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Abstract: Most background suppression algorithms are weakly robust due to the complexity and
fluctuation of the star image’s background. In this paper, a background suppression algorithm
for stray lights in star images is proposed, which is named BSC-Net (Background Suppression
Convolutional Network) and consist of two parts: “Background Suppression Part” and “Foreground
Retention Part”. The former part achieves background suppression by extracting features from
various receptive fields, while the latter part achieves foreground retention by merging multi-scale
features. Through this two-part design, BSC-Net can compensate for blurring and distortion of the
foreground caused by background suppression, which is not achievable in other methods. At the
same time, a blended loss function of smooth_L1&Structure Similarity Index Measure (SSIM) is
introduced to hasten the network convergence and avoid image distortion. Based on the BSC-Net
and the loss function, a dataset consisting of real images will be used for training and testing. Finally,
experiments show that BSC-Net achieves the best results and the largest Signal-to-Noise Ratio (SNR)
improvement in different backgrounds, which is fast, practical and efficient, and can tackle the
shortcomings of existing methods.

Keywords: star image; deep learning; background suppression; stray light

1. Introduction

With the expansion of human space activities, the quantity of space debris is growing
at the same time [1,2]. In order to surveil space debris, the star images are collected by CCD
devices. However, the backgrounds in these pictures have an impact on the surveillance of
space debris. To address this issue, numerous algorithms for the background suppression
of star images have been proposed.

1.1. Literature Review

These algorithms can be roughly divided into two categories: traditional methods
based on features of star images and deep learning methods based on neural networks.

The traditional methods were proposed earlier, and the star images were initially
processed by conventional approaches such as mean filtering, wavelet transform, contour
extraction and 3D matched filtering [3–6]. There is also some astronomy software available,
such as SExtractor [7]. However, because these methods are not universal; there are
problems such as blurred details and significant mistakes in star images, and several
targeted algorithms have then been brought up. Wang et al. (2012) proposed a suppression
algorithm for background clutter in star images. It is based on neighborhood filtering and
can retain the characteristics of weak targets and star edges [8]. Yan et al. (2014) devised a
stray light stripe noise correction algorithm on the basis of stray light spatial distribution
characters on CCD/TDI-CCD focal plane. The generalized noise value of stray light stripe
noise removed images is below 5%, which is satisfied with the need of remote sensing
imagery radiometric correction precision [9]. Chen et al. (2015) proposed a method that
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adopts multi-structural elements in morphological filters to suppress the background and
clutter in star images. The filtered image was enhanced by the plateau’s histogram image
equalization algorithm. After these processes, the contrast ratio of the image is improved
remarkably [10]. Wang et al. (2018) proposed a method to deal with stripe nonuniformity
noise and defective pixels. It used one-dimensional mean filtering, one-dimensional feature
point descriptor and moment matching to effectively compensating the defective pixels [11].
Zhang et al. (2021) used the intensity prior to star maps to estimate the depth information
of the atmosphere and remove the unevenly distributed stray light noise, which achieved
a higher background suppression factor [12]. Zou et al. (2021) proposed a segmentation
method of star images with complex backgrounds based on a correlation between space
objects and one-dimensional (1D) Gaussian morphology. On the premise of using the
shape of the object to achieve segmentation, the influence of the complex background
is weakened [13]. Wang et al. (2022) proposed a star background parameter estimation
method, which continuously discards the high-gray areas and reduces the sample variance,
and the background parameters are used to suppress noise. Experiments showed that the
method can filter out most of the noise and retain and enhance the target to the maximum
extent under the influence of complex background noise and stars [14].

Although the traditional approaches have a solid theoretical foundation and long
development history, the algorithms need to be changed in different star images processing,
which leads to the poor robustness of traditional methods. Additionally, some traditional
methods are very complex and computationally intensive, making them unsuitable for
practical applications.

