, testing 

whether one-time series predicted the other and vice versa. All tests were highly signifi-

cant (p < 0.001), meaning that every timeseries is predictable by the other. 

 

Figure 2. Temporal trend of CO2 concentration during a week-long test to compare the sensitivity 

of two sensors (different colours). 
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CO2 concentrations were acquired with a sampling frequency of 0.42 Hz. This is the 

default value for the Senseair Sunrise, which collects eight samples per measurement. A 

sample takes less than 300 ms, producing a period of 2.4 s for each complete measurement. 

The response time is reported to be less than 30 s. This is the time needed for the sensor 

to read 90% (namely, T90%) of the true gas concentration, in an enclosure that changes 

from 8500 ppm to 400 ppm and the opposite with a gas flow rate of 1 L/min. Details about 

the ABC algorithm, pressure dependence, and measurement period can be found in the 

sensor user manual [33]. 

Atmospheric pressure has been found to produce a 1.6% change in CO2 readings for 

each 10 hPa deviation from a mean sea-level pressure (MSLP) of 1013.25 hPa. During the 

field campaign, the atmospheric pressure varied between 986.0 hPa and 1021.0 hPa, pro-

ducing a maximum deviation of 26.9 hPa from the MSLP. This corresponds to a maximum 

error of 4.3% in the CO2 readings. Only 2.3% of data used in the present study have pres-

sure with a deviation >10 hPa from the MSLP and CO2 values exceeding 625 ppm, being 

therefore concerned by an error greater than 10 ppm. 

Temperature, air pressure, and relative humidity were collected at 1 Hz. The re-

sponse time for the humidity sensor is 1 s, calculated as the time needed for the sensor to 

reach 63% of the final value (namely, T63%) when going from 90% to 0% or vice versa 

[34]. During the field campaign, the maximum daily variation in relative humidity was 

49%. 

2.3. Study Area and Sample Collection 

The experimental campaign, carried out from January to June 2021, involved the re-

peated release of homing pigeons equipped with the air sampler data logger near the cam-

pus of the University of Rome “La Sapienza” (41.90°N, 12.51°E) in downtown Rome (It-

aly), i.e., in a highly urbanized and moderately polluted area. The loft (41.58°N, 12.37°E) 

was located about 13 km northeast of the release site, about 3 km out of the “Grande Rac-

cordo Anulare”, the highly trafficked ring road that encircles Rome. 

During their flight back to the loft, homing pigeons passed through areas with dif-

ferent degrees of urbanization, land use, and pollution levels, i.e., they were expected to 

fly across a gradient of decreasing CO2 concentration to reach their loft in the countryside. 

Moreover, sampling was expected to take place in the range of altitudes between 0 and 

150 m above ground level (m a.g.l.), the typical flight range of pigeons. All the releases 

were carried out on working days and most of the releases took place early in the morning 

(at about 07:00 UTC) to capture the increase in CO2 concentration associated with morning 

traffic rush hours. A few pigeons were released at later hours (from 09:00 UTC up to 13:00 

UTC). A list of the release trials, together with details about distance flown, duration of 

flights, and statistics on measured CO2 is shown in Table A1. 

For the trials, twelve adult homing pigeons were equipped with the devices follow-

ing the procedure described for GPS loggers by [35]. Briefly, the birds were habituated to 

carry the load using a plastic dummy (of the same weight and size as the logger) attached 

with a Velcro strip on their back, on a dorsal area between the wings. The hard side of the 

Velcro strip (30.0 × 20.0 mm) was attached using a neoprenic glue on an area of half-cut 

feathers—therefore without causing pain and discomfort to the birds—whereas the soft 

side of Velcro was attached at the base of both the dummy and the device. Pigeons carried 

the dummy for two weeks before the experimental release. In general, they already re-

sumed their normal behaviour (feeding, daily flight, reproductive activities) on the day 

after the attachment of the dummy. On the day of the release, birds were taken from the 

loft and gently placed in a wooden box for transportation to the city centre by car (about 

a 30 min trip). Ten minutes before the release, the dummies were replaced with the air 

samplers, and then, pigeons were released in flocks of 3–4 birds with 1–2 birds equipped 

with the air sampler and the remaining wearing the dummies. Releases were carried out 

only with good meteorological conditions, avoiding rainy and windy days. On their arri-

val at the loft, birds were handled to recover the loggers and reposition the dummy. The 
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data were downloaded using dedicated software to obtain a CSV file containing 

timeseries of GPS position, temperature, air pressure, humidity, and CO2 concentration. 

2.4. Data Processing 

Firstly, data collected by the various sensors were visually inspected to ascertain 

whether the tracks were complete. The GPS locations were plotted on the city map using 

QGIS software (version 3.10), official project of the Open Source Geospatial Foundation 

(OSGeo, Beaverton, OR, USA), and the symbols corresponding to the GPS positions were 

colour-coded along a gradient according to the CO2 level for each of the sensors used al-

lowing for a first data inspection. 

