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Abstract: In this study, a random subspace-based function tree (RSFT) was developed for land-

slide susceptibility modeling, and by comparing with a bagging-based function tree (BFT), classifi-

cation regression tree (CART), and Naïve-Bayes tree (NBTree) Classifier, to judge the performance 

difference between the hybrid model and the single models. In the first step, according to the 

characteristics of the geological environment and previous literature, 12 landslide conditioning 

factors were selected, including aspect, slope, profile curvature, plan curvature, elevation, topo-

graphic wetness index (TWI), lithology, and normalized difference vegetation index (NDVI), land 

use, soil, distance to river and distance to the road. Secondly, 328 historical landslides were ran-

domly divided into a training group and a validation group in a ratio of 70/30, and the important 

analysis of landslide points and conditional factors was carried out using the functional tree (FT) 

model. In the third step, all data are loaded into FT, RSFT, BFT, CART, and NBTree models for the 

generation of landslide susceptibility maps (LSM). Comparisons were made by the area under the 

receiver operating characteristic curve (AUC) to determine efficiency and effectiveness. According 

to the verification results, the five models selected this time all perform reasonably, but the RSFT 

model has the highest prediction rate (AUC = 0.838), which is better than the other three single 

machine learning models. The results of this study also demonstrated that the hybrid model gen-

erally improves the predictive power of the benchmark landslide susceptibility models. 
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1. Introduction 

As one of the most typical geological disasters, landslides cause serious population 

migration and economic losses every year around the world [1,2]. It is well known that 

mountains, plateaus, and hills occupy 67 percent of the land area of China, which means 

China is a country with frequent geological disasters [3,4]. Due to the special conditions 

of the geological environment, Sichuan Province has become an area vulnerable to geo-

logical disasters in China [5]. The paper takes Xiaojin County as the study area which is 

limited to one region in the northeast of Sichuan Province. The production and life of 

human beings in this area and the local economic development are deeply endangered 

by landslide disasters. Generally, the threat brought by landslides can be reduced effec-

tively by predicting the precise locations of landslides in the future [6]. 

The premise of landslide susceptibility analysis is that the geological environment 

of a certain location is similar to the geological conditions of the location where land-

slides have occurred, so the location may also have landslides. At present, there are 

three main models for drawing landslide susceptibility maps: physical models, statisti-

cal models, and machine learning methods [7,8]. Landslide susceptibility assessment 

methods based on physical models (e.g., deterministic analysis) have been widely used 

since 1990 [9]. Deterministic analysis is the application of the slope stability model to 
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calculate the safety factor to determine landslide susceptibility [10]. This method is 

greatly affected by the landslide input samples and is only suitable for large-scale small 

areas. However, this study is to study regional landslides, so this method was not select-

ed for this study. 

So far, researchers have developed a number of statistical and machine learning 

approaches to assess landslide susceptibility. 

The widely used statistical models are evidential belief function (EBF) [11], analyti-

cal hierarchy process (AHP) [12], statistical index (SI) [13], weight of evidence (WOE) 

[14], and logistic regression (LR) [15]. For example, Nohani, et al. [16] used four binary 

models (Frequency Ratio (FR), Shannon Entropy (SE), Weight of Evidence (WoE), and 

Evidence Belief Function (EBF)) for landslide susceptibility evaluation of Klijanrestagh 

Watershed in Iran. Correspondingly, the common machine learning methods are adap-

tive neuro-fuzzy inference systems (ANFIS) [6], artificial neural network (ANN) [17], 

support vector machine (SVM) [18], maximum entropy (MaxEnt) [19], logistic model 

tree (LMT) [6,20] and random forest(RF) [6,21]. Jaafari, et al. [22] used grey wolf and bi-

ogeography-based optimization algorithms to optimize the parameters of an adaptive 

neuro-fuzzy inference system and plotted the corresponding landslide susceptibility 

mapping. Thi Ngo, et al. [23] applied two deep learning methods, the recurrent neural 

network (RNN) and convolutional neural network (CNN), for landslide susceptibility 

evaluation of Iran. However, these cases still suffer from some drawbacks, for example, 

since the landslide susceptibility mapping (LSM) training data is limited, a single model 

may misjudge the best fit function of the data samples in the hypothesis space or the 

true distribution of the samples [24]. Therefore, some scholars later explored a new idea 

of LSM, that is, coupling two or more models and combining them into new algorithms. 

