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Abstract: Despite being a natural ecological process, wildfires are dramatic events that, accelerated
by global change, could negatively affect ecosystem services depending on their severity level.
However, because of data processing constraints, fire severity has been mostly neglected in risk
analysis (especially at regional levels). Indeed, previous studies addressing fire severity focused
mainly on analyzing single fire events, preventing the projection of the results over large areas.
Although, building and projecting robust models of fire severity to integrate into risk analysis is
of main importance to best anticipate decisions. Here, taking advantage of free data-processing
platforms, such as Google Earth Engine, we use more than 1000 fire records from Western Italy and
Southern France in the years 2004–2017, to assess the performance of random forest models predicting
the relativized delta normalized burn ratio (rdNBR) used as proxy of fire severity. Furthermore, we
explore the explanatory capacity and meaning of several variables related to topography, vegetation,
and burning conditions. To show the potentialities of this approach for operational purposes, we
projected the model for one of the regions (Sardinia) within the study area. Results showed that
machine learning algorithms explain up to 75% of the variability in rdNBR, with variables related to
vegetation amount and topography being the most important. These results highlight the potential
usefulness of these tools for mapping fire severity in risk assessments.

Keywords: burn severity; normalized burn ratio; rdNBR; wildfires; Mediterranean; Landsat

1. Introduction

Global change impacts on ecosystem services are pushing agencies to fund, develop,
and implement tools to anticipate decisions for disaster risk reduction (e.g., the European
Commission). Despite being a natural ecological process [1,2], wildfires are dramatic events
that, accelerated by global change [3–5], according to their severity level, could negatively
affect the services provided by ecosystems (e.g., water regulation, soil conservation, carbon
uptake, or biodiversity) [6]. Previous studies on fire risk, meant as the interaction between
hazard, exposure, and vulnerability (sensu IPCC, https://apps.ipcc.ch/glossary/, accessed
on 1 March 2022), have been mainly focused on assessing the hazard, i.e., the potential
occurrence of wildfires. For instance, fire spread simulators were used to estimate burning
probabilities [7,8], machine learning models were calibrated and projected for assessing
fire occurrence likelihood [9,10], and climate/weather projections were used to calculate
meteorological fire danger across different time scales [11,12]. However, less attention has
been put on assessing landscape sensitivity to wildfires. Sensitivity, understood as the
degree to which a system is affected by wildfires (sensu IPCC), is a main component of
vulnerability. Sensitivity allows analysts to focus on factors modulating the consequences
of specific hazards, e.g., the forest characteristics that influence the degree of damage [13,14].
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Thus, accounting for sensitivity in wildfire risk analysis might provide a more realistic
picture that better contributes to decision making, e.g., allocation of prevention actions.

In wildfire risk assessments, the sensitivity might be represented by fire severity,
broadly defined as the magnitude of the environmental effects caused by fires [15], but also,
in a more specific sense, as the aboveground and belowground organic matter consumed by
fires [16]. Studies addressing fire severity were initially based on field data, thus limiting the
number of sample locations and the robustness of results [17]. To overcome such limitations,
recent efforts focused on estimating field data through remote sensing to increase the spatial
extent of analysis and the frequency of estimations [18–20]. Indeed, these studies showed
good correlations when using remote sensing indices, such as the normalized burn ratio
(NBR) and its relativized difference (rdNBR). The NBR index relies on the fact that burned
vegetation does not reflect much within the near infrared (NIR) because of low leaf cover;
nevertheless, it reflects a high amount of radiation within the short-wave infrared (SWIR)
due to its low moisture content [19]. Thus, good results were observed across climatic
regions and vegetation types recognizing the ecological signal provided by rdNBR [21–23].
However, the time-consuming judicious selection and downloading–processing of pre-fire
and post-fire scenes to calculate rdNBR limited its use to specific fire events. For instance,
Viedma et al. [24] and Mitsopoulos et al. [25] assessed factors driving fire severity in Spain
and Greece but focusing only on one single fire events. Despite their enormous value for
guiding management actions, not fully sampling the whole environmental range prevents
their use over larger areas, increasing uncertainties when projecting the models outside the
study area [26].