With the rapid development of deep learning, methods based on a convolutional
neural network (CNN) have been introduced into the processing of star images [15–26].
Liu et al. (2019) proposed a deep learning method with the application of a residual
network and down-sampling algorithm; it achieved significant improvement in the SNR
of the star points [27]. Xue et al. (2020) proposed the deep learning method and pixel-
level segmentation to achieve target detection of the star images [28]. Xie et al. (2020)
effectively suppressed mixed Poisson–Gaussian noise in star images by taking a mixed
Poisson–Gaussian likelihood function as the reward function of a reinforcement learning
algorithm [29]. Zhang et al. (2021) proposed a two-stage algorithm, which used the
reinforcement learning idea to realize the iterative denoising operation in the star point
region [30].

1.2. Imaging Features of Star Images

After understanding the methods of background suppression in star images, it is
necessary to be familiar with the characteristics of star images. The imaging features of star
images can be expressed as Formula (1) [31]:

F(i, j) = T(i, j) + S(i, j) + B(i, j) + N(i, j) (1)

where F(i, j) represents the pixel value at position (i, j) in the star image, T(i, j) is the
space debris or space targets, S(i, j) is the star, B(i, j) is the undulating background in the
image and N(i, j) is the noise. Among the four components, space debris and stars are
collectively called foreground, while modulated background and noise are collectively
called background.

In the imaging process of star images, the modulated background has the greatest
influence on image quality, which is correlated with the imaging part. In space-based
images, sunlight, moonlight and Earth stray light are the main sources of stray light. The
moonlight is formed by the reflection of sunlight by the moon. The Earth stray light is
a kind of radiant light that impacts into the atmosphere and is returned to the cosmic
space by the scattering of the atmosphere and the reflection of clouds and ground. In
ground-based images, the interference from sunlight and moonlight still exists, but the
Earth’s stray light consists of scattered light and diffuse light from the Earth’s surface and
atmosphere. High-speed moving objects and clouds are also classified as Earth’s stray light.
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Sunlight is a strong interference light source, whereas moonlight is mainly manifested as
a highlighted area that gradually spreads to the surroundings with a certain point as the
center. The atmospheric light will cause local highlights, interference fringes and partial
occlusions in the image [32–34].

Figure 1 shows the star images with different backgrounds and their 3D grayscale
images. In Figure 1a, there is a highlighted area at the top edge. In Figure 1b, there is
locally highlighted stray light interference at the upper left corner, which comes from the
moonlight. As can be seen from Figure 1(b-1), the existence of stray light makes the gray
level of the image fluctuate greatly, and the contrast of foreground and background is low.
In Figure 1c, there is cloud cover. The linear fringe interference in Figure 1d comes from
object that is moving at high speed in the sky. The background distributions of Figure 1e,f
are relatively uniform, and the background’s gray value is low.
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Figure 1. Schematic diagram of various stray lights. (a) Highlight stray light; (a-1) 3D grayscale
image of (a). (b) Moonlight stray light. (b-1) 3D grayscale image of (b). (c) Earth stray light. (c-1) 3D
grayscale image of (c). (d) High-speed moving objects in the field of view (d-1) 3D grayscale image
of (d). (e) Uniform background. (e-1) 3D grayscale image of (e). (f) Uniform background. (f-1) 3D
grayscale image of (f).

1.3. SSIM and Peak Signal-to-Noise Ratio (PSNR)

Since a background suppression performance requires some metrics to evaluate im-
ages, some general metrics and concepts will be explained first.
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SSIM is based on the assumption that the human visual system is highly adapted for
extracting structural information from the scene, and therefore, the measure of structural
similarity can provide a good approximation of the perceived image quality. SSIM takes
into account the brightness, contrast and intensity scale of the two images at the same time.
Its calculation formula is as follows [35]:

SSIM(X, Y) =
(2µXµY + C1)(2σXY + C2)

(µ2
X + µ2

Y + C1)(σ
2
X + σ2

Y + C2)
(2)

where C1 and C2 are constants, X and Y represent the two images being compared, µX , µY
are the means of the images, σ2

X , σ2
Y are the variances of the images and σXY is the covariance.

