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Abstract: Observations worldwide have shown that in recent decades, groundwater depletion
intensified notably in many regions. Understanding the interacting drivers of groundwater change
enables better human adaptations to climate change and socioeconomic development. Here we use a
structural equation model to quantify the contribution of natural and human-induced processes on
the groundwater of China by using terrestrial water storage observed by GRACE in combination with
climate and socioecological related data at a provincial scale. The results reveal that the influence
of climate on groundwater change through indirect impact on the agriculture water consumption
is larger than that through direct replenishment. Socioeconomic development contributes in the
same order of magnitude as the direct replenishment by climate variabilities to groundwater. In
general, forest plays an important role in reserving groundwater at a provincial scale. Based on future
climate projections and Shared Socioeconomic Pathways, it is projected that most regions in China
will experience a greater groundwater depletion in the future and the variance among regions will
become larger.

Keywords: groundwater; structural equation model; future depletion

1. Introduction

Groundwater plays a significant role in sustainable development and is clearly linked
to 31% of the attainment of Sustainable Development Goals (SDGs) [1]. The ever-increasing
demand of groundwater for agricultural and socioeconomic purposes will serve to stress
groundwater depletion in many regions of the world [2–5]. The impact of climate change,
directly through replenishment and indirectly through changes in groundwater use, poses
an additional pressure on groundwater resources [6–13]. Investigating the groundwater
response to driving factors and make long-term estimations of groundwater storage is
therefore crucial for water management.

The relationship between groundwater and its influencing factors has been inves-
tigated mainly through statistical methods or hydrological models. Statistical methods
including linear regression methods, grey relational analysis, transfer function-noise time
series approach, singular spectrum analysis, and wavelet coherence analysis methods have
been widely used [11,14–19]. Thomas et al. [16] used regression procedures and dominance
analysis to explore the relationship between natural and human driving factors and the
spatial–temporal changes of groundwater in the United States. The results showed that
precipitation showed a higher impact than groundwater extraction. Kuss et al. [17] used
singular spectrum analysis, wavelet coherence analysis, and lag correlation analysis to
quantify the effects of El Niño Southern Oscillation and North Atlantic Oscillation on
precipitation and groundwater in Central Valley, Basin and Range, and North Atlantic
Coastal Plain in the United States. The results showed that the groundwater level was
partly controlled by inter-annual to multi-decadal climate change, not just a function of
temporal patterns in pumping. Liu et al. [20] used one simple attribution analysis to ana-
lyze the effect of precipitation and anthropogenic activities on groundwater change. The

Remote Sens. 2022, 14, 4825. https://doi.org/10.3390/rs14194825 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14194825
https://doi.org/10.3390/rs14194825
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7687-7824
https://doi.org/10.3390/rs14194825
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14194825?type=check_update&version=3


Remote Sens. 2022, 14, 4825 2 of 13

results showed that precipitation contributed 60% of groundwater storage variability, while
human activities, especially socioeconomic development, contributed ~31% of groundwater
storage variability. Compared to a statistical approach, hydrological models can reflect the
interaction and physical mechanism between climate and hydrology. Brouyère et al. [21]
established an integrated hydrological model (MOHISE) to study the direct impact of
climate change on the hydrological cycle of the Geer basin in Belgium. The results showed
climate change would have a pluri-annual impact on groundwater resources, causing a
global “monotonic” decrease in groundwater levels over time. Jyrkama et al. [22] proposed
a physical method based on the hydrological model HELP3 to describe the temporal and
spatial impact of climate change on groundwater recharge. The results showed that climate
change would increase the rate of groundwater recharge and the intensity. Alam et al. [23]
combined surface water and groundwater models with climate projection models to eval-
uate the vulnerability of groundwater in Central Valley California. The results showed
that the groundwater would continue to decline in the future since climate change has led
to 40–70% more annual groundwater consumption by crops. Wu et al. [24] used a fully
coupled climate model to assess the climate-driven impact of potential changes in ground-
water storage throughout the 21st century under the RCP8.5 scenario. The results showed
that rainfall change in monsoon and humid regions was what most affected groundwater
recharging. The regions dominated by snowfall depended on the latitudes and elevation
and changes in evapotranspiration were the main determinant of groundwater recharge
over dry regions. Li et al. [25] used the Catchment land surface model (CLSM), as well as
the WaterGAP and PCR-GLOBWB water resource models combined with GRACE data to
simulate the global long-term groundwater storage changes under the influence of non-
anthropogenic impacts. The results showed that the variability of the global groundwater
was influenced by ENSO’s power over precipitation patterns and global groundwater
anomalies were sensitive to precipitation trends.

