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Abstract: Debris flow susceptibility mapping (DFSM), which has proven to be one of the most
effective tools for risk management, faces a variety of problems. To realize the rational use of debris
flow sample resources and improve the modeling efficiency, a unified model based on transfer
learning was established for cross-regional DFSM. First, samples with 10 features collected from two
debris flow-prone areas were separately used to perform factor prediction ability analysis (FPAA)
based on the information gain ratio (IGR) method and then develop traditional machine learning
models based on random forests (RF). Secondly, two feature matrices representing different areas
were projected into a common latent feature space to obtain two new feature matrices. Then, the
samples with new features were used together for FPAA and developing a unified machine learning
model. Finally, the performance of the models was obtained and compared based on the area under
curves (AUC) and some statistical results. All the conditioning factors played different roles in debris
flow prediction in the two study areas, based on which two traditional models and a unified model
were established. The unified model based on feature transferring realized efficient cross-regional
modeling, solved the unconvincing problem of limited sample modeling, and enabled more accurate
identification of some debris flow samples.

Keywords: debris flow; random forest; transfer learning; susceptibility mapping

1. Introduction

As the demand for deep development of surface space grows, human engineering
activities in mountainous regions make the prevention and control of geological hazards
increasingly become a hot topic [1]. Debris flow, with the characteristics of sudden and
ferocious eruption and wide-ranging impact, is one of the major geological hazards causing
the loss of human life and property. For example, a single huge debris flow that occurred in
Zhouqu County, Gansu Province, China, caused up to 1765 deaths [2]. With the increasingly
frequent extreme rainfall in recent years, how to deal with debris flow is an issue that
deserves more attention. To minimize the possible damage caused by debris flow, the
most common measures currently include monitoring, construction of protective facilities,
susceptibility mapping, and so on [3]. Recently, the development of geographic information
technology makes susceptibility mapping more popular in the field of debris flow risk
management [4].

The methods for debris flow susceptibility mapping (DFSM) have a development
trend from qualitative to quantitative [5]. Research on qualitative-based methods has been
rarely conducted recently due to its high reliance on expert experience [6]. Conversely, the
quantitative methods have dominated the current research by extracting related information
from objective data to perform DFSM. Common quantitative models can be subdivided into
four groups including physical, opinion-driven, statistical, and machine learning depending
on how the data is used [7–10]. These data-driven approaches can be summarized in two
steps: (1) Collect the debris flow-related data; (2) select the right algorithm model. The
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improvement of input data quality and algorithm performance is the key to obtaining high-
quality debris flow susceptibility maps [7]. The current exploration methods to improve
the quality of input data include obtaining more reliable negative samples [11,12], adopting
appropriate sampling strategies [13], and adopting appropriate spatial resolution [7], etc.
The comparative study of algorithms has always been one of the hotspots in DFSM [14,15].
Recently popular algorithms mainly include artificial neural networks [16], support vector
machines [17], decision trees [18], random forests (RF) [19], and some other ensemble
models for higher accuracy [20].

In general, after optimizing the input data and the algorithms, some models that
perform well for a specific study area can always be obtained. However, some limitations
are also obvious: (1) When these models are faced with a new study area, their performance
is difficult to guarantee; (2) Samples within a single study area are not always sufficient
to build a satisfactory model. (3) Modeling each study area separately is actually quite
expensive when faced with multiple study areas.

Transfer learning, which focuses on using knowledge learned from known domains
to improve models applicable to new domains, is an effective machine learning method
for solving the problems mentioned above [21]. Common forms of knowledge that can
be transferred include instances, features, parameters, and relationships [22]. All these
approaches typically assume a sample-rich source domain and a target domain lack of
samples, the purpose of transfer learning is to efficiently and reasonably transfer knowledge
from the source domain to the target domain. For instance-based transfer learning, samples
in the source domain are usually given different weights to assist in the establishment of
a model suitable for the target domain [23]. For parameter-based transfer learning, it is
often associated with deep learning algorithms. The establishment of the model follows
two steps: (1) Establish a pre-trained deep learning model based on samples from the
source domain. (2) Retain the parameters learned from the source domain and adjust the
remaining parameters of the model based on the samples of the target domain [24]. It
can be seen that both methods will make the established model more biased towards the
target domain. As for relationship-based transfer learning, it is mainly used to transfer
the connection between data from the source domain to the target domain. In this study,
we focused on feature-based transfer learning. By projecting feature matrices representing
different study areas into a common latent feature space, samples from different study
areas could be used together to build a unified model.