Nowadays, free data and processing platforms, such as Google Earth Engine (GEE),
allow the processing of huge amounts of data, overcoming the limitations mentioned
earlier. Furthermore, Parks et al., [27] showed how, thanks to GEE, accurate estimations of
fire severity can be obtained using mean composite values (i.e., the mean value for NBR
over a prespecified data range before and after the fire). It was shown that this procedure
saves time, avoiding judicious selection and downloading–processing of fire scenes, also
providing better results when relating rdNBR with severity field data. This improvement
potentially allows for increasing the number of fire events under analysis and the scale of
the study, which, in turn, might increase the robustness of the results. Furthermore, it might
allow building of tailored tools for risk analysis accounting for fire sensitivity/vulnerability.

Thus, taking advantage of GEE and the procedure developed by Parks et al. [27], this
study uses more than 1000 fire perimeters from Western Italy and Southern France to assess
empirical models’ performance when predicting fire severity. Such an approach should
overcome the limitations of previous studies in projecting potential fire severity over large
areas and might prove helpful for risk analysis. Furthermore, we aim to explore, on a large
scale, the effect of variables related with topography, pre-fire vegetation, and burning
conditions on fire severity. Finally, as an example of supporting prevention actions under
an operational framework, we map the potential fire severity for the region of Sardinia.

2. Materials and Methods
2.1. Study Area

The study area, located in the central Mediterranean basin, covers the French regions of
Provence-Alpes-Côte d’Azur (PACA) and Corse, and the Italian regions of Sardinia, Liguria,
and Tuscany (Figure 1). The main vegetation types are sclerophyllous shrublands, broadleaf,
and coniferous forests (e.g., Quercus ilex and Pinus pinaster, respectively), and agricultural
lands interspersed with natural vegetation (Figure 2a). The study area, characterized
by a Mediterranean climate, is largely affected by wildfires during the summer season
(Figure 2b).

2.2. Fire Perimeters

We used fire perimeters (without excluding inner unburned areas) to extract pixel
information regarding fire severity (i.e., rdNBR) and explanatory variables (i.e., topography,
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vegetation, and burning conditions). Fire perimeters and the date of occurrence were
obtained from the French National Forest Office (ONF) and the former Corpo Forestale
dello Stato (CFS) for the studied regions in France and Italy, respectively. ONF database
only provides data for fires larger than 25 ha (1999–2019), whereas the CFS database covers
all fires from 2004 to 2017. For consistency between both datasets, only fires larger than
25 ha and which occurred in 2004–2017 were considered for the analysis. Thus, a total of
1139 fire events were considered. Sardinia was the region recording the most significant
number of fire events (84%).

Figure 1. Map of the study area (a), within the Mediterranean Region (b), which covers the French
regions of Provence-Alpes-Côte d’Azur (PACA) and Corse, and the Italian regions of Tuscany, Liguria,
and Sardinia. Fire perimeters included in the study (period 2004–2017) are shown in orange (source
ONF and CFS).
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Figure 2. Number of pixels (30-m resolution) under analysis within the studied area (period
2004–2017) across CLC vegetation types (a) and fire frequency (b) across different months and
fire size classes (in ha).

2.3. Fire Severity from Remote Sensing

Fire severity was calculated on GEE using the relativized delta normalized burn ratio
(i.e., rdNBR, Equation (2)) following the procedure suggested by Parks et al., [27]. This
method, instead of relying on a judicious selection of one pre-fire and one post-fire scene,
automatically calculates the mean NBR (Equation (1)) from all the available scenes (i.e.,
not masked, see below) within a specific data range (i.e., from April to June) for one year
before and after the fire event (i.e., NBRprefire and NBRpostfire, respectively). The study
from Parks et al. [27] showed that the approach saves time while improving accuracy
when validating with field data. rdNBR was preferred over other remote sensing indices
(such as dNBR or RBR) presented by Parks et al. [27] because it provides similar levels of
accuracy [27]. In addition, as suggested by [19], it is more suitable for analyzing multiple
fires in heterogeneous landscapes since it makes comparable pixels with different amounts
of vegetation.