Those studies above mainly concentrated on the direct impacts of climate change
and anthropogenic activities on groundwater, discussing the driving factors of precipita-
tion, temperature, evapotranspiration, groundwater extraction, and other related variables.
However, climate change will also affect groundwater changes by indirectly affecting
human activities, especially indirectly through land use or land cover changes (mainly
through groundwater irrigation) [26]. Research examining the interactions between natu-
ral and human-induced process on groundwater change remains limited. Specifically, a
comprehensive analysis of the multiple pathways that might influence groundwater distur-
bances is still lacking in China. Knowledge is limited about the interactions between natural
and human-induced processes on groundwater restricted human trade-off adaptations
to climate change and socioeconomic growth to mitigate future threats to groundwater
provision [27,28].

Here, we use the structural equation model to identify major climate and socioeco-
nomic drivers of the changes of groundwater in China and quantify their contributions.
Based on the developed model, we further assess the sensitivity of groundwater storage to
future climate and socioeconomic change based on the output from an ensemble of regional
circulation models (RCMs) associated with RCP4.5 and RCP8.5 and shared socioeconomic
pathways SSP2 and SSP3. The results enable us to design adaptation measures to prevent
large groundwater depletion.

2. Materials and Methods
2.1. Analysis of Groundwater Data

We use data from Gravity Recovery and Climate Experiment (GRACE) for the pe-
riod of 2003–2015 provided by the Jet Propulsion Laboratory mascons (JPL RL05M). The
GRACE data are processed using a mass concentration solution that allows for improved
spatial resolution and accuracy compared to the spherical harmonic solutions. The spatial
resolution of the data is 0.5◦ × 0.5◦. The groundwater anomaly is obtained by subtracting
non-groundwater storage (soil moisture, canopy storage, and surface water), which are
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available from Global Land Data Assimilation System (GLDAS) [29] provided by NASA
(GLDAS Noah V2.1). As GRACE data are an anomaly relative to the 2004–2009 time-mean
baseline, the soil moisture storage, canopy water storage, and surface water storage from
GLDAS are also computed to an anomaly value relative to the same baseline time pe-
riod. Then we use Equation (1) below to obtain the groundwater storage change based on
variable anomaly described above.

GWSA = TWSA− SMSA− SWEA− CWSA, (1)

where GWSA suggests the groundwater storage anomaly, TWSA is the terrestrial water
storage anomaly, SMSA is the soil-moisture water storage anomaly, SWEA is the snow
water equivalent anomaly, and CWSA is the canopy water storage anomaly.

The non-parametric Mann–Kendall trend test [30,31] with Sen’s slope [32] estimator
is used to identify the groundwater trend. It calculates the median slopes between all
n(n − 1)/2 pairwise combinations of the time series data:

T = median
(Wj −Wi

j− i

)
, (2)

where T is the Theil–Sen median trend, i and j represent different time units (year), and Wi
and Wj represent data for different year.

