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Abstract: The tree crown, with its functionality of assimilation, respiration, and transpiration, is a
key forest ecosystem structure, resulting in high demand for characterizing tree crown structure
and growth on a spatiotemporal scale. Airborne laser scanning (ALS) was found to be useful in
measuring the structural properties associated with individual tree crowns. However, established
ALS-assisted monitoring frameworks are still limited. The main objective of this study was to
investigate the feasibility of detecting species-specific individual tree crown growth by means of
airborne laser scanning (ALS) measurements in 2009 (T1) and 2014 (T2). Our study was conducted
in southern Finland over 91 sample plots with a size of 32 × 32 m. The ALS crown metrics of
width (WD), projection area (A2D), volume (V), and surface area (A3D) were derived for species-
specific individually matched trees in T1 and T2. The Scots pine (Pinus sylvestris), Norway spruce
(Picea abies (L.) H. Karst), and birch (Betula sp.) were the three species groups that studied. We
found a high capability of bi-temporal ALS measurements in the detection of species-specific crown
growth (∆), especially for the 3D crown metrics of V and A3D, with Cohen’s D values of 1.09–1.46
(p-value < 0.0001). Scots pine was observed to have the highest relative crown growth (r∆) and showed
statistically significant differences with Norway spruce and birch in terms of r∆WD, r∆A2D, r∆V,
and r∆A3D at a 95% confidence interval. Meanwhile, birch and Norway spruce had no statistically
significant differences in r∆WD, r∆V, and r∆A3D (p-value < 0.0001). However, the amount of r∆
variability that could be explained by the species was only 2–5%. This revealed the complex nature of
growth controlled by many biotic and abiotic factors other than species. Our results address the great
potential of ALS data in crown growth detection that can be used for growth studies at large scales.

Keywords: LiDAR; growth and yield; monitoring; Scots pine; Norway spruce; birch; change detection

1. Introduction

Forests are long-lived dynamic biological systems that are continuously changing [1,2].
These changes occur in response to natural and anthropogenic disturbances, including
internal growth, mortality, and forest management activities. Tree growth is a health
indicator that closely relates to the forest structure. It reflects the terrestrial carbon cycle
and changes in the soil nutrient cycling and global water–carbon balance [3]. Furthermore,
there is a great interest in monitoring climate change’s effects on forest growth [4]. Growth
information plays a key role in sustainable management, allowing managers to assess the
current forest structure and composition, as well as engage in long-term planning due to the
ability to update field inventory data and predict future yields under different management
alternatives [1,3]. This, in turn, has economic implications in a forest-dependent economy.
However, growth models, especially at the individual tree-level, heavily relies on field
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inventory data [5–7]. Individual tree-level growth models simulate each individual tree’s
growth as a basic unit, and the sum of the resulting estimates presents the stand growth
values. The advantage of this method includes providing maximum detail and flexibility to
evaluate different stand treatments [1,8]. In addition, crown structure as an essential part of
tree growth in terms of assimilation, respiration, and transpiration can be incorporated into
individual tree-level growth models [9]. It is a descriptor of the growth response to thinning
and spacing [10]. Knowledge of the crown structure enhances our understanding of key
forest ecosystem ecological aspects, including productivity, forest health, soil moisture
availability, and biodiversity. However, crown dynamics have rarely been studied due to
difficulties in obtaining suitable measurements [6]. Moreover, competition indices based
on the crown structure as key inputs of many growth models are often obtained via an
indirect relationship between the tree height and diameter. Consequently, this might
introduce an uncertainty source into the growth analysis [5,11]. Hence, accurate and
efficient crown growth estimating has become an issue to be addressed for precise forestry
and sustainable management.