GPS data were pre-processed following the procedure proposed by [36]. In particu-

lar, GPS values related to velocities greater than 90 km/h and negative altitudes were dis-

carded. Moreover, only active flight points (flight speed as measured by GPS ≥ 0.1 m/s) 

were considered for the analysis and pigeon tracks were cut on their arrival by excluding 

points in a circular area of 500 m centred on the loft. Pigeon tracks were merged with level 

3 Corine Land Cover (CLC) data [37] and classified as “urban fabric” (CLC classes from 

1.1.1 to 1.3.3), “green urban areas” (CLC classes 1.4.1 and 1.4.2), and “agricultural areas” 

(CLC classes from 2.1.1 to 2.4.4). Points along the Tiber River (CLC class 5.1.1) were as-

similated into green urban areas. No other land cover classes were crossed during the 

flights. It is worth noticing that CLC classification probably does not offer the optimal 

resolution for land cover features. Nonetheless, to the best of our knowledge, this is the 

most recent and accurate dataset available for the area under investigation. To improve 

the representation of the examined area, a shapefile of roads [38] was used to classify 

points lying within 50 m of streets, considering both motorways and small urban roads. 

Then, CO2 values were regressed against land cover, intersection with streets, and 

time of release (i.e., the hour of day and month of the year). Whether to include in the 

analysis temperature, humidity, barometric pressure, flight speed, flight altitude, distance 

from the release point, and interaction between the latter two variables was decided via 

Akaike Information Criterion (AIC) [39] using stepwise elimination (function “buildmer” 

from package “buildmer” [40]). Multicollinearity was checked by calculating the variance 

inflation factor (VIF, function “vif” from package “car” [41]). Distance from the release 

point was included due to an increasing presence of agricultural areas moving out of the 

city centre towards the loft. From preliminary inspection (see colours in Figure 3), the 

distance from the release point seemed to be related to CO2 values and, therefore, it was 

considered as a continuous variable, providing information on land cover. A linear mixed 

effect model (function “lme” from package “nlme” [42]) with pigeon ID as a random effect 

was run, testing the random effects by comparing the model to a generalized least squares 

regression only containing the fixed predictors. 
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Figure 3. Map of data subsample used for the regression model (i.e., one GPS value every 15 s). The 

map shows the tracks of pigeons released on different days. The colour intensity depicts the CO2 

concentration measured after normalization to allow for better comparison between flights. 

Data were highly autocorrelated, and while this did not affect regression coefficient 

estimates, it might have produced biased standard errors, making the coefficient signifi-

cance unreliable [43]. To account for this, data were first subsampled with 15 s temporal 

resolution (corresponding to approximately 200 m spatial resolution if birds were flying 

with an average velocity of about 13 m/s resulting from our GPS data). Then, the model 

was fitted with a continuous autoregressive structure of the first order (function “cor-

CAR1” from package “nlme” [42]). All analyses were performed using R Statistical Soft-

ware (version 4.0.3, [44]), developed by the R Foundation for Statistical Computing (Vi-

enna, Austria). 

Throughout the whole campaign, the atmospheric sensors collected about 1.9 × 104 

data points of active flight outside the 500 m loft buffer during 25 flights. Further subsam-

pling to one fix per 15 s resulted in about 3.3 × 103 points with CO2 measurements, which 

constitute the filtered dataset used for the following analysis. 

3. Results 

Figure 3 shows the paths followed by the homing pigeons during the measurement 

campaign and the normalized CO2 concentrations. In accordance with the details in Table 

A1, CO2 levels range between 410 ppm and 993 ppm. The variation in concentrations be-

tween different flights are mainly due to different land use and flight time. In fact, the CO2 

peaks correspond to the measurements carried out close to major roads and during rush 

hour traffic. Clearly, during each flight, each pigeon can choose a different path to follow 

based on its experience and environmental conditions. 

In Figure 4, an example of the CO2 concentration time series collected during a pigeon 

flight expressed as a function of the distance from the release point and of the height is 

given. The concentration decreases with increasing flight altitude, as expected, moving 

away from surface emissions, but it is strongly influenced by land use, e.g., the decrease 

observable at about 10 km from the release point between 80 and 100 m.a.g.l. is due to the 

overflight of the agricultural landscape after the “Grande Raccordo Anulare” road, char-

acterized by few roads and buildings. 
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Figure 4. Example of height profile of pigeon track (flight n. 16 in Table A1) with respect to distance 

from the release point. Colours refer to the CO2 concentrations measured, which are higher (redder 

colours) close to the release point in the city centre, and lower (bluer colours) furthest from it. 