NBR = (NIR− SWIR)/(NIR + SWIR) (1)

rdNBR =


(NBRpre f ire−NBRpost f ire)∗1000

|NBRpre f ire|0.5 ,
∣∣∣NBRpre f ire

∣∣∣ ≥ 0.001

(NBRpre f ire−NBRpost f ire)∗1000
0.0010.5 ,

∣∣∣NBRpre f ire

∣∣∣ < 0.001
(2)

Field data to validate rdNBR as a proxy of fire severity was unavailable for our
study area. However, numerous studies already showed the strong relationship between
rdNBR and severity field data worldwide [23,27,28] and especially in the Mediterranean
region [18,22,24,25,29] (R2 mainly ranging from 0.6 to 0.8). In addition, because of inherent
limitations, large-scale studies using NBR as a proxy of fire severity did not perform vali-
dation (e.g., [30]), assuming that the strong results from previous studies [18,22–25,27–29]
provide enough support for further analysis.

Since fire records started in 2004, rdNBR was calculated using the atmospherically
corrected surface reflectance data from Landsat 7 ETM+ (https://developers.google.com/
earth-engine/datasets/catalog/LANDSAT_LE07_C01_T1_SR, accessed on 15 December
2021). The dataset, with a spatial and temporal resolution of 30 m and 16 days, respectively,
also includes a quality mask, based on the CFMask algorithm [31], to identify pixels with
clouds, shadows, water, and snow. Those pixels were excluded for calculating the mean
composite pre- and post-fire NBR.

2.4. Explanatory Variables

Different types of explanatory variables were initially selected according to previous
studies focusing on single fire events [25,32,33]. These variables are included in three broad

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T1_SR
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groups: topography, vegetation, and burning conditions (Figure 3). All datasets were
resampled to the rdNBR grid using the scale command in GEE, which uses the nearest
neighborhood method by default.

Figure 3. Data processing workflow. Fire perimeters are used to extract information in Google Earth
Engine, at pixel level, regarding surface reflectance (to calculate the spectral indices), topography
within the fire perimeter, vegetation characteristics (type and cover), and wind conditions during
each fire event (1). Wind conditions are downscaled to the rdNBR grid using WindNinja (2). These
data, together with the corresponding topographical conditions and Corine land cover class, are used
to feed the Rothermel package in R to calculate the potential rate of spread for each pixel within each
fire perimeter (3). Finally, the random forest algorithm is used to calibrate and validate an empirical
fire severity model using the ranger Package in R (4).

Topographical conditions, i.e., orthometric altitude and aspect (the orientation in
relation to geographic North in sexagesimal degrees), were obtained and processed in GEE
using the NASADEM dataset at 30-m resolution (https://developers.google.com/earth-
engine/datasets/catalog/NASA_NASADEM_HGT_001, accessed on 15 December 2021),
which is an improved version of the Shuttle Radar Topography Mission (SRTM).

For defining the vegetation types, we used data from the CORINE Land Cover
(CLC) storage on GEE (https://developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_CORINE_V20_100m, accessed on 15 December 2021). CLC have 100-m
resolution, with 25 ha as the minimum mapping unit (100 m as minimum mapping width)
and an accuracy of 25 m. Since CLC data are updated every six years (from 2000 to 2018),
the closest previous CLC update to each specific fire event was associated to best represent
the vegetation during the fire. For instance, for a fire occurring in 2009, we assigned the
CLC 2006 data. This approach assumes that no forest change occurred between the year
of the CLC inventory and the fire event. Since we were mainly interested in assessing
fire severity on (quasi-) natural ecosystems, only pixels classified by the CLC as (quasi-)
natural vegetation areas were used in the analysis (i.e., agro-forestry areas, broad-leaved
forests, coniferous forests, agriculture with natural vegetation, mixed forests, pastures,

https://developers.google.com/earth-engine/datasets/catalog/NASA_NASADEM_HGT_001
https://developers.google.com/earth-engine/datasets/catalog/NASA_NASADEM_HGT_001
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_CORINE_V20_100m
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_CORINE_V20_100m
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sclerophyllous vegetation, sparsely vegetated areas, and transitional woodland–shrub (i.e.,
categories at the CLC n3 level)).

Furthermore, vegetation amount was considered in two different ways. For one side,
we used the Landsat Vegetation Continuous Fields (https://developers.google.com/earth-
engine/datasets/catalog/NASA_MEASURES_GFCC_TC_v3?hl=en, accessed on 15 De-
cember 2021), which provides data on tree cover percentage at a resolution of 30 m for the
years 2000, 2005, 2010, and 2015. As for CLC data, the closest dataset to each fire date was
assigned. On the other side, using the Landsat7 data, we also calculate the Normalized
Difference Vegetation Index (NDVI) as a proxy for the total vegetation amount for each spe-
cific pixel and date (NDVIfireday). To avoid missing values and to automatize the procedure,
we calculate the mean value of NDVI for the two previous scenes.