This study is to establish a unified cross-regional DFSM model. A feature-based
transfer learning method was used to reduce the feature differences between different
study areas. The predictive ability of the conditioning factors obtained based on the
information gain ratio (IGR) method, and the performance of the models obtained based on
some related indexes was compared and discussed before and after the transferring process.
This study could provide a useful reference for the efficient modeling of multi-region debris
flow susceptibility mapping.

2. Materials
2.1. Study Areas and Debris Flow Inventories

Beichuan County, located in Sichuan province (Figure 1), was selected as the first
study area due to the frequent debris flow events within its boundaries. It is bounded
by longitudes of 103◦33′E and 104◦42′E and latitudes of 31◦14′N and 32◦14′N. It covers
an area of 3084 km2 with a mountainous subtropical humid monsoon climate, which
brings abundant rainfall from July to September every year. Affected by tectogenesis
and long-term erosion of rivers, deep gullies, narrow valleys, and steep ridge slopes are
widely distributed in Beichuan County. In terms of lithology, phyllite dominates the entire
study area. Besides, mudstone, sandstone, and carbonate rocks also exist. In addition, the
Longmenshan fault structure that runs through Beichuan County from the northeast to
the southwest has caused extensive bedrock exposure, rock fragmentation, and soil loss,
which increases the risk of debris flow. Besides, the population of up to 238,600 in Beichuan
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County is a high-risk threat object on the one hand, and, on the other hand, vigorous
engineering activities are also an important control factor for the formation of debris flow.

Figure 1. Location of the study areas with debris flows inventory maps.

Not far from Beichuan County, the Yanzi River Basin (Figure 1) in Gansu Province
was chosen as the second study area. It covers an area of approximately 1276 km2 between
longitudes 105◦15′E–106◦00′E and latitudes 32◦50′N–33◦25′N. Located in the transition
zone from the subtropical zone to the warm temperate zone, the annual average rainfall
in the Yanzi River Basin reaches 777.5 mm. Active tectonic movements and extensive
river erosion make the landform types in the area mainly mountains and river valleys. As
for lithology, metamorphic rocks, especially metamorphic phyllites, dominate the entire
area. Besides, the accelerated construction activities in the area recently are playing an
increasingly important role in debris flow formation. In general, the situation in Yanzi
River Basin is quite similar to that in Beichuan County.

On the one hand, abundant rainfall, active tectonic movements, and vigorous human
activities make Beichuan County and the Yanzi River Basin prone to debris flow. On the
other hand, these similar characteristics also make the two study areas more suitable for
transfer learning.

A reliable debris flow inventory helps build a higher quality debris flow susceptibility
map [25]. The debris flows inventory for Beichuan County and the Yanzi River Basin
were obtained from previous surveys and interpretations of Google Earth imagery [26,27].
Finally, 148 debris flow locations in Beichuan County and 44 debris flow locations in Yanzi
River Basin were prepared for follow-up studies (Figure 1).

2.2. Data Preparation
2.2.1. Mapping Units

Appropriate mapping unit types have been proven to be helpful to improve the quality
of DFSM [28]. Watershed units and grid cells are two types of the most popular mapping
unit for debris flow, and each has its own advantages and disadvantages [29]. Grid cells
are not directly related to debris flow and are usually more suitable for describing the
local characteristics of debris flow events in applications. On the other hand, for a debris
flow susceptibility map based on grid cells, multiple grid cells with different susceptibility
levels might exist in a single debris flow watershed, which increases the difficulty of
using the susceptibility map. The watershed unit, as the basic unit of the formation and
development of debris flow, can more conveniently describe the overall characteristics of
some debris flow events, such as the height difference of the watershed and the vegetation
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coverage in the watershed. In addition, the use of watershed units ensures the uniformity
of information within a single debris flow basin, which makes it easier to identify the
specific impact area of any debris flow event on the debris flow susceptibility maps [30].
In this paper, the watershed units were therefore adopted due to their ability to carry
more physically meaningful topographic information and better distinguish the location of
debris flow. The hydrological analysis tools of the ArcGIS platform were responsible for
the division of the watershed units, a 30-m resolution digital elevation model (DEM) m
from the Geospatial Data Cloud (http://www.gscloud.cn, accessed on 7 May 2022) was
used as the input data and some boundaries were then manually adjusted according to
Google Image.