2.2. Structural Equation Model

It is commonly recognized that the direct and indirect forcing of climate variability
and change and human activity are main drivers of groundwater change, and the climate
influences groundwater through natural and human-induced processes. Here we translate
this hypothesized mechanism into a Structural Equation Model (SEM) [33,34] to quantify
the magnitude and understand the pathway of how these drivers have contributed to the
observed change of groundwater directly or indirectly (Figure 1). SEM has the ability to
go beyond the consideration of independent processes (e.g., as in univariate approaches),
allowing the examination of simultaneous influences. It has been successfully used to
unravel the importance of intercorrelated ecological variables in a variety of applications
recently [35,36]. An additional strength of SEM with regard to our study is its ability to
incorporate latent variables, i.e., variables that cannot be measured directly but can be
expressed by one or more observable indicator variables [37]. Figure 1 shows the conceptual
scheme of the proposed SEM model. The model is used to explore two hypotheses [6]:
that effects of climate variability and change may be greatest through indirect effects on
agricultural water demand, and that groundwater deficit stressed by climate change and
socioeconomic growth may be balanced through transforming land-use.
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Climate, socioeconomic, agricultural water demand, and land-use factors, the main
dimensions of interest in our analysis, are not directly observable (in a strict statistical sense)
but can be described by a number of indicator variables. They are therefore incorporated as
latent variables in our SEM analysis. The structural model is defined as

η = Bη+ Γξ+ ζ, (3)

where η = (η1,η2, . . . ,ηm)
′ denotes the endogenous latent variable (in this paper it refers to

the vector of groundwater storages change), ξ = (ξ1, ξ2, . . . , ξm)
′ is the vector of exogenous

latent variables. In this study, we selected climate factor, socioeconomic factor, agricultural
stress factor, and forest factor as latent variables and investigate their influence on ground-
water. B denotes the matrix of path coefficients that represents the effect of endogenous
latent variables on other endogenous latent variables while Γ represents the effect of ex-
ogenous latent variables on Endogenous Latent Variable and ζ represents the inner model
residuals. Equation (3) is referred to as being in implicit form because endogenous variables
appear on both sides of the equations and have not been “solved”. It is assumed that the
diagonal of B is zero so that no element of ηi is a function of itself [38]. Equation (3) can be
solved for the endogenous variables and written as follows:[

η1
η2

]
=

[
0 β12

β21 0

][
η1
η2

]
+

[
γ11 γ12
γ21 γ22

][
ξ1
ξ2

]
+

[
ζ1
ζ2

]
, (4)

Y = Λyη+ ε, (5)

X = Λxξ+ δ. (6)

Each latent variable is represented by observed variables. The observed variable Y for
endogenous latent variable can be generated as a linear function of its latent variable η and
residue ε, and X for exogenous latent variables is generated based on ξ and δ. Λy and Λx
represent the loading matrix, ε and δ are the measurement errors for Y and X, respectively.

The solution of equations is performed with the Analysis of Moment Structures
software (AMOS). All explanatory and response variables were standardized according to
their own series before being entered into the model as the following equation:

vstd =
v−v̄
SDv

, (7)

where vstd is the standardized indicator used in the structural equation model, v is the raw
variable, v̄ is its time series mean, and SDv is its standard deviation. This standardization
was applied to isolate changes relative to provincial specific mean conditions, and to enable
a direct comparison of effects across provinces. It also allowed intercepts to be omitted in
the statistical analysis, which grants a more intuitive interpretation of results.

2.3. Description of Observed Variables

The observed variables are collected based on detailed historical inventory data at
the provincial scale for the 2003–2015 period. The list and descriptions of potential ob-
served variables are shown in Table 1. The climatic indicators used are annual average
daily high temperature, annual total amount of precipitation, and annual average daily
relative humidity. They are derived from the observation data provided by the National
Meteorological Information Center of China. To allow for potential time lags in the effect
of climatic drivers on groundwater, the previous year’s temperature and precipitation
records are included as explanatory variables. The land-use indicators used include annual
forest coverage rate, annual man-made forest coverage rate, annual forest growing stock
volume, annual grass coverage rate, annual wetland coverage rate, annual construction
land coverage rate, and annual agricultural land coverage rate. Agricultural water demand
indicators include annual agricultural GDP per km2, sown area of crop, and annual yields
of main crop products per km2. Socioeconomic indicators include GDP per km2, water
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consumption for living per km2, annual water consumption for industry per km2, and pop-
ulation per km2. These data are available in the China Statistical Yearbook. Additionally, as
GRACE data are anomaly relative to the 2004–2009 time-mean baseline, to be consistent, all
variables are computed to an anomaly value relative to the 2004–2009 time-mean baseline.
The grid variables are unified to the provincial administrative units in China according to
the regional mean when constructing the Structural Equation Model.