Repeated measurements on permanent sample plots are the most common way to
achieve forest growth information, though it is labor-intensive and time-consuming to ob-
tain usable datasets, especially for crown measures. Stem analysis is another approach that
can provide long-term growth information, but it is destructive, expensive, and introduces
uncertainty if the dominant sample trees selected as site trees have been dominant for their
entire life [12,13]. These limitations were addressed using cost-effective remote sensing
technologies as a comprehensive and accurate measure of forest change at different spatial
scales [14]. Out of the current technologies, airborne laser scanning (ALS) data featured
prominently when resolving 3D vegetation structure accurately [15–18]. The use and avail-
ability of ALS data are increasing rapidly given its proven capabilities, allowing for the
study of forest ecosystem dynamics [19–22]. Although it is well documented, established
ALS-assisted monitoring frameworks are still limited; thus, more case studies are required
at different spatiotemporal scales and for diverse forest types [23–25]. On the other hand,
ALS’s potential was demonstrated in individual tree crown-based inventories [26–29]. For
instance, Frew et al. [30] used the manual detection of individual trees to directly estimate
tree height and crown metrics to determine the crown volume. This was based on field
points of interest, discrete ALS datasets, and multispectral imagery. They concentrated
on Douglas fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) trees and found an
R2 of 0.45 in comparison to the field-measured crown volume. They also presented the
estimation accuracy for different diameters at breast height (dbh) classes. In another study,
Jung et al. [31] estimated the crown base height, volume, and area by means of ALS for 15
selected trees in Korean pine (Pinus koraiensis) stands. The regression analysis between the
estimated results of the ALS and the one obtained using terrestrial laser scanning (TLS) as
reference data resulted in R2 values of 0.75, 0.69, and 0.58 for the mentioned metrics, respec-
tively. Consequently, high demand has emerged for characterizing tree crown structures
and their dynamics, stimulating attempts to link these measurements with conventional
individual tree growth models [21,32]. However, growth studies using ALS data were
mainly conducted at the level of a grid cell, i.e., a regular, fixed area spatial unit larger than
tree crowns [33–38], while a few studies were conducted to detect individual tree crown
growth [30,37,39]. On the other hand, tree responses to lightning conditions, growing
space, and resources vary between tree species. This means that tree growth is prone to
high variability between tree species as an intrinsic source of change [40,41]. Therefore, the
main objective of this study was to investigate the feasibility of bi-temporal ALS data in
detecting species-specific individual tree crown growth. They were used to estimate the
species-specific crown growth metrics of width (WD), projection area (A2D), volume (V),
and surface area (A3D) at the individual tree-level for three species groups: Scots pine (Pinus
sylvestris), Norway spruce (Picea abies (L.) H. Karst), and birch (Betula sp.). Our specific
research questions were as follows: (1) Are the ALS-derived crown metrics of WD, A2D, V,
and A3D affected by growth (∆) over a 5-year time interval? (2) How does relative growth
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(r∆) in the mentioned metrics differ between tree species groups? Our results provide
an insight into how tree species differ in their life history strategies in terms of resource
acquisition, defense against natural enemies, and allocation to reproduction.

2. Materials and Methods
2.1. Site Description and Field Data

This study was conducted in Evo (61.19◦N, 25.11◦E), southern Finland, and included
approximately 2000 ha of managed Boreal forests (Figure 1a). The study area elevation
ranged from 125 m to 185 m above sea level and the stands were mainly even-aged and
single layer, with an average stand size of slightly less than 1 ha. Scots pine, Norway spruce,
and birch were the dominant tree species in the study area, contributing 44.7%, 33.5%, and
21.8% of the total volume, respectively.
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Figure 1. (a) Study area in Evo, Finland, and (b) distribution of the field plots. (c) A strip sample of a
plot showing the bi-temporal ALS data acquired in 2009 (gray) and 2014 (yellow) (d).

A total of 91 rectangular sample plots with an area of 1024 m2 were used in this study
(Figure 1b). They were established in 2014 to represent a wide range of forest structural
conditions [42]. For each sample plot, an initial tree map was created based on the TLS
data. Tree maps were verified during the field measurements. All trees with a diameter
at breast height (dbh) of at least 5 cm were measured for their dbh with a caliper and
height with a Vertex IV (Haglöf Sweden AB, Långsele, Sweden). The health status and tree
species were also determined for each measured tree on site. They were used to compute
the tree-level basal area by considering the cross-sectional area of a tree to be circular and
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the stem volume using the nationwide species-specific volume equation [43]. The sum and
basal-area-weighted mean descriptive statistics of the field plots are presented in Table 1.