2.2.2. Conditioning Factors

Since debris flow is the result of multiple internal and external factors, the combination
of debris flow conditioning factors can be varied [31]. Considering the availability, reliability,
and transferability of factors, a total of 10 conditioning factors were prepared.

Rainfall (Figures 2a and 3a) is a recognized triggering factor that controls the genera-
tion of debris flow [32,33]. The average annual rainfall (1970–2000) was therefore collected
as a conditioning factor. The rainfall data comes from a climate website (worldclim.org,
accessed on 7 May 2022).

Topographic factors have been widely used for DFSM [34]. Six topographic-related
factors including altitude, maximum elevation difference (MED), slope, plane curvature,
profile curvature, and topographic wetness index (TWI) were prepared in this paper. All
these factors were generated based on the same DEM used to divide watershed units. Alti-
tude (Figures 2b and 3b) is an important factor indirectly related to the formation of debris
flow, factors such as vegetation type, air temperature, rainfall, and solar radiation will show
a certain degree of vertical distribution difference with the change of altitude, which makes
it a popular factor in many studies of DFSM [35]. MED (Figures 2c and 3c) is an important
indicator reflecting the potential energy of debris flow [36]. Slope (Figures 2d and 3d) is an
important factor to determine the movement process of debris flow. On the other hand,
since steep slopes have greater potential for instability [37–40], collapses and landslides
nurtured by steep slopes could also bring potential sources for debris flow [41]. Plane
curvature and profile curvature (Figure 2e,f and Figure 3e,f) are two other important pa-
rameters that determine the change of direction and velocity of debris flow [42]. TWI
(Figures 2g and 3g) is a physical indicator that can quantify the control effect of topography
on the flow process of debris flow [43].

Surface vegetation conditions were considered in many debris flow-related studies [44].
Exposed soil and bedrock in less vegetated areas are more likely to destabilize, providing
provenance for debris flow formation. In this paper, the normalized difference vegetation
index (NDVI) was selected to describe the coverage of vegetation (Figures 2h and 3h). The
range of NDVI values is (−1, 1), where negative values indicate that visible light is highly
reflected and possible surface conditions are wet bare ground, water, or snow cover. As
for 0 and the positive values, the larger the value, the higher the vegetation coverage. It
can be seen that in addition to directly reflecting the vegetation coverage, NDVI can also
distinguish the surface conditions of areas without vegetation coverage.

In order to consider the influence of tectonic movement and human engineering
activities, we used the spatial analysis tool in ArcGIS to obtain two factors: distance to
faults (DTF) and distance to roads (DTR) (Figures 2i,j and 3i,j). The faults were recognized
from a geological map on a scale of 1:50,000. And the relevant road information was
obtained based on Google Image interpretation. Generally speaking, rock formations near
faults are generally more fragmented, and fractured rock formations have a greater chance
of becoming a source of debris flow [45,46]. Road construction will destabilize the slope
and the generated construction waste is another important source of debris flow [47–49].

http://www.gscloud.cn
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Figure 2. Conditioning factors of Beichuan County: (a) Rainfall; (b) Altitude; (c) MED; (d) Slope;
(e) Plane curvature; (f) Profile curvature; (g) TWI; (h) NDVI; (i) DTF; (j) DTR.
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Figure 3. Conditioning factors of Yanzi River Basin: (a) Rainfall; (b) Altitude; (c) MED; (d) Slope;
(e) Plane curvature; (f) Profile curvature; (g) TWI; (h) NDVI; (i) DTF; (j) DTR.