Figure 2 shows images with different SSIM values. As can be observed, when the brightness,
contrast and general distribution of the image are more similar to the reference image, the
SSIM value is higher. Through numerous experiments and observations, it is determined
that, when the SSIM value exceeds 0.850, the image is quite near to the reference image.
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PSNR is an important indicator for evaluating image quality, and its calculation
formulas are as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (3)

PSNR = 10 · log10(
MAX2

I
MSE

) = 20 · log10(
MAXI
MSE

) (4)

where I represent the evaluated output results, and K represents the reference image. MAXI
is the maximum value of the image pixel. In this paper, the maximum value of the 16-bit
integer unsigned image is 65,535. According to Formula (3), when the two images have
high similarity, the MSE is smaller, and the PSNR increases accordingly. Therefore, the
larger the PSNR, the closer the image is to the reference image.

Through understanding the existing methods and basic concepts, we found that, even
though the deep learning approach has not been widely accepted in the background sup-
pression of star images, it is clear from the literature and experiments that these approaches
perform well on our issue. Since most of the existing literature uses simulated data, there is
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the problem of a single background type, which makes the trained network unsuitable for
images with complex backgrounds. Therefore, a deep learning algorithm that can handle
real images well is needed.

In this paper, a background suppression algorithm primarily implemented for sup-
pressing stray lights in star images is proposed, named BSC-Net. This algorithm adopts an
end-to-end network structure without the need for image preprocessing and manual feature
construction. Network training does not use simulation data but real data. Benefitting
from the introduction of the blended loss function of smooth_L1&SSIM, the image after
background suppression does not show evident distortion. We tested the algorithm on the
test sets composed of real images to obtain quantitative results.

The rest of the article includes the following contents. In the second section, the net-
work structure, key algorithm of BSC-Net and dataset preparation process are described. In
the third section, both the comparative experimental results and the quantitative evaluation
tables are presented. In the fourth section, the research results are analyzed, and the reasons
are given according to the algorithm principle. In the last section, the conclusion will
be given.

2. Methods

In this section, a background suppression algorithm mainly for stray light in star
images is proposed, which is named BSC-Net and consists of two parts in one network.
At the same time, the blended loss function of smooth_L1&SSIM will be suggested in this
section, which can both hasten the network convergence and avoid image distortion. Based
on BSC-Net and the blended loss function, the dataset consisting of real images will be used
for training and testing. After the training process, an end-to-end model will be produced
to deal with the noisy star images.

2.1. Network Structure of BSC-Net

The network structure of BSC-Net is shown in Figure 3. The structure is divided
into two parts [36]. The blue part on the left is the background suppression part, which
is responsible for extracting the features under different receptive fields to suppress the
background. The orange part on the right is called the foreground retention part, which
preserves the foreground by merging the features under different receptive fields. The
blue and orange squares represent the feature map of each step, and the reported value
represents the number of feature map channels; the minimum is 1, and the maximum is 512.
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In order to better understand the composition and function of the network, each part
will be described separately.

2.1.1. Background Suppression Part

Down-sampling and convolution comprise the majority of the background suppres-
sion part. Down-sampling can expand the receptive field and obtain information in various
scales. Figure 4 depicts how the feature map changes during multiple down-sampling
operations. It can be seen that, when the receptive field widens, the red area expands to the
surrounding area, and the details in the image gradually decrease.
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Convolution is a kind of weighted summation process. A basic Gaussian convolution
kernel can smooth out noise in an image, while numerous convolution kernels can form a
wide range of filters to handle various foreground and background types. Figure 5 shows
the images before and after convolution. It is found that convolution has a certain effect on
smoothing the stray light in the background of a star image.
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2.1.2. Foreground Retention Part