Table 1. List and description of potential observed variables considered.

Observed Variables Description Original Resolution

Temperature Annual averaged daily records of high temperature Station

Precipitation Annual total amount of precipitation station

Humidity Annual average daily relative humidity Station

Forest coverage rate Annual forest coverage rate province

Man-made Forest coverage rate Annual man-made forest coverage rate province

Forest growing stock Annual forest growing stock volume per km2 province

Grassland coverage rate Annual grassland coverage rate province

Wetland coverage rate Annual wetland coverage rate province

Construction land coverage rate Annual construction land coverage rate province

Agricultural land coverage rate Annual agricultural land coverage rate province

Agricultural GDP Annual agricultural GDP per km2 province

Yields of main crop products Annual yields of main crop products per km2 province

Population density Annual population per km2 province

GDP Annual Gross Domestic Production per km2 province

Water consumption for living Annual water consumption for living per km2 province

Water consumption for industry Annual water consumption for industry per km2 province

Groundwater change Annual Groundwater change 0.5◦ × 0.5◦

2.4. Future Scenarios

We use the climate projections provided by the regional climate model NEX-GDDP
which are downscaled from Global Climate Models (GCMs) participating in the Coupled
Model Intercomparison Project Phase 5 (CMIP5). Climate model outputs of five models
are applied: bcc-csm1-1, CanESM2, MIROCESM, IPSL-CM5A-LR, and MPI-ESM-L. The
NEX-GDDP only provides outputs of daily gridded highest temperature and precipitation,
the humidity is predicted based on the regression of the relationship between humidity and
temperature and precipitation. Considering the differences between the model estimates
and observed data, we use the bias correction method [39–42] to adjust climate outputs
before predicting future groundwater changes. In this study, the difference between the
observed and simulated climate outputs is removed over the baseline period of 2003–2015
according to Equation (8). The advantage of this correction method is that the observed
sequence and its linear spatial-, temporal-, and multi-variable dependence structure are
naturally preserved [42].

TMC,year = TModel,year × TOBS,2003–2015/TModel,2003–2015, (8)

where TMC,year and TModel,year are the corrected and simulated climate outputs for a given
year, respectively. TOBS,2003–2015 and TModel,2003–2015 represent the averaged observed and
simulated climate outputs for the period of 2003–2015, respectively.

Future socioeconomic development is taken into consideration by combining the RCPs
with shared socioeconomic pathways (SSPs). Two SSPs, the “middle of the road” (i.e.,
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Medium challenges to mitigation and adaptation) (SSP2) and “Regional Rivalry” (i.e., High
challenges to mitigation and adaptation) (SSP3), are considered in the study. The SSP2
describes that the globe travels along a path where social, economic, and technological
tendencies do not diverge noticeably from past trends. Global population growth is
moderate and the second half of the century will see a moderate slowdown in the rate of
population growth worldwide. Income disparity is still a problem or is becoming worse
slowly. The SSP3 describes that countries are being pushed to concentrate more on internal
or, at most, regional issues by a resurgence of nationalism, worries about competitiveness
and security, and regional conflicts. Population growth is high in emerging nations and
low in industrialized nations [43].

