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Abstract: Error evaluation is essential for the improvement and application of the Integrated Multi-
satellitE Retrievals for the Global Precipitation Measurement (IMERG) Version 06 daily precipitation
estimates, including early-, late-, and final-run products (IMERG-DE, IMERG-DL, and IMERG-DF,
respectively), especially for summer precipitation in complex topographical areas. However, many
existing works mainly focus on comparing the error statistical metrics of precipitation estimates,
but few further analyze the internal relationships between these error statistics and geographical
features. Therefore, taking Sichuan Province of China as a case study of the complex topographic and
mountainous area, we adopt statistical metrics, error decomposition schemes, systematic and random
error separation models, and regression methods to analyze the relationships between the spatial
distribution of IMERG summer precipitation error metrics and geographical features. These features
include longitude, latitude, distance from Sichuan Basin edge (DFBE), digital elevation model (DEM),
normalized difference vegetation index (NDVI), slope, aspect, and topographic position index (TPI).
The results show that: (1) DEM and DFBE are the two most important geographical features affecting
the spatial distribution of error metrics, while both aspect and TPI have negligible effects on these
metrics; (2) the variations in DEM, DFBE, and latitude have the negative relationships with error
metrics; (3) longitude and DFBE do not have a direct impact on the errors, but indirectly affect the
precipitation errors through the changing DEM; (4) slope shows a strong negative correlation with
hit bias, and its increase significantly amplifies the sensitivity of systematic errors of hit bias from
IMERG-DE and DL; and (5) the high detection probability and small missed precipitation error of the
three IMERG estimates are virtually unaffected by changes in geographical features.

Keywords: IMERG; summer precipitation; error evaluation; geographical features; complex
topographical area

1. Introduction

Summer precipitation events related to catastrophic natural disasters such as floods,
mudslides, and landslides frequently occur in western China, especially in the Sichuan
Province with complex topographical conditions [1,2]. These precipitation events seriously
affect the safety of local residents’ lives and property, and directly hinder the rapid de-
velopment of the regional economy. Therefore, accurate observations of precipitation are
essential for warning against and predicting geological disasters, and they can also provide
more effective coping strategies for the management of urban water resources and the
handling of other related emergencies [3].

At present, rain gauges suffer from representativeness issues when estimating pre-
cipitation over complex terrain due to the sparse and uneven distribution of the sites.

Remote Sens. 2022, 14, 4789. https://doi.org/10.3390/rs14194789 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14194789
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2876-5921
https://orcid.org/0000-0001-9009-7712
https://orcid.org/0000-0002-7632-7881
https://doi.org/10.3390/rs14194789
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14194789?type=check_update&version=2


Remote Sens. 2022, 14, 4789 2 of 22

Ground-based radars are inevitably affected by electromagnetic beam blockage and anoma-
lous propagation errors in mountainous regions [3,4]. In addition, the limited working
hours make it impossible for airborne radar to become a conventional way of precipitation
observation. Therefore, satellite-based remote sensing may be the most reliable and stable
way to obtain high spatiotemporal resolution precipitation in mountainous and complex
topographical areas [5,6].

With the vigorous development of remote sensing technology, the quality of satellite-
based precipitation estimates (SPEs) is constantly improving. Nowadays, by combining as
many satellite and ground observations as available, the quasi-global SPEs are becoming
more plentiful, such as the Global Precipitation Climatology Project (GPCP) [7], the Precip-
itation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN) [8], the Climate Prediction Center MORPHing technique (CMORPH) [9],
the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TRMM-
TMPA) [10], the Global Satellite Mapping of Precipitation (GSMaP) [11], and the Inte-
grated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM-IMERG) [12].
Among them, the GPM-IMERG, which adopts the dual-frequency active microwave radar
technology and is produced by the National Aeronautics and Space Administration (NASA),
has wider spatial coverage, finer spatiotemporal resolution, and higher measurement accu-
racy, and it shows great application potential in the field of meteorology and hydrology. In
addition, depending on the complexity of the generation strategies, IMERG provides three
products, including the “Early” run (IMERG-E), “Late” run (IMERG-L), and “Final” run
(IMERG-F) estimates, which may have different error characteristics. Therefore, a compre-
hensive data quality assessment and in-depth error sources exploration are necessary and
have great practical value before applying the IMERG estimates.

At this stage, many researchers have done a lot of work for the analysis of IMERG
errors. By summarizing these works, we find that:

(1) Most studies use conventional statistical metrics to evaluate the overall performance
of IMERG estimates, and ultimately attribute the errors to the features such as pre-
cipitation intensity and mechanism, solid precipitation, and high altitude [13–17].
However, this research seldom systematically analyzes the error sources and investi-
gates the relationships between the characteristics of errors and the distributions of
geographical features.