The stepwise regression reveals the full model, i.e., the one comprising all terms (see 

Table 1), to have the lowest AIC score. VIF is below 2.7 for all the predictors, meaning only 

a low correlation is found among them. Including random effects, the regression lowered 

the model’s AIC by 116 points (Anova test, p < 0.001), and the corCAR1 error structure 

lowered it by 3914 points (Anova test, p < 0.001). The full model’s conditional coefficient 

of determination (hereinafter, R2) was 0.69, while the marginal R2 is 0.39 [45]. Our data 

shows that CO2 concentrations are positively related to relative humidity (estimated: 

40.71, standard error: 4.07, p < 0.001) and air temperature (estimated: 12.30, standard error: 

5.61, p = 0.03) and negatively related to barometric pressure (estimates: −8.98, standard 

error: 5.61, p = 0.001). Regarding the temporal trend, a negative relation with both months 

of the year (estimated: −14.34, standard error: 4.24, p < 0.001) and time of the day (esti-

mated: −4.32, standard error: 1.27, p < 0.001) emerged. No evidence that the sections of 

flight over streets measured higher CO2 levels than average was found. In some of the 

tracks, the overflight of the “Grande Raccordo Anulare” road determined the sudden and 

significant increase in the concentration of CO2 but, in general, the dense urban road in-

frastructure did not reveal fine-scale differences within the urban environment itself (see 

Figure 3). However, lower CO2 concentrations over urban green areas compared to pure 

urban fabric (estimated: −6.76, standard error: 3.55, p = 0.057) were found. The interaction 

term between distance and height showed a positive relation with CO2 (estimated: 4.70, 

standard error: 1.18, p < 0.001), unveiling a complex three-dimensional spatial pattern of 

diffusion. In fact, while for low heights lower CO2 values moving outside of the city were 

observed, the relationship reversed for greater heights. It is worth noting the small but 

positive effect of flight speed on CO2 (estimated: 1.87, standard error: 0.82, p = 0.02), which 

would need to be explained in a larger atmospheric dynamics context. A graphical sum-

mary of the model estimates is presented in Figure 5, while the full summary is given in 

Table 1. 

Table 1. Summary of best linear mixed effects model. For each predictor, the coefficient estimate, 

standard error, and p-value are reported. p-values below 0.05 are reported in bold. 

Predictor Estimate Standard Error p-Value 

Intercept 645.37 26.25 <0.001 

Temperature 12.30 5.61 0.029 

Pressure −8.98 2.81 0.002 

Relative humidity 40.71 4.07 <0.001 
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Flight speed 1.88 0.82 0.021 

Height −0.32 1.43 0.822 

Distance from 

release point 
−17.33 3.09 <0.001 

Hour of day −4.33 1.27 <0.001 

Month of year −14.34 4.24 <0.001 

Over streets = 

true 
−0.86 0.89 0.337 

Land use = 

agricultural 
0.07 1.49 0.961 

Land use = green 

urban 
−6.76 3.55 0.057 

Height × distance 4.70 1.18 <0.001 

 

Figure 5. Graphical summary of the linear mixed effects regression model estimates. Dots are the 

coefficient estimates for each predictor (reported on the left), with lines representing the standard 

errors. Red and blue show negative and positive values, respectively. 

4. Discussion 

The atmospheric CO2 concentrations measured along the return journey of the pi-

geons released in the centre of Rome (see for example Figure 4) showed an evident nega-

tive gradient with increasing distance from the release point, as supported by the linear 

mixed effects regression model. The highest concentrations were recorded in downtown 

Rome, i.e., close to the release point, with a gradual decrease moving towards suburban 

and rural areas. This is consistent with the findings of other studies that have shown the 

presence of an “urban CO2 dome” [46] and a close relationship between CO2 levels and 

population density, in turn associated with the high traffic volume of urban centers [47]. 

The average concentration obtained considering only the samples measured over the “ur-

ban fabric” land cover class was 563 ppm, with average levels decreasing over “agricul-

tural areas” (546 ppm) and even more so over “green urban areas” (538 ppm), highlighting 

the positive effect of urban greening on air quality [48]. All the average concentrations are 

well above the mean global atmospheric CO2 concentration provided by [49] and referred 

to 2020, i.e., 412.5 ppm. In the urban environment, the concentration is comparable with 

results from [11], who carried out measurements in a highly urbanized and moderately 
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polluted area in Rome, close to that investigated in this work, during the traffic rush hours. 