3. Results
3.1. Changes in Groundwater and Main Influencing Variables

We quantify trends in groundwater storage in China observed by Gravity Recov-
ery and Climate Experiment (GRACE) [6,44] satellites during 2003–2015 (Figure 1). The
groundwater storage has declined in northern China at an average rate of −0.204 cm yr−1

and increased by 0.431 cm yr−1 in southern China between 2003 and 2015. Significant
declines in groundwater anomalies are observed in Tien Shan regions in northwestern
China’s Xinjiang Province, South of Tibet, and North China Plain. The largest depletion
rate reached −4.61 cm yr−1 during the study period.

Groundwater storage depletion occurs when the water extraction rate is larger than
that of recharge [4]. Precipitation is the primary recharger of groundwater and is strongly
affected by climate variability [6]. During 2003–2015, the observed change in groundwater
storage increases in southern China is partially attributable to the abundant precipitation,
which increases 12.46 mm yr−1 in average throughout the study period (Figure 1). While
the precipitation of northern China showed a slightly increasing trend or a declining trend,
especially in the southern part of the North China Plain (−14.32 mm yr−1). The North
China Plain is the first most heavily irrigated region and is among China’s most populated
and economically strongest regions (see Figure 2). Furthermore, we can see southern China
has a larger forest coverage rate compared to its northern part. An intuitive understanding
is that the socioeconomic and agricultural related drivers and changes in precipitation
contribute together to the negative trend in groundwater storage. Their contributions
and coupling effect on groundwater, however, remain unclear. An understanding of the
relationship between different drivers and groundwater change is consequential to the
development of robust estimates of not only groundwater recharge and depletion but of a
strategic plan for balancing groundwater storage under climate changes and socioeconomic
development.

3.2. Relative Contribution of Driving Factors

Figure 3 shows the estimation of the SEM model with a total of 13 manifest observed
variables. Other observed variables, especially variables related to land-use, such as wet-
land coverage rate, construction land coverage rate, and grassland coverage rate, are not
significant and resulted in a fairly poor model–data fit. As shown in Figure 3, Climate 1 indi-
cates climate variabilities in the current year and Climate 2 indicates climate variabilities in
the previous year. Socioeconomic indicates socioeconomic development. Agricultural stress
(ARG stress) is defined as the ratio between Agricultural GDP per km2 and precipitation
per km2. We use forest as the latent variable instead of land-use as the manifest observed
variables of land-use are highly related to forest. Red and blue arrows represent negative
and positive paths from latent variables to groundwater (GW), respectively. Boxes represent
observed variables and the path coefficient of black arrows indicates the importance of
observed variable to represent the corresponding latent variable. The observed variable
with a path value of 1 is selected as a reference, and the value of other paths indicate their
contribution to the latent variable relative to the referenced observed variable. The larger
the absolute value is, the stronger the influence is.
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(a) Annual trend in groundwater anomaly based on GRACE (in centimeters per year); (b) changes
in precipitation (in centimeters per year); (c) percentage of irrigated areas (in percent); (d) GDP
(in Million $ per 10 thousand hectares); (e) population (in thousand per 10 thousand hectares);
(f) percentage of forest areas (in percent).
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The entire model has an adequate goodness of fit based on Normed chi-square (NC):
4.99 and Goodness-of-fit index (GFI): 0.90. The mechanistic understanding of groundwater
change is as following: Climate influences the groundwater directly through recharging:
a combination of heavy rainfall, high humidity, and low temperature frequently results
in increasing trend of groundwater change. Climate indirectly influences groundwater
change through irrigation demand. The larger the ARG stress, the greater the groundwater
demand for agricultural irrigation. Less precipitation leads to more extensive irrigation
activities and therefore increases groundwater depletion stress. Socioeconomic develop-
ment, including expanding economy and population, increases groundwater demand. The
influence of forest on groundwater is controversial and it is difficult to quantify impacts of
vegetation change on groundwater yield [45]. One perception is that trees benefit water
availability [28,46]. However, it is also doubted that planting could worsen water scarcity
by using a lot of water [44].