Up-sampling, skip connection and convolution comprise the majority of the fore-
ground part. Among them, up-sampling and skip connection play an important role in
the foreground preservation of a star image. A portion of Figure 3 is enlarged in Figure 6,
which shows the specific process in this step. Figure 4 has already explained that down-
sampling will cause the loss of details, so the details need to be supplemented next. First,
up-sampling doubles the size of feature maps while it halves the number of channels. Then,
the up-sampled feature map and the same-scale feature map are numerically added to the
corresponding channel to create a new feature map, which is then convolved again. The
expected outcome of this operation is presented in Figure 7.
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2.1.3. Strengths of BSC-Net

The main structure and details of BSC-Net are described above. Through these designs,
several advantages of the algorithm are summarized as follows:

• The selected structure cleverly combines the functions of background weakening
and foreground preservation of two parts in one network, which can compensate
for blurring and distortion of the foreground caused by the background suppression
part. Unlike our approach, existing algorithms often only concentrate on one of the
two functions.

• Compared with the majority of convolutional networks, BSC-Net significantly reduces
the number of convolutional layers. Except for the final output layer, each of the other
convolutional layers only has two layers. On the one hand, too many convolution
operations will increase the amount of computations, thus affecting the processing
efficiency of the network. On the other hand, the receptive field reached 68 due to
the down-sampling and convolution processing in the background suppression part,
which is sufficient to handle the stars and targets in the range of 3 × 3–20 × 20.

• BSC-Net does not require image preparation, size restriction and manual feature
construction. After BSC-Net processing, a clean image with background suppression
is output with the size and dimensions unchanged.
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2.2. Blended Loss Function of Smooth_L1&SSIM

Based on the network structure of BSC-Net and the features of star images, the corre-
sponding loss function is designed. The loss function is used to measure the error between
the predicted and true values. Since the star image is a 16-bit grayscale image, the com-
monly used loss functions do not completely match the image. In order to make the results
obtained by the network closer to the optimal solution, this paper proposes a blended loss
function combining SSIM and smooth_L1 [37]:

Loss = (1− A)× smoothL1(y− ŷ) + A× [1− SSIM(y, ŷ)] (5)

The blended loss function consists of two loss functions, smooth_L1 and SSIM.
y represents the ground truth, and ŷ represents the predicted value from the network.
A is used as an adjustment parameter to adjust the proportion of SSIM in the loss function
calculation process.

The calculation formula of smooth_L1 is as follows [37]:

smoothL1(x) =
{

0.5x2 i f |x| < 1
|x| − 0.5 otherwise

(6)

L1_LOSS =
1
n

n

∑
i=1
|x| (7)

L2_LOSS =
1
n

n

∑
i=1

x2 (8)

x represents the error between the predicted value and the ground truth. Smooth_L1
combines the benefits of L1_LOSS and L2_LOSS, whose definitions can be seen in
Formulas (7) and (8). Smooth_L1 can prevent a gradient explosion caused by outliers
and has a stable solution procedure, making it more appropriate for star images. Since our
training samples come from different datasets, the mean value of each image fluctuates
between 2000 and 30,000, and there are also regions in the image where the gray value
changes drastically. The features of smooth_L1 make it suitable for our images.

SSIM is structurally similar; the calculate formula is the same as Formula (2). In the
star image, the way that human eyes distinguish stars, space debris and backgrounds is
by brightness, contrast and grayscale. However, smooth_L1 only judges the differences in
pixel values, which may lead to distortions of the edges. Therefore, we choose SSIM as part
of the loss function to prevent these phenomena [38,39].

The weighting method of the loss function follows the changing trend of smooth_L1
and SSIM. When the image is closer to the ground truth, the value of smooth_L1 becomes
smaller, and the value of SSIM becomes larger. After weighting, the predicted image is
closer to the true value, and the overall loss becomes smaller.

2.3. Dataset Preparation of Real Images

Since this paper uses real images as training data and test data, it is necessary to choose
suitable real images and obtain clean images as ground truths through image processing.