(2) Some existing studies have proved that the data quality of IMERG varies greatly in
different regions and seasons, and the lack of accuracy problem arises in IMERG sum-
mer precipitation estimates over the high latitude and elevation regions [5,16,18–21].
However, few studies have been carried out on the errors of IMERG summer estimates
in Sichuan Province, which is one representative of the complex topographical areas
and an ideal model for studying the influence of topography on precipitation.

(3) Many studies have reported some potential influence factors of precipitation ob-
servation, such as complex precipitation mechanism [13], high elevation [15], high
latitude [22], multiple-phase precipitation [14], complex topography [23], tempera-
ture [24], bodies of water [5], and so on. At the same time, it should be noted that
topographical conditions have been shown to prominently affect the quality of re-
mote sensing data [5,23,25–30]. Regrettably, the varieties of geographical features
considered in this type of research are very limited.

Based on the above analysis, more attention should be paid to more geographical fea-
tures, which may cause severe geometric errors and systematic errors in observations [27].
Therefore, in this study, focusing on the relationships between various geographical fea-
tures and precipitation estimation errors, we conduct a more complete error analysis of
IMERG summer estimates in the complex topographical region. The features are as follows:
(1) more types of IMERG estimates: IMERG-E, L, and F; (2) more comprehensive error
analysis methods, including not only conventional statistical metrics, but also error de-
composition scheme, systematic and random errors separation strategies; (3) more typical
complex topography: Sichuan Province in western China is selected as the study area;
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(4) more kinds of geographical features: longitude, latitude, distance from Sichuan Basin
edge, digital elevation model, normalized difference vegetation index, slope, aspect, and
topographic position index (hereafter called Lon, Lat, DFBE, DEM, NDVI, Slope, Aspect,
and TPI, respectively).

Therefore, taking the Sichuan Province as a case of the complex terrain and mountain-
ous area, we conduct an in-depth analysis of the relationships between the errors of the
three IMERG estimates and the variations in geographical features. This research yields less
ambiguous assessment and more valuable insights for data producers to infer the origin of
the errors, allowing users to understand the strengths and weaknesses of IMERG estimates
and choose high-quality products.

The remaining sections of the paper are structured as follows: The study area, GPM
IMERG precipitation estimates, ground reference, and topographical data sets are intro-
duced in Section 2. The statistical metrics, decomposition scheme, systematic and random
error separation models, and regression method are described in Section 3. Section 4
presents the spatial characteristics of statistical error metrics, independent error compo-
nents, and systematic and random errors in the three IMERG estimates, and the influence
patterns of seven geographical features on precipitation estimate errors. Finally, the discus-
sion and conclusions are provided in Sections 5 and 6.

2. Study Area and Data Sets
2.1. Study Area

Sichuan Province, located in the southwest of China (26◦03′–34◦19′N, 97◦21′–108◦12′E),
is the transition zone between the Qinghai–Tibet Plateau and the eastern plain of China,
and has a total area of about 4.86 × 105 km2. The geomorphology and topography in
its territory are very complex and diverse, mainly composed of mountains, hills, plains,
basins, and plateaus. Besides, its elevations span a broad range from 100 m to 7000 m,
showing the characteristics of being high in the west and low in the east (see Figure 1a).
The unique geographical location of Sichuan Province makes precipitation events mostly
occur in summer [31,32], and the diversity of terrain expands the distribution range of
geographical factors (such as Lon, Lat, DFBE, NDVI, DEM, Aspect, Slope, and TPI, etc.),
as shown in Figure 1b–f. In addition, studies have shown that geographic factors have a
great influence on the intensity and spatial distribution of precipitation [33,34], and are
closely related to the precipitation measurement errors of satellites or other remote sensing
instruments [25–27]. Therefore, Sichuan Province, as a representative of the complex
topographical area, is an ideal area to study the relationships between geographical features
and summer precipitation errors.

2.2. Data Sets
2.2.1. GPM IMERG Precipitation Estimates

Taking global precipitation observation as a mission, the GPM Core Observatory car-
rying the first spaceborne dual-frequency phased-array precipitation radar (13 and 35 GHz)
and a conical-scanning multichannel microwave imager (10–183 GHz) was deployed by
NASA and the Japan Aerospace Exploration Agency (JAXA) on 28 February 2014 [3]. The
GPM mission provides four levels of data products, of which IMERG is the level 3 product
with relatively fine spatiotemporal resolution (0.1◦ × 0.5 h). IMERG provides three types of
precipitation estimates with different delay times: IMERG-E (4 h latency), IMERG-L (12 h
latency), and IMERG-F (3.5 months latency) according to the complexity of the product
generation strategy. For instance, instantaneous PMW precipitation estimates are only
propagated forward in time by the morphing scheme of IMERG-E, whereas both forward
and backward morphing schemes are employed in IMERG-L and IMERG-F [35]. Besides,
IMERG-E and IMERG-L are calibrated by using the Global Precipitation Climatology
Project (GPCP) climatological data, while IMERG-F combines the Global Precipitation
Climatology Centre (GPCC) monthly precipitation analysis for bias correction. Therefore,
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IMERG-F is supposed to have better data quality than the other two IMERG estimates. At
present, IMERG estimates have been updated to the latest Version 06B.