As expected, the values measured here for the “urban fabric” were slightly lower than the 

findings by [11], who carried out measurements along the road at the pedestrian level. A 

similar trend was also identified by [50], who examined the spatial variability of the near-

surface CO2 concentration in Shanghai (China). In the same time interval (from 9:00 to 

11:00 AM) and the same season (spring), Liu et al. [50] identified a clear concentration 

decrease moving from the transportation area to crops, with a positive correlation with 

the percentage of impervious surface cover and a negative correlation with the percentage 

of vegetation cover. The positive relation between CO2 level, air temperature, and relative 

humidity agrees with [11], who measured the highest CO2 values with high temperatures 

and low wind speeds, and with [51], who identified a slight influence of temperature and 

relative humidity on the CO2 concentration. Furthermore, the positive relation between 

CO2 levels and near-surface air temperatures was also highlighted by [51] at the remote 

sites of Mauna Loa (USA) and Point Barrow (USA). The slightly negative relationship be-

tween CO2 and time of day, considering that most releases were carried out before 09:30 

UTC, suggests that the convective mixing generated by the presence of solar radiation and 

the photosynthetic absorption of CO2 by vegetation have a significant effect on the space-

time redistribution of CO2, which, therefore, accumulates more in the layers of the atmos-

phere closest to the ground during the night and the early morning hours [46]. Moreover, 

this negative relation is presumably traceable also to factors we were unable to include in 

our model, such as the traffic rate, which is lower later in the morning after rush hours 

and shows a shift forward going towards the summer months. Of course, later morning 

hours are also associated with warmer air temperatures, therefore missing explanatory 

variables would confound the relationship between CO2 and temperature, which we 

would expect to be significantly positive. To be able to verify this relation, it would be 

necessary to design measurement campaigns with continuous releases during the same 

day, allowing for the in-depth investigation of the PBL development and the photosyn-

thetic absorption. 

The negative relation with the month of the year is likely due to the CO2 seasonal 

fluxes between the atmosphere and the land biosphere, which overlap with fossil fuel 

emissions, giving rise to large carbon dioxide seasonal variations [52]. 

Finally, the model shows a poor relation between CO2 atmospheric concentration, 

flight speed, and altitude. This could be justifiable considering that the flight altitudes 

were mostly below 150 m a.g.l., i.e., widely within the PBL, where the presence of turbu-

lent fluxes determines a high degree of pollutants mixing and a high space-time homoge-

neity. 

The meteorological and air quality measurements, acquired with high spatial-tem-

poral resolution in the vertical profiles of urban and non-urban environments can be in-

tegrated and compared with the data measured at the ground level, allowing for the de-

tailed characterization of atmospheric parameters within the PBL. This involves hypoth-

eses and assumptions that are not always truthful: during the flight, sensors are in contin-

uous movement, while ground-based measurements are typically carried out by fixed sta-

tions, located in strategic points of the city. In the case of the homing pigeons used in our 

study it follows that, even if a release takes place near a ground station, the comparison 

could only be carried out for a few seconds after the release, i.e., when the bird is still close 

to the station itself. In addition, birds decide themselves both the route and the altitude 

during the entire journey, resulting in a non-predictable trajectory of their flight at a fine 

scale. Furthermore, if, as in the present study, homing pigeons are used, they require in-

group releases and have to familiarize themselves with specific locations of release, so that 

they can learn the route back to their loft. In fact, if the same pigeon is released several 

times at the same point, it will tend to memorize the shortest, straightest path to the loft 

and will tend to follow it on each subsequent flight [53]. This means that the paths will 

tend to become similar with time, with the advantage of making the measurements gath-

ered in different releases more comparable. 
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Another fundamental aspect of these measurements is the temporal constraint. De-

pending on the distance between the release point and the loft and on the individual’s 

experience, the pigeon can take a shorter/longer time to go back home, i.e., it will acquire 

a shorter/longer dataset. On one hand, this ensures that during the flight, the environmen-

tal conditions can be assumed as constant (in terms of temperature, humidity, concentra-

tions of pollutants, etc.), but, on the other hand, short flights do not allow the study of the 

daily PBL evolution. However, this apparent limitation can be overcome by carrying out 

subsequent releases at different moments of the day. Another non-negligible constraint is 

linked to the fact that pigeons—similar to many diurnal birds—do not fly at night and in 

the case of bad weather conditions. 

Moreover, the sensor design might influence the relationship between CO2 and other 

measured atmospheric variables. In our case, the absence of a casing and the direct expo-

sure of the atmospheric sensors to solar radiation might produce higher temperatures 

than the actual environmental values. This could be an issue, especially if the pigeon stays 

still under the sun for long periods. This does not concern the data presented in this study 

since our model only includes flying periods. Given the optical nature of the CO2 sensor, 

we believe direct exposure to solar radiation does not affect gas readings. Indeed, there is 

no mention of exposure in the sensor documentation [33]. Nonetheless, further develop-

ment of the tag will include a casing, which is essential for longer deployments. This will 

warrant an analysis of design-dependence on all sensor readings. 