Most of the data is collected by Dhyana 4040 with fixed settings (see more details in
Appendix A). Part of the data is separated as a test set, while the other part is divided into
three categories and added to the training set. The three categories are: (1) the background
fluctuation is small, and the grayscale is small at the same time. (2) The background
fluctuates greatly, and there is local stray light. (3) The background fluctuation is small, but
the background’s overall grayscale is large.

Based on state-of-the-art methods, we select morphological transform [27] as the way
to prepare the dataset. At the same time, this approach will be used in the next comparison
experiments. Clean images produced by this method will serve as reference images in
image evaluation. Figure 8 shows the process of getting a clean image from a real image.
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3. Results

In this section, we will demonstrate the background suppression performance of
BSC-Net through a series of experimental results. First, the intermediate results of the
network will be visualized to verify the feasibility of the algorithm. Subsequently, BSC-Net
is compared with existing methods, and the SNR of dim targets is calculated to prove the
superiority of the algorithm. Finally, the quantitative evaluation data will be presented.

3.1. Experimental Environment

The experiment uses the Ubuntu18.04 operating system and a Pytorch deep learning
development framework. We use Python as the development language. The CPU used in
the experiment is an Intel Core i9-9940X@3.3GHz, and the GPU is NVIDIA GeForce RTX
2080Ti. Adam is used as the optimizer in the training process, the batch size is set to 8 and
the crop size for each sample is 128 × 128 pixels. The initial learning rate is set to 0.0003,
cosine annealing is used as the learning rate optimization method, the minimum learning
rate is set to 0.00003 and the epoch is 2000.

3.2. Evaluation Criteria of Background Supprssion Effectiveness

Section 1.2 describes the characteristics of star images and defines the properties of
foreground and background. Section 1.3 explains some general metrics and concepts.
Then, an evaluation metric for the background suppression algorithm is given. Note that
the performance of the background suppression is measured also by the corresponding
enhancement of the foreground. We propose three different assessment indicators: SNR of
targets, SSIM of images and PSNR of images.

3.2.1. SNR of Targets

The first index is the SNR of the targets. The increase of SNR indicates the contrast
between the foreground and the background is higher, which benefits from the adequate
suppression of the background.

In star images, the SNR improvement of single target dominates our attention. As
a result, the conventional SNR calculation approach will not be employed. Since the test
images are real images, the ranges of the foreground and background need to be determined
first. The calculation method of SNR is divided into the following five steps:

1. First, the evaluation range of single target is determined, and the pixels in that range
are called I. A threshold segmentation of I will be done.{

I f = 1 I ≥ threshold
I f = 0 I < threshold

(9)

where If is the foreground mask obtained by threshold segmentation, and the threshold
is typically determined by the mean and variance.

2. If is dilated to remove the effect of the transition region, which contains uncleared
stray light around the target.

I f ⊕ B =
{

z
∣∣(B̂)z ∩ If 6= ∅

}
(10)
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B is set to be a structure element of size 5. The area after the dilation operation is
called If

’.
3. The mask of the background is determined by inverting If

’, which is called Ib.{
Ib = 1 I f

′ = 0
Ib = 0 I f

′ = 1
(11)

4. If and Ib are matched with I, respectively, to obtain the foreground region IB and
background region IF. {

Ib&I = IB
I f &I = IF

(12)

5. Calculating SNR.

SNR =
µIF − µIB

σIB

(13)

where µIF , µIB represent the mean of the foreground and background, respectively,
and σIB is the variance of the background.

3.2.2. SSIM and PSNR

In the latter two categories of the evaluation metric, we regard that both the exper-
imental results and the reference image as the estimation of the foreground and assess
them by SSIM and PSNR values. The formulas refer to Section 1.3. High SSIM and PSNR
equate to a high similarity, which is obtained by accurate foreground estimations and
sufficient background suppression. Therefore, there is a positive correlation between
the SSIM&PSNR value and background suppression effectiveness, making them become
credible evaluation indicators.

3.3. Verification Experiment of Network Function

In the process of network design, we divided the network into a background suppres-
sion part and foreground preservation part. In order to intuitively show the process of the
network and reflect the rationality of the BSC-Net design, the intermediate results of the
network are output.