For example, Azarafza, et al. [25] integrated CNN and DNN deep learning methods to 

develop a new deep convolutional neural network model (CNN-DNN) to evaluate land-

slide susceptibility in Isfahan province, Iran, and compared this algorithm with other 6 

machine learning techniques for comparison (support vector machine (SVM), logistic re-

gression (LR), Gaussian naïve Bayes (GNB), multilayer perceptron (MLP), Bernoulli Na-

ïve Bayes (BNB) and decision tree (DT) classifiers). The results of this study showed that 

the CNN-DNN model had better predictive ability than the baseline models. 

At present, there are many landslide susceptibility model combination methods, 

but there is still a gap in integrating advanced random subspace (RS) and functional tree 

(FT). 

To further study prediction and assessment on a regional scale, we constructed two 

new prediction models introduced in this paper, namely random subspace (RS) and 

functional tree (FT). RS is an advanced machine learning model, which can be trained by 

randomly selecting features from landslide conditioning factors, rather than all of them 

[26,27]. Meanwhile, the FT model performed better than others models by randomly se-

lecting features from landslide conditioning factors, rather than all of them while build-

ing the framework of multivariate trees for classification and regression problems [28]. 

The main purpose of this manuscript is to apply a newly developed ensemble model-

random subspace function tree (RSFT) to predict landslide susceptibility in Xiaojin 

County, China, by combining a bagging-based function tree (BFT), classification and re-

gression tree (CART) and the Naive Bayes tree (NBTree) for model optimization to find 

a more accurate model for landslide susceptibility mapping in the study area. 

2. Study Area and Data Used 

2.1. Study Area 

Xiaojin County belongs to the Aba Tibetan and Qiang Autonomous Prefecture, Si-

chuan Province, China. It is located in the longitude of 102°01′ to 102°59′ and the latitude 

of 35°35′ to 31°43′ (Figure 1) [29]. The geotectonic unit of Xiaojin County is located in the 

Songpan-Garze fold system, which belongs to the southern margin of the Bayan Har 
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Maodi trough fold belt and is connected to the Jintang arc fold belt in the east. The study 

area is one of the main parts of the Western Sichuan Plateau, located on the west side of 

the alpine landform area of the Qionglai Mountains. The terrain is high in the northeast 

and low in the southwest. The rivers mostly originate in the north and east, with strong 

cuts, overlapping peaks and ridges, and large undulating terrain. The area belongs to the 

typical alpine and canyon landforms. The study area belongs to the subtropical climate 

type. Due to the plateau terrain, the climate is cold in winter and cool in summer, and 

rainfall is scarce. The temperature in Xiaojin County is different due to the different ter-

rain, and the regional vertical difference in the temperature in the whole county is large. 

The mean annual rainfall and temperature are 613.9 mm and 12.2 °C, respectively. 

Topographically, according to a digital elevation model with a resolution of 20m, alti-

tudes vary from 1705 m to 6055 m a.s.l., and slope gradients vary from 0° to 80.21°. 

 

Figure 1. Study area. 

2.2. Landslide Inventory Map 

328 landslides were marked through historical data, interpretation of remote sens-

ing images, and extensive field surveys. The list of landslides includes flow, fall, slide 

(rotational), and slide (translational) [30], of which the largest landslide scale was about 

3,150,000 m2 and the volume was 45,000,000 m3. These landslides mainly affected villag-

ers, buildings (such as houses and roads), and cultivated land. After random sampling 

of these landslide locations in this study, 230 (70%) data were used for modeling, and 

the remaining 98 (30%) data were used for model validation. This would be a logical 

step in a series of follow-up work. 

2.3. Landslide Conditioning Factors 

In the present study, twelve landslide conditioning factors layers were selected by 

consulting many previous studies and geomorphological characteristics of the study ar-

ea [31–33]. The landslide conditioning factors layers are illustrated in Figure 2. In subse-

quent parts of the study, the digital elevation model (DEM) was first prepared, using a 
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DEM at 20 m × 20 m resolution downloaded from ASTER Global DEM. Aspect, slope, 

plan curvature, and profile curvature are terrain factors, which can be extracted by 

DEM. Distance to rivers, distance to roads, and lithology are geological factors that can 

be extracted from the 1:500,000 scale geological map. In this study, the slope aspect was 

reclassified into nine groups (Figure 2a). The slope was reclassified into nine categories 

(Figure 2b). The profile curvature map was produced by GIS software and reclassified 

into four classes with a natural break method (Figure 2c) [34]. Similarly, the plan curva-

ture was also dealt with by GIS software and reclassified into four classes too: −32.95 to 

−1.7, −1.7 to −0.65, −0.65 to 0.14, 0.14 to 1.19, and 1.19 to 34.02, respectively (Figure 2d). 