Table 1. Descriptive statistics of the field plots. The minimum (Min), maximum (Max), Mean, and
standard deviation (S.D.) of the number of trees, mean volume, basal-area-weighted mean diameter,
and basal-area-weighted height are reported.

Attribute Min Max Mean S.D.

Number of trees (n ha−1) 342 3076 943 556
Mean volume (m3 ha−1) 34.46 518.39 271.49 110.73

Basal-area-weighted mean dbh (cm) 13.91 46.42 25.79 7.51
Basal-area-weighted mean height (m) 10.02 31.09 21.10 4.42

2.2. Airborne Laser Scanning Data

Georeferenced bi-temporal ALS data were collected in 2009 (T1) and 2014 (T2) across
the study area under leaf-on canopy conditions (Figure 1d). Leica ALS-50II SN058 in T1
and 70HA in T2 were used for collecting the ALS data. The acquisition specifications are
listed in Table 2. The T1 dataset had the highest sampling density with an average nominal
density of 10 pulses/m2, followed by 6 pulses/m2 for the T2 dataset, recording between 3
and 5 discrete returns per pulse.

Table 2. The 2009 and 2014 ALS datasets and acquisition specifications.

Year 2009 2014

Sensor Leica ALS50II SN058 Leica ALS70-HA
Date 25 July 2009 5 September 2014

Laser pulse frequency 150,000 kHz 240 kHz
Scan frequency 52.2 Hz 59.90 Hz

Beam divergence 0.22 mrad 0.15 mrad
Flying altitude 400 m 900 m
Scanning angle 30◦ 30◦

Average pulse density 10 6

2.3. Establishing a Monitoring Framework at the Individual Tree-Level

The objective of this section is to describe the applied framework for estimating
individual tree crown growth with the assistance of ALS data. An overview of the method-
ologies used is depicted in Figure 2. We implemented a set of ALS data processing steps to
obtain a canopy height model (CHM) and detect individual trees using marker-controlled
watershed segmentation (Section 2.3.1). Then, species-specific tree-to-tree matching was
implemented using both the tree locations and their segments (Section 2.3.2). The 2D and
3D convex hull algorithms were applied to extract the crown metrics of width (WD), projec-
tion area (A2D), volume (V), and surface area (A3D) (Section 2.3.3). Finally, the ALS-derived
crown changes of the tree species groups were statistically evaluated to determine whether
they were affected by growth over a 5-year time interval and how they differed between
tree species groups (Section 2.3.4).
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Figure 2. Flowchart of the established monitoring framework.

2.3.1. Bi-Temporal ALS Data Processing

The ALS point clouds were classified into ground and non-ground returns using
TerraScan software. This was done based on the triangular irregular network (TIN) method
developed by Axelsson [44]. The lasheight tool from LAStools software was further used
to normalize the point cloud elevations, i.e., the Z-coordinate relative to the height above
the ground surface. The whole process was assisted by creating 3000 × 3000 m tiles with a
20 m buffer to avoid edge effects [45].

The pit-free algorithm introduced by Khosravipour et al. [46] was used to generate
the CHMs in the LAStools software (Figure 3a). The algorithm works based on a standard
CHM and partial CHMs generated from all and the highest return ALS points close to the
pits, respectively. In our study, a set of increasing height thresholds of 2, 5, 10, 15, . . . , 40 m
were used to obtain the partial CHMs. They were generated using normalized point cloud
data that were thinned with half of the pixel size instead of all first returns. In addition,
we included a ground CHM by excluding the normalized point clouds above 0.1 m to fill
potential holes [47]. Then, all points were combined in a pixel size of 0.5 m based on the
highest value across all points. The same process was applied to both the T1 and T2 ALS
datasets to obtain pit-free CHMs. Finally, they were clipped using field plot polygons,
which were buffered by 5 m to avoid boundary effects. The T1 CHM of the whole study
area and its zoomed-in views are shown in Figure 3b,c, respectively.
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To conduct the analysis at the individual tree-level, a local maxima filter (LMF) was
applied to the CHMs to find the treetops. This was carried out in the lidR package of R [48]
with an experimentally checked fixed window size of 3 × 3 pixels. Then, they were treated
as markers for the watershed algorithm to delineate crown segments, analogous to pouring
water into the inverted CHM [49]. Identical processes were applied to both the T1 and T2
datasets. The generated crown segments were used to clip out the normalized point cloud
data that fell within them for further extraction of the tree location and canopy metrics. In
this study, the location of each tree was defined based on the planar location of the highest
point within each crown segment. Notably, we excluded points belonging to the understory
vegetation and shrubs using a 2 m height threshold [50].
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2.3.2. Species-Specific Tree-to-Tree Matching