Figure 9 reflects the feature maps at different stages of the network, which are obtained
by averaging multiple channels at processing stages. Among them, Figure 9a–d are the
feature maps of the background suppression part, and Figure 9e–g are the feature maps
of the foreground retention part. Through the change trend of the feature maps, it can be
confirmed that:

1. The background suppression part of BSC-Net can achieve the expected effect. From
Figure 9a–d, through down-sampling and convolution, the receptive field increases,
the background in the image is gradually uniformized and the brightness is gradually
weakened. Detail information in the foreground is reduced.

2. The foreground retention part of BSC-Net can achieve the expected effect. From
Figure 9e–g, through up-sampling and the skip connection, the detail information is
completed, the foreground is preserved and the background is further suppressed by
convolution. At the end, we get a clean output image.
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3.4. Contrastive Experiment of Suppressing Stray Light

To test the performance of the proposed algorithm, different types of images in the test
sets are tested separately. We will compare our algorithm with other six methods: median
filtering [3], BM3D [5], Top-Hat transform [40], morphological transform [41], DCNN [27]
and SExtractor [7]. The first three of them are conventional background suppression or
denoising algorithms, DCNN is a deep learning method and morphological transformation
is the dataset preparation method. Source Extractor (SExtractor) is a commonly used
astronomy software. For all experimental results, the Root Mean Square (RMS) of the
background is given for the reference (see Appendix A for more details).

Since this paper mainly focuses on stray light’s suppression and SNR improvement
of the star point, several typical stray light images are selected for display; they are: local
highlight stray light, linear fringe interference and clouds occlusion stray light.

1. Local highlight stray light: Figure 10 shows the results of local highlight stray light in
different algorithms and the zoomed-in view of the dim target at the same location. It
can be seen that BM3D and the median filter do not entirely eliminate background
stray light. In BM3D, the average gray value of backgrounds is higher than that of
the target, resulting in a negative SNR value. Top-Hat and DCNN over-eliminate the
target and background, so the target information is almost lost, bringing the SNR
value close to zero. The morphological approach and SExtractor both show positive
results, but in terms of target retention, BSC-Net outperforms them.

2. Linear fringe interference: Figure 11 shows the results of linear fringe interference and
the zoomed-in views. It can be found that the median filter and BM3D treat the target
and the stray light as a whole while their gray values are similar, so that the contrast is
reduced, and the SNR is lower than the original image. The target’s form is altered by
Top-Hat and DCNN, while the high background variance causes the SNR to decrease.
SExtractor suppresses most of the background, except for the fringe interference, but
its effect is not significant in improving the target SNR. The stray light background is
effectively suppressed by both the morphological method and BSC-Net, but BSC-Net
has more advantages in terms of the SNR value.
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3. Clouds occlusion stray light: Figure 12 shows the results of clouds covering stray light
and the zoomed-in views. In the figure, the median filter and BM3D both improve the
SNR and make the distinction between foreground and background more evident, but
the suppression effect of the two on cloud occlusion is weak. The Top-Hat algorithm
is less robust for this kind of image, as the target information is lost, and the SNR
is near to zero. While DCNN reduces the stray light, it also eliminates foreground
clutter. The morphological method, SExtractor and BSC-Net all suppress the stray
light to a certain extent, but BSC-Net achieves better target preservation and higher
SNR improvement.
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To examine the effects of background suppression more easily, Figure 13 depicts
the matching grayscale images of Figure 12. Among the algorithms, median filtering,
morphological transform, SExtractor and BSC-Net all achieve significant SNR improvement.
Nonetheless, it is evident through the grayscale images that a median filter only smooths
out the undulating backdrop and makes the variance value smaller; it does not achieve
an evident change in the overall grayscale. On the contrary, the other three methods both
greatly decrease the background’s gray level, making the foreground more noticeable.
When it comes to the complex cloud occlusion part, BSC-Net obviously accomplishes a
better result by reducing the background fluctuation greatly.