In conclusion, we demonstrated the feasibility of using birds as biomonitoring tools 

to sample the air quality in an urban environment. Previously, this had been attempted 

only in two short-lived projects that, without wishing to minimise their social impact, did 

not yield reproducible scientific outputs. The integrated approach used in this study has 

a limited disturbance to the birds. It also has a limited environmental impact, because 

does not require the release of probes, and the energy consumption is only related to re-

charging the sensors’ batteries and for data storage. This study was based on the use of 

data loggers, which must be recovered to download the data. With homing pigeons, this 

was easily done but can be difficult with wild birds. Moreover, this technological limit is 

being overcome, thanks to already available transmitters that can be integrated with the 

devices and are capable of sending real-time measurements through the fourth generation 

(4G) technologies. In this manner, it will be possible to monitor cities and other environ-

ments through wild species with a high temporal resolution, reducing costs and bureau-

cratic limitations and, thus, allowing for intervening even in emergency phases. Techno-

logical improvements and sensor miniaturization are increasing the scope of animal ecol-

ogy, making animal tracking a useful way to gather high-resolution data about the envi-

ronment in which they live [54]. This kind of development in the science of biologging has 

already been applied to the marine environment, but studies in terrestrial or aerial habi-

tats are scant [17]. Birds are a valuable animal group in biomonitoring studies [55]. In 

particular, species able to perform controlled flights, such as homing pigeons, have been 

often used for studies on air pollution. Such studies have been mostly carried out in an 

ecotoxicological framework, usually requiring animal sacrifice and collecting data for lim-

ited periods [56–59]. To the best of our belief, this is the first study on environmental pol-

lution with virtually no impact on birds. 

5. Conclusions and Future Perspectives 

This study reported the development of a miniaturized air sampler, integrating a GPS 

logger and atmospheric calibrated sensors. The device allowed for the acquisition of meas-

urements of physical and chemical parameters, such as CO2 concentration, barometric 

pressure, air temperature, and relative humidity with high spatial/temporal resolution 

ensured by the GPS. The air samplers were applied to homing pigeons and the results 

demonstrated the potential of atmospheric and air quality monitoring using birds. The air 

sampler developed in this study represents a low-cost, environmentally friendly, easy-to-
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use tool for environmental monitoring, providing enhanced observation and interpreta-

tion opportunities, with minimal effects on the well-being of the birds. 

The release of homing pigeons in the urban centre of Rome (Italy) and their flight to 

the loft highlighted the reduction of the CO2 concentration in the layers of the atmosphere 

close to the ground, passing from anthropized to rural and agricultural areas. 

The results show that the CO2 concentration varies considerably according to the 

level of urbanization, underlining the positive impact of green urban areas on air quality. 

Furthermore, the application of a stepwise regression reveals a positive relationship be-

tween CO2 levels, relative humidity, and air temperature. Conversely, a negative relation 

between CO2 concentration and distance from the point of release, month, and hour of the 

day has been found. 

This research can be considered as a starting point for further studies, aimed at de-

veloping miniaturized sensors for the study of other atmospheric gases, wearable by other 

bird species (i.e., gulls) with very limited impact on their well-being, capable of flying at 

higher altitudes and over greater distances than pigeons. Furthermore, as mentioned, sen-

sor technology is constantly improving, both on the side of the electronics’ performance 

and on the possibility of transmitting data through 4G technology. This latter develop-

ment, together with the progress of sensor miniaturization, which increases the possible 

application on wearable devices, could provide the potential for the integration of data 

gathered by real-time air samplers with those from other devices as part of the Internet Of 

Things (e.g., [60]). 
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Appendix A 

Table A1. List of pigeon releases, including departure and loft arrival times, flight duration, and 

track length, with a summary of CO2 values measured. 

   Time (UTC) Flight CO2 Concentration (ppm) 

Flight 

Number 

Pigeon 

ID 

Sample 

Points 
Release Arrival 

Duration 

(min) 