Tree-to-tree matching is an important aspect of individual tree-level growth analy-
sis [51]. Tree locations and/or their crown segments can be utilized in the matching process.
As many studies presenting individual tree-level growth analysis concentrate on height,
the matching was applied to the 2D or 3D distance between tree locations at different
times [36,52,53]. In this study, species-specific tree-to-tree matching was applied based on
using both individual tree locations and their crown segments. This process was done in
two steps using the spatial join tools of ArcGIS software [54]. First, we matched T2 ALS
trees and field data to obtain tree species information, as they were collected at the same
time. Considering the reduction in the tree detection rate for the co-dominant, intermediate,
and suppressed trees using ALS data, the small understory trees of the field data were
excluded from the analysis [55,56]. Therefore, the polygons of the T2 ALS crown segments
were matched with the locations of the highest field-measured trees of the dominant layer
within those polygons, extracting tree species information for the T2 ALS dataset.

Second, polygons of the T2 ALS crown segments were overlaid with the T1 ALS tree
locations and vice versa. Because of the possible differences in segmentation accuracy
of the T1 and T2 due to their point densities, over- and undersegmentation errors were
identified. To ensure proper growth analysis, the polygons of the T2 ALS crown segments
that contained only one tree location of T1 ALS were kept and vice versa, eliminating the
commission errors. We also kept those matched trees that existed in both T1 and T2 and did
not show a decrease in height by a threshold of 3 m. These heuristic rules were introduced,
as some trees had disappeared during the 5-year time interval due to mortality, logging,
and damage. Similarly, the tree heights of live trees should not have decreased.

The proposed method was assumed to be a compensation for the possible spatial
mismatch between tree locations caused by ALS acquisition discrepancies and prevailing
wind patterns at the acquisition time. Matched trees were further classified based on
their field-measured species into the three groups of Scots pine, Norway spruce, and
birch. Considering the effect of outliers on the probability of a type II error by decreasing
the power [57], we removed each species-specific crown metric that was three times the
inter-quartile range larger than the first and third quartile, resulting in sample sizes of
947, 749, and 402 for the Scots pine, Norway spruce, and birch, respectively. Species-
specific descriptive statistics of the matched trees that were measured in field plots at T2
are presented in Table 3.

Table 3. Field-measured species-specific descriptive statistics of the matched trees at T2. The Mean
and standard deviation (S.D.) values of the diameter at breast height (dbh), volume, and height
are reported.

Species Group

Diameter at Breast
Height (cm) Volume (m3) Height (m)

Mean S.D. Mean S.D. Mean S.D.