Based on the above comparative experiments, BSC-Net achieves the best results in
three typical stray light images, which can not only suppress the undulating background
but also preserve the foreground details. Moreover, BSC-Net has a strong robustness and
can deal with real images with complex backgrounds.
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3.5. Quantitative Evaluation Results for Different Datasets

To further test the performance of BSC-Net, we conducted comparative experiments on
six different types of testing images and calculated the PSNR and SSIM values of the images
for a quantitative evaluation. Since the reference image is required, the morphological
transform method will serve as the source of the reference image.

Tables 1 and 2 show the results of a quantitative evaluation of the images. In terms of
the PSNR and SSIM values of the images, the results of BSC-Net are significantly better
than those of the other comparison algorithms, with an average PSNR improvement of
42.61 dB and an average SSIM of 0.8713. It can be considered that the overall image quality
is high. Although the median filter and BM3D can improve the SNR of a single target, they
do not significantly improve the holistic PSNR value and SSIM value. Due to the effective
background suppression, Top-Hat, DCNN and SExtractor substantially increase the images’
PSNR in comparison to the original images. However, because all of them destroy the
foreground information, their SSIM values are low and the image quality is poor.

Table 1. The quantitative results on different datasets based on PSNR(/dB).

Dataset
Methods Original Median

Filter
BM3D Top-Hat DCNN Source

Extractor BSC-Net

Data1 1 4.40 4.41 4.40 41.36 42.44 48.57 50.86

Data2 1 7.74 7.74 7.74 44.36 52.20 43.89 65.89

Data3 1 30.18 30.20 30.18 57.86 60.74 63.28 71.77

Data4 1 3.95 3.85 3.85 42.44 50.95 43.95 55.90

Data5 1 8.19 8.19 8.19 45.91 50.16 52.07 62.73

Data6 1 52.69 50.01 52.71 71.54 52.20 78.62 79.69
1 The calculation way of PSNR was described in Section 2. The RMS of these datasets: Data1 (311.46); Data2
(269.41); Data3 (67.45); Data4 (226.55); Data5 (205.97); Data6 (9.162).
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Table 2. The quantitative results on different datasets based on SSIM.

Dataset
Methods Original Median

Filter
BM3D Top-Hat DCNN Source

Extractor BSC-Net

Data1 1 0.0045 0.0034 0.0045 0.1420 0.0015 0.0490 0.7697

Data2 1 0.0024 0.0012 0.0025 0.1402 0.0108 0.0331 0.8830

Data3 1 0.0069 0.0008 0.0045 0.1783 0.0539 0.0958 0.8905

Data4 1 0.0013 0.0005 0.0017 0.1235 0.0011 0.0396 0.8874

Data5 1 0.0034 0.0013 0.0033 0.1734 0.0003 0.0343 0.9175

Data6 1 0.0378 0.0174 0.0190 0.2419 0.1511 0.2283 0.8794
1 The calculation of SSIM was described in Section 2.

4. Discussion

In this section, we will discuss the next three parts: the network structure, the experi-
mental results and the loss function.

4.1. Analysis of the Network Structure

Three different network structures are trained to illustrate and analyze the advantages
of our algorithm. Net1 is BSC-Net, Net2 keeps the network depth unchanged but increases
the number of convolutional layers per stage and Net3 keeps the number of convolu-
tional layers unchanged but increases the network depth. A single dataset is used as the
training set, and the blended loss function proposed above is adopted. The experimental
environment and experimental process are the same as above [42–47].

Figure 14 and Table 3 show how these three networks perform under same training
settings and how long they take to process an image. From the table, it can be found
that the depth of the network and quantity of the convolution layers both slow down the
processing speed. With the image size increasing, this effect becomes more pronounced.
Therefore, network structures that are excessively deep or complicated do not satisfy the
real-time requirements. According to the quantitative analysis of the three network’s results
in Table 3, Net2 and Net3 can slightly increase the image’s PSNR, but it is not apparent, and
the SSIM value has not changed significantly. Combining the experimental data, we can
conclude that the structure suggested in this paper takes into account both the performance
and processing time.
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Table 3. The quantitative results on different networks based on SSIM.