Distance 

(km) 
Mean Min Median Max 

1 p701 512 
21 January 

2021 08:22 

21 January 

2021 08:39 
17.0 16.7 614 533 610 812 

2 p788 882 
26 January 

2021 08:29 

26 January 

2021 09:07 
37.7 27.1 568 498 557 725 

3 p788 480 
28 January 

2021 07:55 

28 January 

2021 08:44 
49.1 14.7 670 544 661 978 

4 p710 1686 
29 January 

2021 08:15 

29 January 

2021 11:37 
202.2 47.9 564 457 565 938 

5 p788 756 
29 January 

2021 08:15 

29 January 

2021 08:40 
25.2 24.0 666 578 652 993 

6 p701 604 
5 February 

2021 09:05 

5 February 

2021 09:39 
34.0 17.6 639 572 635 985 

7 p788 669 
5 February 

2021 09:01 

5 February 

2021 10:24 
83.1 19.9 587 489 571 923 

8 p788 436 
8 February 

2021 08:37 

8 February 

2021 10:37 
120.4 14.3 571 452 547 903 

9 p561 693 
19 March 

2021 09:02 

19 March 

2021 09:25 
23.1 18.7 497 476 489 576 

10 p778 1007 
1 April 2021 

07:04 

1 April 2021 

12:13 
309.2 25.1 562 504 555 913 

11 p47 968 
7 April 2021 

07:06 

7 April 2021 

12:53 
347.6 26.1 466 410 465 558 

12 p778 1249 
7 April 2021 

07:01 

7 April 2021 

09:37 
156.0 38.3 531 481 527 696 

13 p47 256 
9 April 2021 

08:57 

9 April 2021 

09:06 
8.5 9.4 455 436 453 481 

14 p561 428 
9 April 2021 

08:52 

9 April 2021 

09:06 
14.2 15.2 577 550 577 963 

15 p47 463 
21 April 2021

07:19 

21 April 

2021 07:34 
15.4 14.7 606 514 564 963 

16 p47 391 
23 April 2021 

08:15 

23 April 

2021 08:28 
13.0 12.8 614 566 617 702 

17 pG 373 
4 May 2021 

07:26 

4 May 2021 

08:09 
42.7 11.1 516 472 516 618 

18 pG 379 
6 May 2021 

07:18 

6 May 2021 

07:30 
12.6 13.8 566 516 558 688 

19 p787 351 
7 May 2021 

07:16 

7 May 2021 

07:38 
22.1 13.5 567 436 560 703 

20 pG 360 
7 May 2021 

07:26 

7 May 2021 

07:38 
12.0 13.7 507 493 502 547 

21 p34 561 
11 May 2021 

07:18 

11 May 2021 

08:40 
81.9 15.1 586 492 587 730 
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22 pG 410 
11 May 2021 

07:18 

11 May 2021 

07:35 
17.0 12.8 572 478 567 699 

23 p684 3486 
15 June 2021 

11:19 

16 June 2021 

16:20 
1740.3 82.6 586 528 582 869 

24 p701 1287 
15 June 2021 

06:18 

15 June 2021 

14:49 
510.2 35.8 565 439 569 793 

25 p701 592 
18 June 2021 

06:35 

18 June 2021 

07:55 
80.5 16.7 634 538 633 969 

References 

1. World Urbanization Prospects: The 2018 Revision; United Nations Department of Economic and Social Affairs/Population Division: 

New York, NY, USA, 2019. 

2. Covenant of Mayors: Reducing Energy Dependence in European Cities; European Commission: Brussels, Belgium, 2018. 

3. European Environmental Agency. EEA Greenhouse Gases—Data Viewer. 2021. Available online: https://www.eea.eu-

ropa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer (accessed on 18 January 2022). 

4. Intergovernmental Panel on Climate Change: Climate Change 2021. The Physical Science Basis Summary for Policymakers. Contribution 

of Working Group I to the sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: 

Cambridge, UK, 2021; p. 41. 

5. Brooks, H.E. Severe thunderstorms and climate change. Atmos. Res. 2013, 123, 129–138. 

6. Estrada, F.; Kim, D.; Perron, P. Spatial variations in the warming trend and the transition to more severe weather in mid latitudes. 

Sci. Rep. 2021, 11, 145. 

7. Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, U.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; 

et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 1999, 30, 

113–175. 

8. Xiao, J.; Zhuang, Q.; Baldocchi, D.D.; Law, B.E.; Richardson, A.D.; Chen, J.; Oren, R.; Starr, G.; Noormets, A.; Ma, S.; et al. 

Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. 

Agric. For. Meteorol. 2008, 148, 1827–1847. 

9. Moriwaki, R.; Kanda, M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. 

J. Appl. Meteorol. 2004, 43, 1700–1710. 

10. Soegaard, H.; Møller-Jensen, L. Towards a spatial CO2 budget of a metropolitan region based on textural image classification 

and flux measurements. Remote Sens. Environ. 2003, 87, 283–294. 

11. Pigliautile, I.; Marseglia, G.; Pisello, A.L. Investigation of CO2 variation and mapping through wearable sensing techniques for 

measuring pedestrians’ exposure in urban areas. Sustainability 2020, 12, 3936. 

12. Idso, C.D.; Idso, S.B.; Balling, R.C., Jr. An intensive two-week study of an urban CO2 dome in Phoenix, Arizona, USA. Atmos. 

Environ. 2001, 35, 995–1000. 

13. Coutts, A.M.; Beringer, J.; Tapper, N.J. Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia. 

Atmos. Environ. 2007, 41, 51–62. 

14. Fehlmann, G., King, A.J. Bio-logging. Curr. Biol. 2016, 26, R830–R831. 

15. Boyd, I.L., Kato, A., Ropert-Coudert, Y. Bio-logging science: Sensing beyond the boundaries. Mem. Natl. Inst. Polar Res. 2004, 58, 

1–14. 

16. Rutz, C.; Hays, G.C. New frontiers in biologging science. Biol. Lett. 2009, 5, 289–292. 

17. Wilmers, C.C.; Nickel, B.; Bryce, C.M.; Smith, J.A.; Wheat, R.E.; Yovovich, V. The golden age of biologging: How animal-borne 

sensors are advancing the frontiers of ecology. Ecology 2015, 96, 1741–1753. 