The effect of vegetation water stress on fire severity was also considered by calculating
the Normalized Difference Water Index (NDWI). NDWI uses surface reflectance in the near
and shortwave infrared as a proxy of water content [34]. Indeed, several studies showed
its great performance in estimating live fuel moisture [35,36]. To make different pixels
comparable and, thus, meaningful for model calibration, we followed the standardized (z-)
score approach recently proposed by Swetnam et al., [37] using GEE. The approach first
calculates the NDWI for the fire day (here, the mean of the previous 30 days, i.e., NDWIday),
the mean (NDWImeanRef), and the standard deviation (NDWIsdRef) for a reference period
(here the previous 5 years). Then, for NDWIday, we subtract the NDWImeanRef and divide by
NDWIsdRef to obtain, as in inferential statistics, a standard score (NDWIzscore) representing
the degree of fuel moisture (the lower the value, the greater the dryness). Indeed, this
approach proved useful for monitoring ecosystem disturbances [37].

Finally, to account for burning conditions’ effects on fire severity, we calculated the fire
rate of spread (ROS) using the function implemented on the R package Rothermel [38]. In-
deed, the most commonly used fire spread simulators (e.g., Behave, Flammap, Farsite, and
Wildfire Analyst) are based on the Rothermel equation. The Rothermel equation requires
data on fuel, topography, and weather conditions during the fire event [39]. CLC classes
were reclassified into fuel models following Lozano et al. [7], and topographical conditions
were extracted from the NASADEM (see previous paragraphs). We used ERA 5 Land
data from GEE (https://developers.google.com/earth-engine/datasets/catalog/ECMWF_
ERA5_LAND_HOURLY, accessed on 15 December 2021) to estimate wind direction and
speed during each fire day. Since ERA5 Land provides data at 11-km resolution, these
data were downscaled to rdNBR resolution (30 m) using the Command Line Interface of
WindNinja. WindNinja is a program developed by the American Forest Service that com-
putes spatially varying wind fields in complex terrains [40]. Furthermore, to account for
the positive and negative effects of slope and wind alignment on ROS estimation, the wind
speed was multiplied by the cosine of the difference between aspect and wind direction
(both in degrees).

2.5. Analysis

The random forest algorithm implemented under the R package “ranger” [41] was
used to assess the potential predictability of fire severity (i.e., rdNBR) based on the ex-
planatory variables mentioned in the previous section. Random forest is a well-recognized
and commonly used machine learning algorithm based on classification trees [42]. Ran-
dom forest is a nonparametric algorithm which fits several trees by randomly splitting
the original sample at each iteration. The two parameters required to generate the model
are the number of classification trees and the number of variables available for splitting
each node. These parameters were set as default values, i.e., 500 trees and the square root
of the number of variables. Following previous studies, the model’s predictive power
was assessed with the internal splitting of the dataset when building each decision tree
(e.g., [33]). The random forest algorithm uses two thirds of the data for training and the
remaining third for validation (called out-of-bag samples, OOB). OOB samples represent
the validation set and are used only in the decision trees that do not include them in the

https://developers.google.com/earth-engine/datasets/catalog/NASA_MEASURES_GFCC_TC_v3?hl=en
https://developers.google.com/earth-engine/datasets/catalog/NASA_MEASURES_GFCC_TC_v3?hl=en
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY
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training step. The final prediction is the average among all decision trees predicting each
OOB sample. Thus, these OOB samples are used to validate the model by estimating the
variance explained by the model and the mean absolute error [42].

Furthermore, we also assessed the model’s classification accuracy by calculating the
area under the receiver operating characteristics curve (AUC), a common metric used when
assessing accuracy with classification algorithms [43]. Moreover, in this case, two thirds of
the data were used for training and the remaining third for validation purposes. rdNBR
values were classified into low, medium, and high severity categories following the thresh-
olds defined by Parks et al. [27] (<248, 248–544, >544). We acknowledge that thresholds
might differ across different regions and, thus, a potential mismatch might lead to wrong
interpretations. Nevertheless, since it was an illustrative example, and we strictly followed
the procedure suggested by Parks et al. [27], we consider it more adequate to use those
values. Furthermore, some studies using rdNBR in Mediterranean environments observed
and used similar values (e.g., [24], <310, 310–640, >640).