Our results show that the direct impact of the climate factor on groundwater is mainly
through the recharge from the previous year (standard coefficient 0.24). Climate variabilities
of the current year notably influence groundwater through indirect effects on agricultural
irrigation stress (standard coefficient −0.61). Socioeconomic development contributed
negatively to the change of groundwater (standard coefficient −0.21). Forest has a posi-
tive influence on groundwater with a magnitude comparative to that of the agricultural
irrigation stress (standard coefficient 0.56). Analyzing latent variables individually, we
find that higher precipitation and humidity lead to a higher level of groundwater storage
than expected. Furthermore, higher temperature increases the rate of evaporation and
decreases groundwater storage. Economic development and population expansion are
equally influential and exerted a significant negative influence on groundwater storage.
All variables related to forest are found to enhance groundwater recharge.

3.3. Groundwater Sensitivity to a Changing Future

The parameterized SEM model allows us to analyze sensitivity of groundwater storage
to potential future climate and socioeconomic change. Here, we define mean state of climate
and socioeconomic records for the period of 2003–2015 as the baseline, to quantify the sen-
sitivity of groundwater storage facing a changing future. Three time periods—Near-term
(2030, pooling 2020–2039 data), Mid-term (2050, pooling 2040–2059 data), and Long-term
(2090, polling 2081–2099)—and three combined climate and socioeconomic scenarios—
optimistic (RCP4.5 and SSP2), business-as-usual (RCP8.5 and SSP2), and pessimistic from
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IPCC (RCP8.5 and SSP3)—are considered. The bias-corrected Climate outputs from five
downscaled climate projections (NEX-GDDP) [47] generated from GCMs which well re-
produce the observed climate historical records over China are applied (see Materials and
Methods). NEX-GDDP projects clearly the increase of mean temperature over the whole of
China in the future, e.g., by Mid-term, the overall average highest temperature is projected
to become warmer by 1.7 ◦C and 2.6 ◦C across China relative to the 2003–2015 baseline
by average of model ensemble for RCP 4.5 and RCP 8.5, respectively. Moreover, northern
China is warming faster than southern China. Such a rising temperature would inevitably
enhance evaporation and would serve to stress limited groundwater resources further,
through direct depletion and indirect agricultural water stress. According to regional
climate models, the precipitation shows an increasing trend of precipitation for most parts
of China. The RCP4.5 ensembles mean projects an average of 30 mm (8%) and 83 mm
(7%) increases in average annual precipitation in northern China and southern China in
Mid-term compared with 2003–2015, respectively.

An expanding population, coupled with economic development, is bound to change
future demand for groundwater in China. The SSPs [48] project continued a U-shape
population and economic growth: e.g., in the “middle-of-the-road” SSP2, population
of China will increase by 3.85%, −7.29%, and −40.52% in 2030, 2050, and 2090 relative
to 2003–2015 mean; while GDP is 3.7, 5.6, and 6.3 times larger over the same period, result-
ing in a greater demand on the groundwater.

On the basis of RCPs and SSPs, we use the SEM model to analyze the change of
groundwater storage if the current mean state of the 2003–2015 period is changed to that of
three combined climate and socioeconomic scenarios in 2030, 2050, and 2090, respectively
(Figure 4). The magnitude and spatial pattern of groundwater changes vary with the sce-
narios; however, all scenarios suggest a decrease in groundwater. Although precipitation
increases in most regions in China, its effect is dwarfed by the impact of the more rapid
growth of economic activities in urban areas. Groundwater decreases the largest in the
business-as-usual scenario, because of its relatively higher projected temperature, lower
projected precipitation, and higher socioeconomic development, leading to a higher impact
of groundwater change. The model ensemble suggests an average change of −1.7 cm,
−3.9 cm, −4.7 cm by 2030, 2050, and 2090 under optimistic scenario, respectively, decreases
−2.1 cm, −4.7 cm, −7.7 cm for business-as-usual scenario, and −1.8 cm, −3.4 cm, −5.9 cm
for pessimistic scenario. Meanwhile, it is found that large geographical differences exist
across the country. Under future scenarios, the decrease of groundwater would concentrate
much more in coastal economic zones, which are mostly due to socioeconomic change and
can be explained by the disproportionate economic growth between regions in SSP sce-
narios. For example, Shanghai is expected to experience the largest groundwater decrease
in comparison to other regions, largely attributed to its projected higher socioeconomic
growth rate. The annual GDP of Shanghai increases from over US$0.23 trillion currently,
to up to US$1.16 trillion in 2050 in the SSP2 ‘Middle of the Road’ projection. The North
China Plain is also expected to face a large increase in economic growth (409% rise by 2050
in the SSP2 ‘Middle of the Road’ projection compared to that of 2003–2015). The total
increased water requirement imposed by socioeconomic development will exceed increases
in projected rainfall, leading to a continuing trend towards severe deficit on groundwater
in the North China Plain. As the North China Plain is one of the most prosperous regions
and serves as one of the largest cropland in China, a high conflict between the urban and
agricultural sectors is expected and reconcilement is needed to balance their development.
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4. Discussion