3. Methodology
3.1. Sampling and Partitioning Strategy

As a typical binary classification problem, debris flow susceptibility mapping usually
requires a relatively balanced positive and negative sample ratio to ensure that the model
will not be biased towards a certain classification result [50]. However, only positive
samples and a large number of unlabeled samples were available. According to previous
studies [34,51], the vast majority of the two study areas are stable and debris flow is not
prone to occur. Therefore, while randomly selecting negative samples among unlabeled
samples might introduce some noise, most randomly selected samples can be considered
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reliable negative samples that are helpful for modeling. For the traditional machine learning
modeling process, since 148 debris flow samples from Beichuan County and 44 debris flow
samples from the Yanzi River Basin were collected, the same number of non-debris flow
samples were randomly selected from the corresponding study areas, respectively. After
the transferring process, we treated 192 debris flow samples from the two study areas as
a whole, and 194 non-debris flow samples were randomly generated from the two study
areas. With reference to previous literature [52], the datasets were all divided into two
groups: 70% for the model training, and 30% for validation.

3.2. IGR

The information gain ratio (IGR) is one of the most widely used methods for factor
prediction ability analysis [53]. In this paper, it not only helps us have a prior understanding
of the conditioning factors before modeling but also makes it easier for us to understand
the impact of transfer learning on conditioning factors. By calculating the reduction in
the information entropy of the dataset conditioned on a certain factor, the importance of
the conditioning factor could be quantified. In addition, the IGR method also introduces
a penalty coefficient to limit the impact of factor grouping. The penalty coefficient is a
parameter related to the number of conditional factor groupings, which can effectively
avoid biasing factors with more groupings. The formulas are as follows:

GainRatio(S, A) = Gain(S, A)/IV(A) (1)

Gain(S, A) = Ent(S)−
V

∑
v=1

Sv

S
Ent(Sv) (2)

IV(A) = −
V

∑
v=1

Sv

S
log 2

Sv

S
(3)

where Gain(S,A) represents the information gain of factor A; Ent(S) is the overall entropy
of the dataset; IV(A) is the penalty coefficient; V is the number of attribute values; S is the
entire dataset.

3.3. The Transfer Component Analysis

The transfer component analysis (TCA) method was proven to be effective in reducing
the difference between the distributions of the feature matrices of two study areas, and its
computational cost is generally acceptable [54]. The specific steps are as follows:

(a) The feature matrices of the two study areas were defined as Xs and Xt, respectively.
(b) A feature mapping function φ was introduced to project Xs and Xt into a common

latent feature space.
(c) In order to solve this feature mapping function φ, TCA measures the distance

between Xs and Xt by the maximum mean discrepancy.

dist(Xs, Xt) =

∥∥∥∥∥ 1
n1

n1

∑
i=1

φ(xsi)−
1

n2

n1

∑
j=1

φ
(
xtj
)∥∥∥∥∥

H

(4)

where n1 and n2 are the number of samples in Xs and Xt; xsi ∈ Xs, xtj ∈ Xt; H is the
Reproducing Kernel Hilbert Space.

(d) After squaring and expanding the above distance, a kernel matrix method was
introduced, and the distance between Xs and Xt can be expressed as follows:

dist(Xs, Xt) = tr(KL) (5)

K =

∣∣∣∣Ks,s Ks,t
Kt,s Kt,t

∣∣∣∣ ∈ R(n1+n2)×(n1+n2) (6)

K(xi,xj) =
∣∣∣φ(xi)

Tφ(xj)
∣∣∣ (7)
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L(i, j) =


1

n2
1
, xi, xj ∈ Xs

1
n2

2
, xi, xj ∈ Xt

1
−n1n2

, otherwise

(8)

where Ks,s, Kt,t, Ks,t and Kt,s respectively are the kernel matrix on the data in Xs and Xt and
cross domains; L(i,j) is the metric matrix.

(a) To make the results more computable, a dimensionality reduction method was
introduced:

dist(Xs, Xt) = tr(K0L) (9)

K0 = KWWTK (10)

W = K−1/2W0 ∈ R(n1+n2)×m, m < n1 + n2 (11)

where K0 is the kernel matrix after dimension reduction; W0 is a low-dimensional matrix
to transform the original kernel matrix.

(b) In minimizing criterion (9), considering the computational cost and preserving the
data features of Xs and Xt, the final optimization objective is as follows:

min
W

= tr(WTKLKW) + µtr(WTW)

s.t. WTKHKW = Im

(12)

H = In1+n2 −
1

n1 + n2
11T (13)

where µ is a trade-off parameter; tr(WTW) is a regularization term to control the complexity
of W; Im is an identity matrix to control the divergence of the data.