We assessed the importance of each variable in the model using the variance impurity
as implemented in the “ranger” package [41]. In addition, to interpret the effect of the
explanatory variables, we used partial dependence plots (pdp) as implemented on the
R package “pdp” [44]. Pdp are commonly used to interpret the outputs of black-box models
representing the explanatory variables’ marginal effect (yhat) on the response.

Finally, the model was projected for a specific area of interest to show how the ap-
proach could be dynamically implemented for operational purposes. We accounted for
the environmental conditions of one specific random date (note that the model can be
projected over time to account for varying factors as NDWIzscore, here used as a proxy of
fuel moisture content). Sardinia was selected for this exercise, since a significant percentage
of fire records used for calibration belong to this region, and thus results are expected to be
more robust.

3. Results

rdNBR values in the study area ranged from −1132 to 821, with a mean value of 134
(dimensionless, Figure 4). Regarding the explanatory capacity of the rdNBR model, it
explained 77% of the variance, with an absolute mean error of 141. The variance explained
was similar when calibrating and validating the model separately for each specific forest
type (data not shown). When using RF for classifying fire severity into different classes, the
general AUC was 0.8 (Figure 5).

Figure 4. Histogram of rdNBR values ((a), calculated using the fire perimeters within the study
area during the period 2004–2017; ONF and CFS datasets) and predicted versus observed rdNBR
((b), Pearson correlation coefficient 0.88).
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Figure 5. Area under the ROC curve for each severity class (a). Percentage of pixels classified into
each severity class (b).

The most important variables were tree cover and elevation, followed by the spectral
indices NDVIfireday and NDWIzscore (Figure 6).

Figure 6. Relative importance of the explanatory variables used for modeling rdNBR. See Section 2
for data sources.

Regarding the explanatory meaning of the independent variables, rdNBR increased
with tree cover, NDVIfireday, and ROS, while decreasing with NDWIzscore and aspect
(Figure 7). rdNRB was higher in low and high altitudes but was low under mid altitude
locations (i.e., >500 and 1000 m). Across vegetation types, higher values were observed
over transitional wood–shrub lands and sclerophyllous shrublands.
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Figure 7. Partial dependence plots showing the marginal effect (yhat) of each explanatory variable
(a–g) on rdNBR. Vertical black marks represent deciles values of each explanatory variable.

As an example, for operational purposes, the model was projected over the island of
Sardinia for the 19 August 2019 (Figure 8). The map shows higher potential fire severity
along the eastern mountainous areas.

Figure 8. Projected potential fire severity (rdNBR) for the 19 August 2019 in Sardinia (relief data
also provided).
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4. Discussion

Building and projecting robust models of fire severity to integrate into risk analysis is
of utmost importance for the best decision making. Our modeling exercise showed that
robust projections are possible through integrating a considerable number of historical
fire records, machine learning algorithms, and online data processing platforms. Indeed,
GEE emerged as an excellent resource for data acquisition and manipulation in wildfire
management. It allowed for online processing of topographical, climatological, land
use, and spectral variables, saving time and computational resources. Indeed, previous
studies already showed the potential benefits of using GEE across different topics within
the wildfire risk management field, e.g., fuel moisture, fire severity proxies, or recovery
trajectories [35,45,46]. Furthermore, the procedure suggested by Parks et al. [27] to estimate
rdNBR under GEE allowed consideration of a great number of fires leading to robust model
calibration. Beyond being much faster since no curated scene selection is required, this
procedure was also shown to be potentially more accurate when estimating field metrics of
fire severity, such as the composite burn index [27].

rdNBR values in the study area were mainly within the range of observed data in
other Euro-Mediterranean countries, such as France, Spain, Portugal, or Greece [22,25].
However, in our results, we observed a greater proportion of negative values (i.e., without
severity), most likely since we used fire perimeters with no information on inner unburned
areas. On the other hand, based on single fire events, previous studies focused on sampled
locations (and, thus, had a more accurate delineation of burnt areas).