18. Jetz, W.; Tertitski, G.; Kays, R.; Mueller, U.; Wikelski, M.; Åkesson, S.; Anisimov, Y.; Antonov, A.; Arnold, W.; Bairlein, F.; et al. 

Biological Earth observation with animal sensors. Trends Ecol. Evol. 2022, 37, 293–298. 

19. Duriez, O.; Kato, A.; Tromp, C.; Dell’Omo, G.; Vyssotski, A.L.; Sarrazin, F.; Ropert-Coudert, Y. How cheap is soaring flight in 

raptors? A preliminary investigation in freely-flying vultures. PLoS ONE 2014, 9, e84887. 

20. Van Tatenhove, A.; Fayet, A.; Watanuki, Y.; Yoda, K.; Shoji, A. Streaked Shearwater Calonectris leucomelas moonlight avoidance 

in response to low aerial predation pressure, and effects of wind speed and direction on colony attendance. Mar. Ornithol. 2018, 

46, 177–185. 

21. Treep, J.; Bohrer, G.; Shamoun-Baranes, J.; Duriez, O.; de Moraes Frasson, R.P.; Bouten, W. Using high-resolution GPS tracking 

data of bird flight for meteorological observations. Bull. Am. Meteorol. Soc. 2016, 97, 951–961. 

22. Allatt, H.T.W. The Use of Pigeons as Messengers in War and the Military Pigeon Systems of Europe. R. United Serv. Inst. J. 1886, 

30, 107–148. 

23. Available online: https://www.bbc.com/news/world-middle-east-40042260 (accessed on 20 September 2022). 

24. Neubronner, J. Die Photographie mit Brieftauben. In Denkschrift der Ersten Internationalen Luftschiffahrts-Ausstellung (ILA) zu 

Frankfurt a/M; Lepsius, B., Wachsmuth, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1909; pp. 77–96. 



Remote Sens. 2022, 14, 4876 15 of 16 
 

 

25. Steiner, I.; Bürgi, C.; Werffeli, S.; Dell’Omo, G.; Valenti, P.; Tröster, G.; Wolfer, D.P.; Lipp, H.-P. A GPS logger and software for 

analysis of homing in pigeons and small mammals. Physiol. Behav. 2000, 71, 589–596. 

26. Lipp, H.-P.; Vyssotski, A.L.; Wolfer, D.P.; Renaudineau, S.; Savini, M.; Tröster, G.; Dell’Omo, G. Pigeon Homing along High-

ways and Exits. Curr. Biol. 2004, 14, 1239–1249. 

27. Vyssotski, A.L.; Serkov, A.N.; Itskov, P.M.; Dell’Omo, G.; Latanov, A.V.; Wolfer, D.P.; Lipp, H.-P. Miniature Neurologgers for 

Flying Pigeons: Multichannel EEG and Action and Field Potentials in Combination With GPS Recording. J. Neurophysiol. 2006, 

95, 1263–1273. 

28. Available online: https://nideffer.net/shaniweb/pigeonblog.php (accessed on 20 September 2022). 

29. Available online: https://twitter.com/PigeonAir (accessed on 20 September 2022). 

30. Available online: https://edition.cnn.com/2016/03/16/europe/pigeon-air-patrol-pollution-london/index.html (accessed on 20 

September 2022). 

31. Kenward, R.E. A Manual for Wildlife Radio Tagging; Academic Press: Cambridge, MA, USA, 2000. 

32. Senseair. The Senseair ABC-algorithm. Available online: https://senseair.com/knowledge/sensor-technology/sensor-technol-

ogy/senseair-abc-algorithm/ (accessed on 1 July 2022). 

33. Senseair. Customer Integration Guidelines. Senseair Sunrise and Sunlight CO2. Document TDE7318, Rev 11. 2019. Available 

online: https://rmtplusstoragesenseair.blob.core.windows.net/docs/Market/publicerat/TDE7318.pdf (accessed on 1 July 2022). 

34. Bosch. BME280—Data Sheet. Document BST-BME280-DS001-23. Rev 1.23. 2022. Available online: https://www.bosch-sen-

sortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf (accessed on 1 July 2022). 

35. Biro, D.; Guilford, T.; Dell’Omo, G.; Lipp, H.P. How the viewing of familiar landscapes prior to release allows pigeons to home 

faster: Evidence from GPS tracking. J. Exp. Biol. 2002, 205, 3833–3844. 

36. Gupte, P.R.; Beardsworth, C.E.; Spiegel, O.; Lourie, F.; Toledo, S.; Nathan, R.; Bijleveld, A.I. A guide to pre-processing high-

throughput animal tracking data, J. Anim. Ecol. 2021, 91, 287–307. 

37. European Environment Agency: Corine Land Cover (CLC) 2018, Version 2020_20u1. Available online: https://land.coperni-

cus.eu/pan-european/corine-land-cover/clc2018 (accessed on 18 January 2022). 