Scots pine
(n = 947) 21.74 6.77 0.41 0.36 19.65 4.27

Norway spruce
(n = 749) 20.42 10.37 0.46 0.50 22.09 5.66

Birch
(n = 402) 15.73 6.46 0.22 0.24 19.71 4.10

2.3.3. Extracting Canopy Metrics

The crown structure for the species-specific matched trees of T1 and T2 was char-
acterized using geometrical descriptors based on 2D and 3D convex hulls [58,59]. Four
crown metrics were extracted as follows using the rLiDAR package of R [60]. The crown
width (WD), which is the distance between the two most outer points in xy space, and the
projection area (A2D) were obtained by identifying the crown point clouds lying on the 2D
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convex hull. Meanwhile, the crown volume (V) and surface area (A3D) were computed
using a 3D convex hull by applying Delaunay triangulations to the outer points of the
closed convex surface boundary [58]. Figure 4 exhibits an example of species-specific
matched trees with their crown metrics derived at T1 and T2.
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The consistency of the ALS-derived crown metrics in T1 and T2 was analyzed using
Pearson’s correlation coefficient (Figure 5). A strong correlation was found for the T1 and
T2 crown metrics of A2D, V, and A3D in Norway spruce, followed by birch and Scots pine
(R = 0.86–0.94). In comparison, the extracted WD at T1 and T2 resulted in lower correlations
of 0.80 for Norway spruce, 0.77 for birch, and 0.70 for Scots pine. It can be concluded
that the crown metrics of all tree species displayed repeated consistency over the 5-year
time interval.

2.3.4. Crown Growth Estimation and Statistical Analysis

The crown growth (∆) was obtained by subtracting the crown metrics at T1 from
their respective measure at T2. The relative crown growth (r∆) was also computed by
dividing the obtained growth from the measure estimated at T1 to minimize the inherent
differences in scale between different trees [61]. To evaluate the species-specific statistically
significant differences in the means of WD, A2D, V, and A3D during the 5-year time interval,
the paired t-test was used, i.e., a within-group test using the rstatix package of R. Although
based on the central limit theorem, we can assume that the sample means came from a
normal distribution, it did not guarantee the normal distribution of the population [62].
In addition, in our skewed datasets of A2D, V, and A3D, the median is a better measure of
central tendency than the mean (see the marginal histograms in Figure 5) [63]. Therefore,
the data were also compared with the Wilcoxon signed-rank test.
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Welch ANOVA/Kruskal–Wallis and pairwise comparisons were further applied to
compare the r∆WD, r∆A2D, r∆V, and r∆A3D between different species groups, i.e., between
groups. As the significance level (p-value) strongly depends on the sample size, the effect
size was also investigated to measure the strengths of the effects. The effect sizes of Cohen’s
D as the mean difference and generalized eta squared (η2) as the explained variance were
used [64,65]. To interpret the results, we used the following rules of thumb: Cohen’s D of 0.2,
0.5, and 0.8, and η2 values of 0.01, 0.06, and 0.14 denoted a weak, medium, and large effect
size, respectively. We applied Bonferroni correction to control the probability of committing
a type I error. Thus, the p-values were multiplied by the number of comparisons [63].

3. Results
3.1. Crown Growth Detection within Different Species Groups

Based on the paired t-test, all mean differences in the ALS-derived WD, A2D, V, and
A3D at T1 and T2 were found to have increased significantly with a p-value < 0.0001 (Table 4).
This meant that a significant ∆ occurred during the 5-year monitoring period, which was
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detectable using the ALS data at a 95% confidence interval. Overall, ∆WD and ∆A2D were
estimated to be 0.47 m (standard deviation (S.D.) of 0.92 m) and 3.13 m2 (S.D. of 4.19 m2),
respectively. It was 70.80 m3 for ∆V with an S.D. of 62.28 m3 and 55.49 m2 for ∆A3D with
an S.D. of 41.64 m2.

Table 4. T1 (2009) and T2 (2014) ALS-derived crown metrics of width (WD), projection area (A2D),
volume (V), and surface area (A3D), and their growth (∆). The Mean, standard deviation (S.D.), and
effect size (Cohen’s D) values are reported.