Our study is a pioneer research in investigating the interactions between natural and
human-induced processes on groundwater change using the SEM approach. By using
SEM, we are able to quantify the direct and indirect contributions of different drivers on
groundwater storage. The pathways among climate variability, anthropogenic factors,
and groundwater storage variations were previously unrecognized. Interestingly, it is
for the first time we found that in general forest has a positive influence on groundwater
at the provincial scale of China, although it was pointed out that revegetation in some
semi-arid Loess Plateau in China has increased evapotranspiration and hence decreases
groundwater [49]. As we show in the results, generally, groundwater is benefited from
more forest coverage for most regions of China, likely owing to the fact that forests improve
soil hydraulic conductivity and impede evaporation which outweigh their extra water
use [45].

However, due to the complex and dynamic nature of the groundwater change, detailed
analysis in local level is needed for a refined design of vegetation species and density
by considering local conditions. We acknowledge that there are some uncertainties in
simulated components (SMSA, SWEA, CWSA) from GLDAS and limitations due to a lack
of surface water storage anomaly. Moreover, due to the short time period from 2003–2015, it
may not completely reveal various mechanisms that influence groundwater storage change.
Nevertheless, our findings provide useful information about potential future groundwater
situations and have important policy implications for making decisions at the national and
provincial scales for reaching a sustainable development.

Furthermore, we acknowledge that in this study we only considered main driving
factors that influence groundwater storage, and the estimated future groundwater change
only reflects its response to the selected factors. For example, in our model we were unable
to consider the effect of south-to-north water diversion in China. Yang et al. [50] used
a high-resolution community water model combining water diversion, water use, and
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climate variability indicators to predict groundwater storage changes in the North China
Plain during the 2019–2050 time period. The result showed that groundwater in the North
China Plain would decline further without considering the impact of future south-to-north
water diversion. Moreover, water diversion combined with decreasing water use can result
in stabilized groundwater storage in the future. How to incorporate water management
measures in our model will be explored in our future study.

5. Conclusions

In this study, we use a structural equation model to capture how groundwater is
influenced by driving factors and respond to future climate change. Our work shows that
the direct impact of climate factor on groundwater is mainly through the recharge from
the previous year. Climate variabilities of the current year notably influences groundwater
through indirect effects on agricultural irrigation stress. Socioeconomic development and
agricultural irrigation contributed negatively to the change of groundwater. Forest has a
positive influence on groundwater with a magnitude comparative to that of the agricultural
irrigation stress.

The results of sensitivity of groundwater storage to future climate and socioeconomic
change show that both global warming and socioeconomic growth are inevitably increasing
pressure of regional groundwater recession. The groundwater of China will face a decrease.
Under future scenarios, the groundwater in coastal economic zones is more vulnerable
due to increasing water requirement imposed by socioeconomic development. Sustainable
groundwater management policies should be implemented to cope with future stresses.
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