38. OpenStreetMap Contributors. Extracts Created by BBBike. Available online: https://ex-

tract.bbbike.org?sw_lng=12.322&sw_lat=41.811&ne_lng=12.832&ne_lat=42.034&format=shp.zip&city=roma&lang=en (ac-

cessed on 24 June 2021). 

39. Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; 

Springer: Berlin/Heidelberg, Germany, 2002. 

40. Voeten, C. buildmer: Stepwise Elimination and Term Reordering for Mixed-Effects Regression. R Package Version 2.3. 2022. 

Available online: https://CRAN.R-project.org/package=buildmer (accessed on 1 July 2022). 

41. Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. Available online: 

https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 1 July 2022). 

42. Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models. R Package 

Version 3.1-149, 2020. Available online: https://CRAN.R-project.org/package=nlme (accessed on 1 July 2022). 

43. Nielson, S.E.; Boyce, M.S.; Stenhouse, G.B.; Munro, R.H.M. Modeling grizzly bear habitats in the Yellowhead Ecosystem of 

Alberta: Taking autocorrelation seriously. Ursus 2002, 13:45–56. 

44. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 

2020. Available online: https://www.R-project.org/ (accessed on 1 July 2022). 

45. Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. 

Methods Ecol. Evol. 2013, 4, 133–142. 

46. Idso, C.D.; Idso, S.B.; Balling, R.C., Jr.; The urban CO2 dome of Phoenix, Arizona. Phys. Geogr. 1998, 19, 95–108. 

47. Velasco, E.; Pressley, S.; Allwine, E.; Westberg, H.; Lamb, B. Measurements of CO2 fluxes from the Mexico City urban landscape. 

Atmos. Environ. 2005, 39, 7433–7446. 

48. Nordbo, A.; Järvi, L.; Haapanala, S.; Wood, C.R.; Vesala, T. Fraction of natural area as main predictor of net CO2 emissions from 

cities. Geophys. Res. Lett. 2012, 39, L20802. 

49. NOAA. Trends in Atmospheric Carbon Dioxide. Available online: https://gml.noaa.gov/ccgg/trends/global.html (accessed on 

26 January 2022). 

50. Liu, M.; Zhu, X.; Pan, C.; Chen, L.; Zhang, H.; Jia, W.; Xiang, W. Spatial variation of near-surface CO2 concentration during 

spring in Shanghai. Atmos. Pollut. Res. 2016, 7, 31–39. 

51. Idso, C.D.; Idso, S.B.; Balling, R.C., Jr. The relationship between near-surface air temperature over land and the annual ampli-

tude of the atmosphere’s seasonal CO2 cycle. Environ. Exp. Bot. 1999, 41, 31–37. 

52. Mousavi, S.M.; Dinan, N.M.; Ansarifard, S.; Sonnentag, O. Analyzing spatio-temporal patterns in atmospheric carbon dioxide 

concentration across Iran from 2003 to 2020. Atmos. Environ. X 2022, 14, 100163. 

53. Dell’Ariccia, G.; Dell’Omo, G.; Wolfer, D.; Lipp H-P. Flock flying improves pigeons’ homing: GPS track analysis of individual 

flyers versus small groups. Anim. Behav. 2008, 76, 1165–1172. 

54. Kays, R.; Crofoot, M.C.; Jetz, W.; Wikelski, M. Terrestrial animal tracking as an eye on life and the planet. Science 2015, 348, 

aaa2478. 

55. Becker, P.H. Biomonitoring with birds. In Trace Metals and other Contaminants in the Environment; Elsevier: Amsterdam, The 

Netherlands, 2003; Volume 6, pp. 677–736. 



Remote Sens. 2022, 14, 4876 16 of 16 
 

 

56. Cizdziel, V.J.; Dempsey, S.; Halbrook, R.S. Preliminary Evaluation of the Use of Homing Pigeons as Biomonitors of Mercury in 

Urban Areas of the USA and China. Bull. Environ. Contam. Toxicol. 2013, 90, 302–307. 

57. Tong, Y.; Zhao, X.; Li, H.; Pei, Y.; Ma, P.; You, J. Using homing pigeons to monitor atmospheric organic pollutants in a city 

heavily involving in coal mining industry. Chemosphere 2022, 307, 135679. 

58. Cui, J.; Halbrook, R.S.; Zang, S.; Han, S.; Li, X. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric 

pollution. Ecotoxicology 2018, 27, 169–174. 

59. Liu, W.X.; Ling, X.; Halbrook, R.S.; Martineau, D.; Dou, H.; Liu, X.; Zhang, G.; Tao, S. Preliminary evaluation on the use of 

homing pigeons as a biomonitor in urban areas. Ecotoxicology 2010, 19, 295–305. 

60. Toma, C.; Alexandru, A.; Popa, M.; Zamfiroiu, A. IoT solution for smart cities’ pollution monitoring and the security challenges. 

Sensors 2019, 19, 3410. 