Species Group Metrics
T1 T2 ∆

Mean S.D. Mean S.D. Mean S.D. Cohen’s D

Scots pine
(n = 947)

WD 4.56 1.20 5.12 1.14 0.56 **** 0.90 0.62
A2D 14.00 7.34 17.57 7.35 3.57 **** 3.85 0.93

V 106.84 120.76 168.75 137.07 61.90 **** 54.26 1.14
A3D 136.45 90.02 189.62 94.94 53.17 **** 41.63 1.28

Norway spruce
(n = 749)

WD 5.30 1.45 5.75 1.46 0.45 **** 0.91 0.50
A2D 18.82 9.73 22.09 10.35 3.27 **** 4.37 0.75

V 199.53 166.32 285.83 199.53 86.30 **** 70.64 1.22
A3D 215.76 108.30 276.21 117.73 60.44 **** 41.48 1.46

Birch
(n = 402)

WD 5.04 1.43 5.35 1.39 0.30 **** 0.96 0.32
A2D 17.27 9.07 19.08 9.58 1.81 **** 4.35 0.42

V 147.78 132.07 210.64 156.86 62.86 **** 57.73 1.09
A3D 168.40 96.96 220.14 101.25 51.73 **** 41.20 1.26

All trees
(n = 2098)

WD 4.92 1.38 5.39 1.34 0.47 **** 0.92 0.51
A2D 16.35 8.86 19.47 9.18 3.13 **** 4.19 0.75

V 147.78 146.61 218.58 173.58 70.80 **** 62.28 1.14
A3D 170.89 104.37 226.38 111.69 55.49 **** 41.64 1.33

**** p-value < 0.0001.

Within different species groups, the estimated crown metrics at T1 were significantly
different from the respective estimates at T2 (p-value < 0.0001). The observed ∆WD ranged
from 0.30 to 0.56 m and were classified using Cohen’s D of 0.32–0.62, i.e., small to medium
effect size over all three different species groups. The estimated ∆A2D differed by 0.93 and
0.75 times the S.D. in Scots pine and Norway spruce, respectively, while it was smaller for
birch, i.e., 0.42. A maximum ∆A2D of 3.57 m2 was found for Scots pine. The observed ∆V
values were 86.30, 62.86, and 61.90 m3 for Norway spruce, birch, and Scots pine, respectively.
∆A3D showed a range of 51.73 to 60.44 m2. The Cohen’s D values for ∆V and ∆A3D detected
using ALS data were the highest for all three species groups, ranging from 1.09 to 1.22
and 1.26 to 1.46, respectively. The results of the Wilcoxon signed-rank test also indicated
a statistically significant difference in the crown metric medians at T1 and T2. Therefore,
only the t-test results are reported.

3.2. Relative Crown Growth Changes between Different Species Groups

The results of the Welch-ANOVA indicated that the means of r∆WD differed signifi-
cantly between the species groups (p-value < 0.0001). The maximum r∆WD was observed
for Scots pine (15.38 ± 23.30%), while Norway spruce and birch showed smaller increments
(10.50% and 8.54%, respectively) (Table 5). The pairwise t-test comparison between species
groups showed a statistically significant difference in r∆WD for Scots pine–birch and Scots
pine–Norway spruce (p-value < 0.0001). There was no statistically significant change for
Norway spruce–birch regarding r∆WD (Figure 6).
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Table 5. Species-specific relative growth (r∆) of ALS-derived crown metrics of width (WD), projection
area (A2D), volume (V), and surface area (A3D) in T1 (2009) and T2 (2014). The Mean, standard
deviation (S.D.), p-value, and generalized eta squared effect size (η2) values are reported.

Species Group Metrics
r∆ (%)

p-Value η2
Mean S.D.

WD
Scots pine 15.38 23.30

2.18 × 10−8 0.02Norway spruce 10.50 18.50
Birch 8.54 20.89

A2D

Scots pine 35.42 41.05
2.4 × 10−22 0.05Norway spruce 21.96 26.98

Birch 15.64 32.16

V
Scots pine 97.67 94.77

1.93 × 10−16 0.03Norway spruce 58.21 48.32
Birch 74.97 96.86

A3D

Scots pine 55.80 53.48
1.73 × 10−19 0.04Norway spruce 34.14 27.24

Birch 46.89 58.91

1 
 

 