The elevation maps are reclassified into 9 categories using the natural break method 

(Figure 2e).  

TWI is an index used to characterize the impact of terrain changes on soil runoff 

[35,36], and its calculation formula is: 

ln( / tan )TWI  =   

where α represents the cumulative upslope watershed and β is defined as the slope gra-

dient. 

TWI is a hydrological factor, which can be processed in the “Topographic Analysis” 

and “Hydrological Analysis” modules of the ArcGIS platform based on DEM data. 

In this study, TWI values were divided into five categories: 0.14–1.55, 1.55–2.26, 

2.26–3.20, 3.20–4.78, and 4.78–15.12 (Figure 2f). 

Lithology is the material basis for landslides [37,38]. The lithology map for this 

study was reclassified into 9 groups: Monzonite granite; Syenite; Metamorphic sand-

stone, phyllite, slate; Altered sandstone, slate, limestone; Tuffaceous sandstone, siltstone; 

Volcanic rock, breccia, tuff; Carbonate rocks; Metamorphic mudstone, sandstone and 

Clastic rock (Figure 2g). NDVI is a common factor reflecting vegetation coverage, which 

is determined by the red band (R) and the infrared band (IR), and its formula is: 

IR R
NDVI

IR R

−
=

+
  

The continuous variable was re-divided into five groups: −1 to −0.16, −0.16 to −0.01, 

−0.01 to 0.01, 0.01 to 0.16, and 0.16 to 1 (Figure 2h). As an important landslide predispos-

ing factor, land use has been often used by multiple researchers [39,40]. Land use data 

was separated into six types (Figure 2i). The map of soil was extracted from the 

1:1000,000-scale digital soil map of China offered by the Institute of Soil Science, Chinese 

Academy of Sciences (ISSCAS) (http://www.issas.cas.cn/, accessed on 10 August 2022). 

This study divided the soil units into 13 types: Brown coniferous forest soils, Brown soil, 

Brown subalpine meadow soil, Dry cinnamon soil, Rock, Calcareous cinnamon soil, 

Gleyed paddy soil, Grey cinnamon soil, Subalpine meadow soil, Cinnamonic soil, Al-

pine frost soil, Skeletal soil, and Dark brown soil. Distance to rivers and distance to 

roads are the factors with linear characteristics, which represent the impact of surface 

water and human activities on landslides (Figure 2j) [41,42]. Distance to rivers and dis-

tance to roads maps were classified into five buffers (Figure 2k,l). 

http://www.issas.cas.cn/
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Figure 2. Landside conditioning factors. 

3. Modelling Approach 

The research process mainly includes conditional factor selection, LSM modeling, 

and model validation (Figure 3). First, conditional factor selection includes analyzing 

factor correlation based on the FR model and applying the FT method to judge factor 

importance. Then, the LSM is modeled using the new RSFT ensemble model. Finally, the 

area under the ROC curve (AUC) is used to validate the results and compare the per-

formance difference with other benchmark models. 
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Figure 3. Flowchart of the study. 

3.1. Frequency Ratio (FR) 

The frequency ratio model is based on the spatial relationship between the ob-

served landslide distribution and each landslide condition factor and can be used to de-

termine the level of correlation between landslide location and geological conditions in 

the study area [7,43]. The relationship between the landslides and conditioning factors 

can be characterized by calculating the FR value, the formula is as follows: 

Percentage of landslide
FR

Percentage of domain
=   

A higher FR value shows that the probability of landslide occurrence is higher in 

the class. 

3.2. Random SubSpace (RS) 

As an ensemble learning method, the random subspace (RS) is also called attribute 

bagging or feature bagging and is produced by Ho to strengthen the weak classifiers 

[44]. The model combines two algorithms, firstly generation of the low dimensional sub-

spaces by stochastically sampling the vector of the original high dimensional feature, 

secondly the multiple classifiers mixed into those random subspaces at the end of the 

predictive outcomes [45,46]. In other words, the difference between the RS model and 

other methods is that the features of the origin training dataset were selected randomly. 