3.4. RF

RF is one of the most popular ensemble models [19]. The specific modeling process
was shown in Figure 4. It can be seen that: (1) Each decision tree was built based on a
randomly generated sub-sample set. (2) Each split of the decision tree was the best split
based on randomly selected features. The randomness in RF has been proved to effectively
reduce the overfitting problem [55].

Figure 4. The schematic diagram of RF.
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3.5. Receiver Operating Characteristic Curve

The receiver operating characteristic curves (ROC) has been widely used for perfor-
mance evaluation of classification models in recent years [56]. It is simple and intuitive,
and the areas under curves (AUC) can provide a comprehensive and reliable assessment of
a model. To get the ROC curves, the predicted results of the samples need to be counted.
Then we will get two metrics: sensitivity and specificity. The formulas are as follows:

Sensitivity =
TP

TP + FN
(14)

Specificity =
TN

FP + TN
(15)

where TP represents the number of correctly classified positive samples; FP represents the
number of misclassified positive samples; TN represents the number of correctly classified
negative samples; FN represents the number of misclassified negative samples. In the
actual application process, the determination of positive samples and negative samples also
needs to determine a probability threshold. With different thresholds, the final statistical
results will also vary. The ROC curve takes 1-specificity as the abscissa and sensitivity as
the ordinate and selects different thresholds to obtain multiple coordinate points for the
curve. We plotted the ROC curve with different thresholds between 0 and 1 at 0.1 intervals.
The meaning of AUC is the probability that a classifier will give a positive sample a greater
score than a negative sample [57]. In previous studies, the AUC was categorized as poor
(0.5–0.6), average (0.6–0.7), good (0.7–0.8), very good (0.8–0.9), and excellent (0.9–1) [58].

All the methodology used in this study was shown in Figure 5, which is also a flow
chart of this study.

Figure 5. Flow chart of the method in this paper.
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4. Results
4.1. Predictive Ability of Conditioning Factors

After feature transferring, a unified dataset with eight new conditioning factors was
obtained since the dimensionality reduction method was adopted in the calculation process.
The IGR values of the conditioning factors directly collected from the two study areas
and the conditioning factors obtained after feature transferring were shown in Table 1.
For the conditioning factors collected from the study areas, the same conditioning factor
generally showed obvious differences in the predictive ability for the two study areas.
At the same time, the conditioning factors with the largest IGR values in the two study
areas also have some overlap as rainfall, altitude, DTF, and DTR played an important role
in both study areas. For the conditioning factors obtained after transferring, the overall
dispersion of IGR values is smaller, and there is also a lack of conditioning factors with
strong predictive ability.

Table 1. The IGR values of different datasets.

Dataset Conditioning Factors IGR Values

Beichuan County

Rainfall 0.097564
Altitude 0.072134

DTR 0.042283
NDVI 0.022192
DTF 0.021838
Slope 0.013836

Profile curvature 0.013714
TWI 0.013245
MED 0.009153

Plane curvature 0.008380

Yanzi River Basin

Rainfall 0.092418
DTF 0.066653

Plane curvature 0.059207
Altitude 0.056922

DTR 0.056264
MED 0.026565
Slope 0.021594
NDVI 0.019191
TWI 0.016053

Profile curvature 0.014756

The unified dataset

Factor 1 0.068698
Factor 2 0.028859
Factor 3 0.021048
Factor 4 0.020926
Factor 5 0.019072
Factor 6 0.019056
Factor 7 0.012737
Factor 8 0.009777

4.2. Model Performance

The AUC values were used to evaluate the traditional and unified models for the two
study areas. For the training process (Figure 6), with the AUC value reaching 0.962, the
model for Yanzi River Basin achieved the best performance, followed by the model for
Beichaun County (AUC = 0.915), and the unified model performed the worst (AUC = 0.858).
As for the validation process (Figure 7), the model performance ranking is still Yanzi River
Basin, Beichuan County, and the unified model with the AUC values of 0.881, 0.833,
and 0.734 respectively. Besides, the performance of the unified model in the validation
process had dropped significantly compared to the training process, indicating a weaker
generalization ability.
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Figure 6. The ROC curves based on the training dataset: (a) of the model for Beichuan County; (b) of
the model for Yanzi River Basin; (c) of the unified model.