Networks SSIM PSNR

Net1 0.933 64.90

Net2 0.935 65.91

Net3 0.935 67.50

4.2. Analysis of Results

In the comparative experiments, we analyzed the strengths and weaknesses of various
methods and found that BSC-Net has the best processing effect. Unexpectedly, BSC-Net
outperformed the morphological transform method that we used to form the training
set. Furthermore, we discover that, in many complicated images, BSC-Net has a higher
stability than morphological transform. In Figure 15, when the structural elements cannot
be adapted to the images, the morphological transform causes error processing, such as
suppressing the foreground or keeping the background. However, in the image processed
by BSC-Net, there are no such problems.
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This is because, despite the drawbacks of morphological transform, it can correctly
process most of the images and provide high-quality training sets, which enable BSC-Net
to learn a large amount of correct data. BSC-Net’s numerous convolutional layers stand
for various filters that can correspond to various targets, star points and stray light types.
Compared with the limited number of structural elements in the morphological transform
algorithm, the structure of BSC-Net will obviously have better stability. In the face of
intricate real star images, BSC-Net will show stronger background suppression effects.

4.3. Analysis of Loss Function

In this paper, we propose the blended loss function of smooth_L1&SSIM, which plays
an important role in the training of the network, mainly in accelerating the convergence
of the loss function and preventing the gradient from exploding. We compare smooth_L1
with two other commonly used loss functions. As can be seen from Figure 16, under the
same training conditions, the fluctuation of L2_LOSS is much larger than that of the other
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two loss functions, the convergence speed is slow and gradient explosion is prone to occur.
Smooth_L1 has the fastest decline, and at 200 epochs, the loss value drops to 0.38, while
L1_LOSS is not as fast as smooth_L1 [48–52].
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By training a single sample set with the proposed loss function and recording the
SSIM value of the same image every 20 epochs, the results are shown in Figure 17. We
discover that, as iterations are added, the SSIM value grows. Since the image quality is
positively correlated with the SSIM value, the higher the SSIM value, the less distortion of
the image. Therefore, we conclude that the blended loss function plays a positive role in
network training and helps to improve the image’s quality.
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5. Conclusions

A background suppression algorithm for stray lights in star images is suggested in
this paper. An end-to-end network structure, BSC-Net, is built to achieve background
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suppression, and the blended loss function of smooth_L1&SSIM is utilized to avoid image
distortion. The final network model is obtained by training on a wide number of real
data. According to comparative experiments with traditional algorithms and deep learning
algorithms, it is found that BSC-Net has a better robustness, and the SNR of the target
has been enhanced the most. At the same time, on different test sets, the average PSNR
improvement of BSC-Net reaches 42.61 dB, the average SSIM reaches 0.8713 and the image
quality is excellent. Our research results not only prove the efficiency and practicality of
BSC-Net but also provide a reference for the application of deep learning in this field. In the
future, we plan to improve the algorithm and apply it to images collected by other devices.
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Appendix A

Parameter settings of Dhyana 4040: The exposure time is about 100 ms. The PSF is
two-dimensional Gaussian and in an area f radius of 1.5–2.0 pixels; the energy concentration
degree is 80%. The field of view is 3 × 3 degrees, the image size is 4096 × 4096, and the
pixel size is about 2.6 arcsec per pixel. The sky location captured by the device is random.
The pixel value is 65,535.

Background RMS: The RMS calculation function in python port “sep” is used to obtain
the RMS values of different images.

The references and available codes of each comparative experiment can be found in
the following link: https://github.com/yblee999/Background-Suppression (accessed on
20 March 2022). The codes are for reference only, and the parameters used in the experiment
will also be explained in the code.
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