In general, RS performed better than other traditional ones, such as the bagging method, 

as their integrated learning differences [26,47].  

Nowadays, the RS has been widely applied in many filed, such as computer science 

[45], machinery manufacture [48], mathematics [49], electronic science [50], and so on, 

however, it was rarely used in the geoscience-related research fields, in particular, the 

study of landslide susceptibility. In this paper, this method was prepared to predict the 

landslides' spatial distribution features in Xiaojin County and it can be introduced brief-

ly as follows: 
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Suppose the vector X = {x1, x2, x3, …,xn} is the landslide conditioning factor vectors 

in this paper. From the RS integrated pattern, two classes (landslide or non-landslide) 

were classified by combining multiple classifiers. N samples of size Z were selected ran-

domly from uniformly distributed X without any substitution [51]. The RS has subspace 

X, with each sample representing a subset by definition. After that, a subset of the whole 

training dataset was used to train the classifier [52]. 

3.3. Functional Tree (FT) 

The Functional tree (FT) model is a hierarchical model that was proposed in 2001 

and applied in constructing the multivariate tree's framework for addressing classifica-

tion and regression problems [53]. During the procession of prediction, the FT model 

mainly uses the properties of functional leaves or functional inner nodes or the combina-

tion of functional inner nodes and leaves. The main differences between these three are 

functional inner nodes are a way to reduce deviations, functional leaves are a process of 

reducing variance and the combination of functional inner nodes and leaves performs 

well in big data processing [28]. Compared with other traditional hierarchical models, 

the FT model can predict the function leaves based on the segmentation of the functional 

inner nodes by logistic regression function, rather than comparing attributes of the input 

value and the constant values to divide the input on a tree node [53]. The good or bad of 

the FT model was mainly determined by the smallest instance number of each leaf, the 

number of guide iterations, and function tree selections [54].  

Although the FT model has been gradually applied in scientific research, its appli-

cation in landslide susceptibility is still uncommon [55]. A brief introduction of the FT 

model is given below: 

Suppose Y = {y1, y2, y3, …,yn} represents the attribute of each landslide conditioning 

factor, g = gn, n = landslide or non-landslide classes. The FT model in this research appli-

cation was considered to have the following three steps: (1) selecting the linear Bayesian 

discriminant function to construct the g = g(yn) model, namely the distribution probabil-

ity of landslide and non-landslide; (2) using new landslide conditioning factors to extend 

yn and establish new tectonic dataset, nevertheless, every new landslide conditioning 

factor represents the probability of yn that can belong to landslide or non-landslide; (3) 

choosing the landslide conditioning factors from the original data set. Finally, all the 

new data sets were used to build the classification tree. 

4. Results 

4.1. Selection of landslide Conditioning Factors 

The right choice for some suitable landslide conditioning factors is the basis of 

landslide susceptibility assessment, which appears a conclusive role in the study as an 

input variable [56,57]. Identification of conditioning factors in this section was used, the 

immediate next step was to diagnose the importance of factors, and the final result was 

shown in the scatter plots (Figure 4). This study was based on the FT model and used 10-

fold cross-validation to calculate the average merit (AM) to obtain the contribution of the 

conditioning factors. By comparing the AM values of each conditioning factor, it could 

be seen that the four most important landslide factors in the modeling process were 

elevation (AM is 0.320), soil (0.287), distance to roads (0.273), and distance to rivers 

(0.210). The remaining eight less important predictors all have AM values greater than 0. 
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Figure 4. Importance of conditioning factors based on FT model. 

4.2. Correlation Analysis Using Frequency Ratio Model 

The calculated FR value is applied to measure the spatial relationship between each 

factor category and landslide (Supplementary Table S1). The higher the FR weight of 

each class of the training factor was, the higher the relevance level of the class would be. 

From the FR report of all factor classes, as shown in Table S1, construction land of land 

use type has the greatest impact on landslides, with the FR value up to 63.033. However, 

the number of landslides was only 3 in this class. This is because the region of this class 

is very small with low pixel resolution. Next, area with higher susceptibility for land-

slide occurrence was these classes of elevation 2000–2500m (FR = 25.37), elevation <2000 

(FR = 16.614) and distance to roads <300 (FR = 13.737). From the above result, human ac-

tivities have a high impact on historical landslides hazard, which is reflected in funda-

mental buildings and road constructions. For the TWI factor, the higher the value rank 

of TWI, the higher the potential calamitous is, which is consistent with [58]. Different 

types of soil also influence the landslide probability considerably. This study detailed 

distinguished thirteen soil types. Among them, Grey cinnamon (7.452) and Cinnamonic 