Figure 6. Pairwise comparisons of the relative growth (%) between different species groups. **** and
ns (not significant) denote p-value < 0.0001 and >0.05, respectively.
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Using the Kruskal–Wallis test, a statistically significant difference was also found
between the medians of r∆A2D, r∆V, and r∆A3D of the species groups (Table 5). Birch had
the lowest r∆A2D of 15.64% with an S.D. of 32.16% during the monitoring period. The
highest r∆V was estimated for Scots pine (97.67%), followed by birch (74.97%) and Norway
spruce (58.21%). Similarly, r∆A3D was the highest for Scots pine (55.80%) and the lowest for
birch (46.89%) (Table 5). The pairwise Wilcoxon test revealed a similar magnitude of median
differences in r∆V and r∆A3D for Norway spruce–birch, while they statistically differed
for Scots pine–Norway spruce and Scots pine–birch (Figure 6). Unlike with r∆WD, r∆A2D
exhibited a significant difference in Norway spruce–birch (p-value < 0.0001). On average,
the estimated r∆WD, r∆A2D, r∆V, and r∆A3D of Norway spruce had lower S.D. values
than other species, ranging from 18.50 to 48.32%. The highest variability was obtained for
the r∆A3D and r∆V of birch (S.D. of 58.91% to 96.86%) and the r∆WD and r∆A2D of Scots
pine (S.D. of 23.30% to 41.05%). Consequently, η2 demonstrated a moderate proportion of
r∆A2D variability that could be explained by the species (0.05). Moreover, it was 0.04, 0.03,
and 0.02 for r∆A3D, r∆V, and r∆WD, respectively (Table 5).

4. Discussion

Our main objective was to investigate the feasibility of bi-temporal ALS data in
detecting crown growth over a 5-year time interval. The results showed that statisti-
cally significant ∆WD, ∆A2D, ∆V, and ∆A3D values were detected from the ALS data
(p-value < 0.0001). A very large difference was obtained for the ∆A3D of Norway spruce,
followed by Scots pine and birch with Cohen’s D values of 1.46, 1.28, and 1.26, respectively.
The same trend was estimated for ∆V as large to very large effect sizes of 1.22, 1.14, and
1.09, respectively. This meant that the growth in the 3D crown metrics of V and A3D could
be effectively estimated using ALS data and further used in growth research (Table 4).
The consistency of the ALS-derived A3D and V in T1 and T2 was also the highest among
the metrics (R > 0.9) (Figure 5). Therefore, they are reasonable metrics that might be use-
ful in predicting the dbh, stem taper, and volume [30]. For instance, Yrttimaa et al. [59]
demonstrated a strong correlation between the basal area growth and the attributes that
characterize the crown structure and competition using terrestrial laser scanning data in
boreal forests. The highest r∆WD, r∆A2D, r∆V, and r∆A3D values were observed for Scots
pine, i.e., 15.38%, 35.42%, 97.67%, and 55.80%, respectively. Of importance, they showed
a significant difference with the other species groups of birch and Norway spruce with
p-values < 0.0001 (Table 5). Despite the higher r∆V and r∆A3D values of birch relative to
Norway spruce, their mean changes were not statistically significant at a 95% confidence
interval. Regarding the 2D crown metrics of ∆WD and ∆A2D, the effect size of the observed
change was higher for Scots pine than Norway spruce, i.e., 0.93 and 0.62, respectively.
Furthermore, birch resulted in the lowest effect size of changes for ∆WD (0.32) and ∆A2D
(0.42) among the species (Table 4). This corresponded with the lowest r∆WD and r∆A2D
of birch relative to other species in the monitoring period. As shown in Table 3, the mean
dbh of the birch sample trees measured at T2 (15.73 cm) was the lowest in comparison
with Scots pine (21.74 cm) and Norway spruce (20.42 cm), which can be explained by the
lower 2D crown growth of birch. Ma et al. [37] also observed a lower growth in crown
area than in volume in coniferous-dominated stands. However, overlapping between the
broad-leaved subject tree and the surrounding trees could lead to an underestimation of
the crown width, especially considering the presence of birch in the dominant layer height
(Table 3). This effect was related to tree density and would be increased by a reduced
growing space [31,66]. Generally, coniferous trees are less flexible while developing and
have a lower ability to close gaps [67]. However, our results showed that the observed
r∆WD values of birch and Norway spruce had no statistically significant difference, which
partially corresponded with the results obtained by Vepakomma et al. [68].