Figure 7. The ROC curves based on the validation dataset: (a) of the model for Beichuan County;
(b) of the model for Yanzi River Basin; (c) of the unified model.

4.3. Rationality Analysis of Debris Flow Susceptibility Maps

Based on two traditional models and one unified model, two susceptibility maps
were obtained for each of the two study areas (Figure 8). All the susceptibility classes
of the susceptibility maps were divided based on the natural break method. Statistical
analysis of the predicted results of known debris flow samples is an effective method to
test the rationality of the susceptibility map. Table 2 showed that the rationality of the
debris flow susceptibility maps was satisfactory since most of the debris flow samples
were correctly classified as having a susceptibility above moderate. In addition, the debris
flow susceptibility map generated based on the unified model classified more debris flow
samples as very high susceptibility but also misclassified more debris flow samples as
below moderate susceptibility.

Table 2. The sample statistical results of different models.

Model Groups No. of
Debris Flow Samples

Percentage of
Debris Flow Samples

Traditional model for Beichuan County

Very low 1 0.7%
Low 8 5.4%

Moderate 12 8.1%
High 37 25.0%

Very high 90 60.8%

Unified model for Beichuan County

Very low 7 4.7%
Low 9 6.1%

Moderate 8 5.4%
High 26 17.6%

Very high 98 66.2%
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Table 2. Cont.

Model Groups No. of
Debris Flow Samples

Percentage of
Debris Flow Samples

Traditional model for Yanzi River Basin

Very low 0 0.0%
Low 1 2.3%

Moderate 6 13.6%
High 14 31.8%

Very high 23 52.3%

Unified model for Yanzi River Basin

Very low 1 2.3%
Low 3 6.8%

Moderate 3 6.8%
High 11 25.0%

Very high 26 59.1%

Figure 8. The debris flow susceptibility maps based on the: (a) Traditional model for Beichaun County;
(b) Unified model for Beichuan County; (c) Traditional model for Yanzi River Basin; (d) Unified model
for Yanzi River Basin.

5. Discussion
5.1. Conditioning Factor Analysis

The evaluation of condition factors is an indispensable step in DFSM [7]. In previous
studies, the evaluation of conditioning factors can not only help to choose appropriate
factors to build more satisfactory machine learning models but also provide a better
understanding of the formation of debris flow since conditioning factors with strong
predictive ability are usually closely related to the formation of debris flow [59]. According
to the result that conditioning factors including rainfall, altitude, DTF, and DTR made a
great contribution to the prediction of debris flow in both study areas, a similar formation
mechanism of debris flow in the two study areas can be inferred: (1) The high and steep
mountainous landforms provide favorable topographical conditions for the formation of
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debris flow. (2) The fractured rock and soil mass near the fault and the deposits directly or
indirectly caused by human engineering activities provide abundant provenance for the
debris flow. (3) Rainfall is the main source of hydrodynamics for the formation of debris
flows in the two study areas. The similarity is the basis for subsequent transfer learning.

After feature transferring, since each conditioning factor might be a coupling of
multiple directly collected conditioning factors, the overall dispersion of IGR values became
smaller. Besides, this kind of coupling may mask some information useful for debris flow
prediction, which makes the conditioning factors with strong predictive power lacking in
the unified dataset.