(7.174) have a large correlation with landslides, the second largest is Calcareous cinna-

mon (3.382) and Dry cinnamon (2.31). For slope angle, overall, the flatter the slope is, the 

more the landslide exists. This corresponds to subsequent analysis in this paper of eleva-

tion analysis because the topography is rather steep in higher parts. The relationship be-

tween landslides and lithology reflects how the types of rock and soil in Xiaojin County 

affect landslide occurrence. The two highest FR levels were Clastic rock (1.712), and 

Metamorphic sandstone (1.302) are metamorphic rock and sedimentary rock. This 

means that there is a low rate of landslide occurrence in the areas with magmatic rock 

[59]. Other factors also show some regularity, for example, south, north, southwest, and 

northeast aspects are denser with landslide events; For the Profile curvature and Plan 

curvature, intermediate value are more likely to landslide, and the skewness is a small 

positive value in this study [60]. The closer to the river, the larger the harm caused by a 

landslide. However, when the land type is construction land, the FR value is abnormal 

(FR is 63.033), which may be due to the fact that landslide susceptibility is greatly affect-

ed by human activities. 
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4.3. Models Results and Analysis 

According to the relevant studies [31,61,62], the prediction capacity of machine 

learning techniques was compared using AUC values of the training and validation da-

tasets. The ROC curves and model performance of FT and RSFT models using a 70% 

training dataset are placed in Figure 5 and Table 1. This conclusion only illuminates that 

the RSFT model fitted higher than the FT model due to the AUC and accuracy values of 

0.881 and 0.808, respectively. 

 

Figure 5. ROC curves of the models using the training dataset. 

Table 1. Model performance. 

Test Result Variable(s) FT RSFT BFT CART NBTree 

Area 0.838 0.897 0.884 0.818 0.856 

Standard Error 0.020 0.015 0.016 0.021 0.018 

p Value 0.000 0.000 0.000 0.000 0.000 

95% Confidence Interval 
Lower Bound 0.799 0.867 0.853 0.777 0.822 

Upper Bound 0.877 0.926 0.914 0.858 0.891 

After building the models, validation of the model effects is a process that can cap-

ture the most meaningful and important information for prediction modeling, and the 

models have no validation which would result in no actual value [63,64]. Similar to 

building the evaluation models, the ROC curve was also applied but the effect of vali-

dating models was different. The ROC curves and model validation of FT and RSFT 

models are shown in Figure 6 and Table 2, respectively. This conclusion can illuminate 

that the RSFT model has the highest classification accuracy (0.838) of the two assessment 

models for the validation dataset, followed by the FT model (0.812). 
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Figure 6. ROC curves of the models using validation dataset. 

Table 2. Model validation. 

Test Result Variable(s) FT RSFT BFT CART NBTree 

Area 0.802 0.885 0.866 0.811 0.868 

Standard Error 0.034 0.024 0.026 0.032 0.026 

p Value 0.000 0.000 0.000 0.000 0.000 

95% Confidence Interval 
Lower Bound 0.736 0.837 0.815 0.748 0.818 

Upper Bound 0.868 0.933 0.918 0.875 0.918 

4.4. Comparing with the Benchmark Methods 

As mentioned above, RS and FT models were seldom applied in landslide suscepti-

bility research. In-depth studies are more needed to explore the effectiveness of the 

above models, the paper takes three commonly used models as the benchmark models, 

namely BFT, CART, and NBTree models. The BFT model is one of the earliest inventions 

of new ensemble models based on the bootstrap sampling strategy [65], which has been 

extensively used in mining existing landslide data [66–68]. The CART model has been 

honored as one of the 10 major data mining algorithms [69], which is based on the Gini 

index to divide the sample dataset into two sub-sample datasets and applied in many 

assessing model fields [21,70,71]. Similarly, the NBTree model is another top 10 major 

data mining algorithm, which is consisting of the Naïve-Bayes technique and decision 

tree model more generally useful for big data analysis and classification problems be-

cause of its recognized briefness and practicability properties [72,73].  