On average, the estimated r∆ of crown metrics during the 5-year time interval showed
a statistically significant difference between the species groups, but only 2–5% percent of
these relationships could be explained by the species. One of the reasons could be the
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high variation of r∆ among each species group, which was highest for V (48.32–96.86%),
followed by A3D (27.24–58.91%) (Table 5). This meant that except for the species, the tree
size or age, stem density, and competition as biotic factors and soil nutrient level, local
climate, topography, and water balance as abiotic factors controlled the growth [41,69].
Our findings corresponded to previous research on the impact of the mentioned internal
tree competitiveness and external tree competition on individual tree growth [6,70,71].
However, we found a lower variation in r∆WD and r∆A2D, ranging from 18.50–23.30% and
26.98–41.05%, respectively. In our study area, the species-specific individual trees’ responses
to abiotic controlling factors of growth were probably allocating crown growth more to
volume than horizontal elongation, as the highest r∆ was observed for 3D crown metrics.

Even though change detection at the individual tree-level provides detailed informa-
tion, it suffers from additional challenges and uncertainties. Reliable change detection at an
individual tree-level cannot be applied when the point density is low [36], and the success is
largely dependent on the segmentation accuracy and attribute estimation [72]. In addition,
time-series ALS measurements themselves can be biased because of the inconsistency in
instrument specification, sampling rate, flight pattern, and weather conditions [13,20,36,73].
Hence, more studies are needed to determine the appropriate design for ALS time series
measurements [34]. However, Zhao et al. [36] demonstrated no difference in growth anal-
ysis at the tree-level if the datasets have densities that exceed 7 pulses/m2. On the other
hand, we should consider that a higher pulse repetition frequency does not guarantee a
higher accuracy, especially for an area-based approach [74–76]. This could be a crucial
finding since modern ALS systems have point densities that are higher than a decade ago.
Although a typically 5-year time interval was found to be enough to present the average
level of growth and models predicting growth in boreal conditions [77,78], understanding
the amount of time necessary to overcome excess noise and other ALS system uncertainties
is still challenging [3,13,77]. It should be noted that the results of growth estimation using
ALS data for individual trees could not correspond to the average growth in multi-layered
forest stands since it is weighted by the dominant trees.

5. Conclusions

The crown structure as an essential part of growth is rarely studied because of the
difficulty in conducting field measurements. Consequently, the crown-based competition
indices as the main input of many growth models are commonly estimated via indirect
regression models of tree height and dbh with the associated uncertainty. To fill the
mentioned gap, we aimed to find whether ALS-derived crown metrics of width (WD),
projection area (A2D), volume (V), and surface area (A3D) were affected by growth (∆) and
how relative growth (r∆) in the mentioned metrics differed between tree species groups in
boreal forests. First, we demonstrated the feasibility of ALS data to detect individual tree
crown growth over a 5-year monitoring period. The 3D crown metrics were more robust in
detecting growth in comparison with 2D crown metrics. Considering the high correlation
of crown metrics with the dbh and volume of trees, one of the possible applications of
this study could be a large area estimation of tree growth allometry. Accurate estimates of
crown growth could efficiently contribute in assessing forest responses to different thinning
treatments, prescribed fire, fertilization, and other natural disturbances. In addition, the
changes in crown growth provide information on forest health, productivity, and tree
competition status. Second, a significant difference was achieved in the r∆ of Scots pine,
Norway spruce, and birch, even though they had a little effect size. Scots pine was
observed to have the highest r∆ and differed significantly relative to other tree species
groups in r∆WD, r∆A2D, r∆V, and r∆A3D. Meanwhile, Norway spruce and birch showed no
statistically significant difference in terms of r∆WD, r∆V, and r∆A3D. Our results confirmed
the complex nature of growth with high variability in tree species groups, stimulating
further attempts to investigate how controlling factors other than species can influence
tree growth.
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