The model’s performance when estimating rdNBR was within the range, even greater,
of previous studies focused on single fire events [24,32,33]. Correlation values around
0.75 suggest high confidence for reliable projections. Furthermore, the performance of
our models did not differ across forest types, suggesting no potential limitations, at least
in Mediterranean areas for which wildfires are a major threat. Comparing with previous
studies, the advantage of our approach is that the explanatory capacity of the model relies
on readily available data. That is, our approach does not need variables that are not easy to
find, such as those derived from Lidar data. Indeed, despite the high potential of previous
studies for guiding local-scale management actions (e.g., fuel treatments), they might find
difficulties for risk analysis over large areas, especially where Lidar data are unavailable.

Our model performance was also highly satisfactory when using severity classes,
showing a good capacity to discriminate different degrees of fire severity. Our exercise
was based on the categories suggested by Parks et al. [27]. Still, they can be adapted
with little effort to different thresholds defined by using field data or suggested in other
studies (ensuring that rdNBR estimations follow a similar procedure). In addition, when
uncertainties arise when defining thresholds to differentiate severity classes, it is possible
to use varying values and, thus, obtain projected severity classes in a probability manner.
The strong results that we obtained, based on large fire databases over large areas, suggest
a great potential for consideration in risk analysis/mapping in an operational way.

Our study’s most important drivers of fire severity were tree cover, elevation, and the
spectral indices representing fuel amount and dryness, i.e., NDVIfireday and NDWIzscore,
respectively. Our results showed that fire severity is higher when tree cover and total
live fuel amount increase (NDVIfireday). Indeed, previous studies also noticed the great
importance of vegetation amount on fire severity by using different proxies [24,32,33].
A greater amount of vegetation biomass might lead to greater fire intensity, which ultimately
translates into greater impacts on vegetation/ecosystem [1,47]. Indeed, it was shown that
biomass, across large scales, is a limiting factor in fire severity [30]. Interestingly, elevation
emerged as an important variable in explaining fire severity. Although many studies did
not consider elevation for modeling purposes, Mitsopoulos et al. [22] also identified it as
the most important topographical variable. It was suggested that topographical variables
somehow represent multiple processes affecting fire behavior. Indeed, when analyzing
the pdp plots, they suggest that elevation represents some hidden factors that influence
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severity, especially at low and high altitudes. For instance, D’este et al. [48] showed that
elevation in southern Italy significantly explains the spatial distribution of dead fuels.

Our results also showed the importance of plant water stress on fire severity. Previous
studies at a lower scale also observed this effect [33]. It is well known that water stress
might affect the completeness of combustion and fuel flammability [49,50], which ultimately
translates into higher fire severity. Surprisingly, ROS was the variable with the lowest
importance in the model. Its effects on severity were predicted to be greater at high
ROS. Previous studies already observed this pattern but with higher importance in the
model [32]. It was argued that, according to the Rothermel surface model, fire line intensity
directly increases with ROS [51]. Indeed, it was observed that tree mortality is greater
in fast-moving fires [52]. It is important to notice that, compared to “in situ observed”
variables, such as NDVIfireday and NDWIzscore, ROS comes from a modeling approach that
integrates modeled/adjusted variables, such as wind components and fuel types. Thus, the
greater uncertainties associated with ROS might potentially influence the observed results.

Overall, it is important to notice that the major or minor role of different variables
might be case study sensitive, depending on factors such as the study area, satellite used
for severity estimations, or the remote sensing index used. For instance, Viedma et al. [32]
showed how the relative importance of different explanatory variables changed when
using sentinel 2 and Landsat 8. Furthermore, it was also shown how results changed
depending on using different spectral indices (i.e., dNBR, rdNBR, or RBR). Thus, the relative
importance of the different variables should be understood with caution, acknowledging
the theoretical background.

5. Conclusions

Our results, tested within the Mediterranean region, showed that is feasible to obtain
reliable projections of potential fire severity using historical fire records, remote sensing
data, and machine learning algorithms. Our approach could be easily implemented across
different areas and only requires historical fire perimeters, proving beneficial to anticipate
decisions for risk management. Furthermore, the approach presented allows the limitations
of previous studies to be overcome, i.e., based on few fire events, allowing for spatial
projections and large-scale generalizations.
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