The training dataset and validation dataset used to establish the benchmark models 

are the same as RS and RSFT models. The ROC curve and performance of benchmark 

models in the training area are shown in Figure 5 and Table 1. The AUC values using the 

training dataset are 0.856, 0.809, and 0.844 for BFT, CART, and NBTree models, respec-

tively. While the AUC values using the training dataset are 0.837 and 0.881 for FT and 
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RSFT models, respectively. Compared to the benchmark models, the models used in this 

article all performed well, even better than them.  

The forecast capacity and fidelity of the trained susceptibility models were tested 

and verified in the validation area [74,75]. The AUC values mentioned above were ap-

plied in the validation process. The ROC curve and performance of benchmark models 

using the validation dataset are shown in Figure 6 and Table 2. The AUC values using 

the validation dataset are 0.860, 0.827, and 0.850 for BFT, CART, and NBTree models, re-

spectively. While the AUC values using the validation dataset are 0.874 and 0.889 for FT 

and RSFT models, respectively. Meanwhile, the accuracy value RSFT model (0.838) is 

larger than all benchmark models. This conclusion can illuminate that the models used 

in this paper have ultra-high accuracy and excellent applicability. 

4.5. Generation of Landslide Susceptibility Maps 

The LSMs were exported after the progress of conditioning factors prioritization, 

model training, and two types of model validation. Generally, the production of LSMs 

mainly includes the following two steps: (i) generating the susceptibility indexes of all 

evaluation units; (ii) reclassifying the susceptibility indexes. One step is that the suscep-

tibility indexes of all estimation units were created through the probability distribution 

functions derived from the models used. The second step is that make susceptibility in-

dexes have five re-classification results with different intervals for generating the land-

slide susceptibility maps by the natural break method. The natural break method ap-

plied in GIS software is a most reasonable standard method that reflects the data’s in-

herent attributes, which are commonly used to deal with continuous data and has the 

advantage of maximizing the differences among classes [18,76]. This enables the group 

of landslide susceptibility levels in this paper to be sorted into five categories, very low, 

low, moderate, high, and very high. Figure 7a,b presents the results of LSMs for the FT 

and RSFT models, respectively. As mentioned above, there are three benchmark models, 

namely BFT, CART, and NBTree models, used to demonstrate the pros and cons of the 

RSFT model in regional landslide assessment. The progress of selecting conditioning fac-

tors, factors analysis, establishing models, training models, validating models, and clas-

sifying the susceptibility levels were the same as FT and RSFT models. The LSMs pro-

duced successively by BFT, CART, and NBTree models are placed in Figure 7c–e, re-

spectively. 
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Figure 7. Landslide susceptibility maps: (a) FT model, (b) RSFT model, (c) BFT model, (d) CART 

model, (e) NBTree model. 

5. Discussion 

Predicting future landslides in spatial extent is always regarded as the most im-

portant step in landslide susceptibility research and is considered to be the first step in 

landslide hazard risk prevention [77–79]. Selecting an evaluation model with high pre-

dictive capacity that lies on the methods applied is believed as the first landslide suscep-

tibility assessment step [78]. In past studies, various research in different areas has been 

undertaken implementing various evaluation models, such as random forest [80], naive 

Bayes tree [81], SVM [82], logistic model tree [83], and so on, while the detailed infor-

mation of the models they used was still under discussion. This study is the first to ap-

ply an advanced random subspace (RS) and function tree (FT) coupled model applicable 

to large datasets to create a landslide susceptibility map in Xiaojin County, China, and 

compare the results with three commonly used methods, namely bagging based func-

tional tree (BFT), CART and Naive Bayesian tree (NBtree) models. The result obtained in 

this study showed that the RSFT model (AUC = 0.889) outperforms the single FT model 

(AUC = 0.874). Additionally, the random subspace (RS) model randomly applies a sub-

set of features to train each classifier. Thus, in an informal setting, the RS model will 

prevent individual learners from paying too much attention to the training set, exhibit-

ing highly predictive/descriptive features, but failing to make predictions on points out-

side the training set. Therefore, when the features cannot be much larger than the num-

ber of training samples, the prediction accuracy of the RS model will be reduced, but 

coupling the RS algorithm with other appropriate benchmark models can better exert 

the model performance. According to Haoyaun Hong et al. (2017), these researchers 

have coupled RS and SVM models to develop a stochastic subspace support vector ma-

chine (RSSVM) model and used it for landslide susceptibility mapping in the Wuning 

region of China. The AUC value obtained by the RSSVM model verification in this doc-

ument is 0.857, and the AUC value of the single SVM model is 0.814. This study inte-