5.2. Comparison of Traditional and Unified Models

In this study, the performance of the models is a reflection of the data quality since
all the models were based on the same RF algorithm. The result that the model for Yanzi
River Basin performed better than the model for Beichuan County indicated the higher
quality of the Yanzi River Basin dataset, which may be due to the fact that more randomly
generated non-debris flow samples in Beichuan County have introduced more noise to
its dataset. However, there are also some problems with the model for the Yanzi River
Basin because of the small dataset. On the one hand, insufficient training samples cannot
enable the model to learn the general characteristics of debris flow well. On the other
hand, the generalization ability of the model tested based on insufficient validation samples
is actually not convincing enough. Since labeling samples and modeling is a difficult
and time-consuming process, it is necessary and meaningful to build a unified model
applicable across regions that can reasonably utilize the samples from both study areas at
the same time. Considering the samples in Beichuan County as the source domain and the
samples in the Yanzi River Basin as the target domain, transfer learning has been proven to
have the potential to address this problem well [21]. Instance-based, parameter-based and
feature-based methods are the most recent commonly used approaches. The instance-based
approach focused on building a model that performs well in the target domain, which
requires assigning different weights to samples from the source domain to participate in
the modeling as auxiliary samples [23]. For a parameter-based approach, deep learning
algorithms are often employed, and samples from the source domain and the target domain
played the role of pre-training and fine-tuning respectively in the modeling process [24].
Both of the final models will not only be biased towards the target domain but also have
higher requirements on algorithms and samples from both the source and target domains.
In this paper, the feature-based approach was finally adopted. By projecting feature matrices
representing different study areas into a common latent feature space, a unified dataset
was built, and then the RF algorithm was utilized to build a unified model. Obviously, the
feature-based approach has lower sample requirements, more flexible algorithm selection,
and more balanced consideration of source and target domains.

The final unified model in this paper still has some limitations such as not performing
as well as the traditional model. Although a feature transferring method was used to
reduce the difference in feature distribution between the two study areas, the difference
still existed. And this kind of difference is one of the main sources of dataset noise. The
union of the datasets of the two study areas also increases the noise in the unified dataset.
Noise in a dataset can seriously affect the generalization ability of a model. Besides, the RF
algorithm used in this paper is an ensemble learning algorithm with decision trees as weak
classifiers. The split of each node of the decision tree depends on some conditioning factors
with strong predictive ability [55]. The lack of conditioning factors with strong predictive
ability in the unified dataset degraded the performance of the model to a certain extent.
Considering the meaning of AUC, it can be seen from Figure 8 that the poor performance
of the unified model is mainly reflected in the overprediction of the probability of some
negative samples, which indicates that the unified model is a more conservative model.
Actually, the performance of the unified model is generally acceptable with the AUC values
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of 0.858 for the training process and 0.734 for the validation process, especially for the
cross-regional modeling.

The statistical results of the classification of known debris flow samples are important
indicators for evaluating the rationality of debris flow susceptibility maps [51]. And more
details of the classification of the samples can also help us understand the models more
comprehensively compared to the model evaluation based on the AUC values [34]. The
result that the debris flow susceptibility maps generated based on the unified model
misclassified more debris flow samples as below medium susceptibility is another intuitive
manifestation of the relatively poor performance of the unified model. Besides, the unified
model classified more debris flow samples as very high susceptibility, that is, it enabled
more accurate identification of some debris flow samples, which might be due to the
removal of some redundant information by dimensionality reduction when obtaining the
unified dataset. More accurate identification of debris flow samples can effectively improve
the practical value of the corresponding debris flow susceptibility map.

5.3. Limitations

This paper focused on the establishment of a unified model for cross-regional DFSM. A
generally satisfactory model was built, with some limitations remaining: (1) Ten conditional
factors belonging to continuous variables are used in this study, and more factors that
are closely related to debris flow and have strong predictive ability can be considered to
provide better options. (2) The non-debris flow samples in all datasets were randomly
obtained, and some more reasonable non-debris flow sample acquisition methods should
be utilized to improve the model performance. (3) More noise was introduced in the process
of establishing the unified dataset, some advanced data cleaning methods such as binning
and clustering can be utilized to improve dataset quality. (4) Only a single RF algorithm
was used in this paper, and more advanced algorithms can be discussed and compared.

6. Conclusions

DFSM has been developed for years, and most of the research has focused on dataset
quality and algorithm improvements. In the present study, a unified model that can
address the problem of insufficient sample size and is applicable to multiple study areas
was established and compared, and the following conclusions could be drawn:

1. The same conditioning factors have different prediction abilities of debris flow in
different study areas, but the similarity of debris flow control factors in different study
areas is the basis for feature transferring.

2. The unified model based on feature transferring can solve the problem that it is difficult
to build a convincing model with limited samples while ensuring a certain accuracy.

3. More accurate identification of some debris flow samples makes the unified model
more helpful for debris flow risk management.
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