grates the RS model with other models, which also improves the model prediction accu-

racy. 
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It is fully aware that not all determined landslide factors have the same prediction 

capacity, and even some of them may produce noise which can reduce the prediction ac-

curacy [7,84,85]. For this novel study, twelve non-multicollinearity susceptibility factors 

were determined, and then AM results prove that all of them have theoretical contribu-

tions to modeling. Of course, the results can also indicate that each susceptibility factor 

has specific contributions to modeling. According to the important analysis between 

conditioning factors and landslides by the FT model, we can see that elevation is an ex-

tremely important factor with the highest AM value of 0.320, and the number of land-

slides decreased with the altitude increased, which agrees with the other researchers 

[86]. This condition may be due to high altitude zones having a special geographic loca-

tion that is capable of blocking the weathering with cliffs consisting of rock [87], and low 

altitude areas affected heavily by disturbance of humans, such as engineering activities. 

In addition, what is known is that landslides are influenced seriously by water, and it in-

creases as the altitude goes down. Soil, distance to roads, and distance to rivers are the 

other three susceptibility factors with AM values of 0287, 0.273, and 0.210, respectively. 

For the soil, the most significant number of landslides is distributed in the low-altitude 

areas, such as alluvial fans and river terraces. The calcareous cinnamon soil provides a 

convenient condition for the clustered take place of landslides with the characteristics of 

low strength, high porosity, and water content [88,89]. Distance to roads and rivers are 

two linear factors, which can be roughly regarded as the effects of human activities and 

water on landslides, and the number of landslides increased when approaching them. It 

is worth mentioning that the factor class which had the highest correlation is residential 

areas, again because of human activities. The local government should consider relocat-

ing residential houses in highly susceptible areas and strengthening, preventing, and 

treating landslides beside highways. 

The results in the present research obtained indicate that it is best to use the RSFT 

model as a tool for improving the produced outcomes in landslide susceptibility assess-

ment, with the highest AUC value of 0.889, the standard error of 0.0241, and the confi-

dence interval (95%) of 0.837 to 0.929. FT model performed a little poor than the RSFT 

model with the 0.874 AUC, the 0.0250 standard error, and the 0.819 to 0.919 confidence 

interval (95%). The benchmark methods, BFT, CART, and NBTree models, obtained the 

0.860, 0.827, and 0.850 AUC values, respectively. Compared with the benchmark meth-

ods, RSFT and FT models present excellent applicability in relevant research. 

As this study was carried out for the Xiaojin County, which belongs to the Tibet 

plateau area, further discriminant analysis should be prepared for regions with differ-

ences in geological environment features, and to improve the accuracy of assessment, 

more advanced methods should also be applied in landslide susceptibility mapping.  

6. Conclusions 

The development of the ensemble model is still a promising technology for land-

slide spatial prediction. In this study, a new random subspace-based functional tree 

(RSFT) ensemble model was developed and successfully applied to analyze the land-

slide distribution in Xiaojin County, China. This paper aims to evaluate the performance 

of the RSFT model by comparing the novel hybrid model with four benchmark models, 

namely FT, BFT, CART, and NBTree model prediction ability. To this end, 12 landslide 

conditioning factors were selected as model inputs: slope aspect, slope angle, profile 

curvature, plan curvature, elevation, topographic wetness index (TWI), lithology, nor-

malized difference vegetation index (NDVI), land use, soil, distance to rivers and dis-

tance to roads. The locations of landslides were detected through aerial photography in-

terpretation and large-scale field surveys. A total of 328 landslides were selected and 

randomly divided into two groups, with 70% (230) and 30% (98) landslides used for the 

training and validation of the above models. Finally, the evaluation performance of the 

models was validated using the area under the receiver operating characteristic curve 

(AUC). The AUC results showed that the prediction rate of the RSFT hybrid model was 
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higher than that of other benchmark models. Furthermore, according to the factors' im-

portance measure of the FT model (average merit), the most important conditional fac-

tors are elevation, soil, distance to roads, and distance to rivers. As a final conclusion, the 

RSFT hybrid model has been successfully applied, and its application in landslide-prone 

areas can be proposed in other regions and regional scales. Although various machine 

learning methods and ensemble techniques have been widely used in landslide suscep-

tibility mapping in recent years, it is still unclear which model has the most superior 

predictions. Therefore, more advanced models should be continuously explored and 

applied to different study areas in future research to obtain more reliable results. 
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