Figure 1. (a) Geographical location and digital elevation model (DEM) of the study area, and the
spatial distributions of national gauges stations (black pentagrams); (b–f) represent the distributions
of NDVI, DFBE, slope, aspect, and TPI over Sichuan Province, respectively.

In this study, to facilitate the errors analysis of summer precipitation, we employed the
IMERG V06B daily estimates, including early-, late-, and final-run products (IMERG-DE,
IMERG-DL, and IMERG-DF, hereafter called DE, DL, and DF, respectively). The IMERG
daily estimates are produced by resampling the half-hourly data to daily resolution in
accord with the period of 000000-235959 UTC (universal time coordinated), and the unit of
mm/day. The research period is from June to August of 2016–2020. All the IMERG data
used in this paper are accessible on the PMM website (https://disc.gsfc.nasa.gov/datasets/
GPM, accessed on 19 January 2022).

2.2.2. Ground Reference Data Sets

Ground reference data with high spatiotemporal resolution (0.1◦ × 1.0 h), namely the
China Merge Precipitation Analysis (CMPA) version 1.0, is developed by the National Me-
teorology Information Center of the China Meteorological Administration (CMA) and can
be obtained from the website of the CMA (http://data.cma.cn, accessed on 11 March 2021).
The CMPA is generated by combining the hourly measurements from >30,000 ground rain
gauges in China and the CMORPH (CPC MORPHing technique) satellite precipitation
estimates using a climatology-based probability density function-optimal interpolation
algorithm [36]. Besides these, a series of quality control measures, such as limits on clima-
tological and regional precipitation extremes, and checks on data’s temporal and spatial
consistency, are used to generate high-quality data. Therefore, CMPA is often used as
the benchmark in related studies to evaluate the accuracy and precision of IMERG esti-
mates [30,37,38]. Even so, some measurement errors are also unavoidable in high-altitude
or high-latitude regions, such as wind-induced undercatch and wet/evaporation loss. Par-

https://disc.gsfc.nasa.gov/datasets/GPM
https://disc.gsfc.nasa.gov/datasets/GPM
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ticularly, the undercatch errors will lead to a severe underestimation of precipitation due to
the effect of wind and snowfall [39]. To resolve this problem, the correction schemes and
some conclusions in Tang [39] and Ma et al. [40] are used to reduce this type of error. In
this paper, the time of CMPA is UTC and the daily products are generated by accumulating
the hourly data over 24 h.

2.2.3. Topographical Data Sets

The Shuttle Radar Topography Mission (SRTM) is jointly measured by NASA and
National Geospatial-Intelligence Agency (NGA) [41]. SRTM data can be divided into SRTM1
and SRTM3 according to the different spatial resolutions, which correspond to 30 m and
90 m respectively, and the latter are the original data for generating the DEM, DFBE, Slope,
Aspect, and TPI. In addition, the spatiotemporal resolutions of NDVI are 250 × 250 m and
5-day. All topographical data sets used in this research can be downloaded from the website
of Geospatial Data Cloud (http://www.gscloud.cn, accessed on 17 January 2022). The
generation of DFBE also requires the boundary information of the Sichuan Basin, which is
extracted using ArcGIS software. For a particular grid point, its DFBE value is the minimum
distance between this point and all points on the edge of the Sichuan Basin. The slope is
the rate of change in the height of the ground area, and it is in the range of 0 to 90 degrees.
Aspect refers to the orientation of the terrain slope, and it varies from 0 to 360 degrees.
Generally, they are generated by fitting conicoid [42]. Specifically, the target point is first
set as the center of a 3-by-3 grid, and then the elevation gradients of the target point in the
horizontal and vertical directions (record as dx and dy, respectively) are calculated. Finally,
the basic equations used to calculate the slope and aspect of the target point (record as Sp

and As, respectively) are: Sp = arctan(
√

dx2 + dy2), As = arctan(dy/dx). Additionally,
TPI represents the position of the target on the slope, such as ridge, upper slope, middle
slope, flat slope, lower slope, and valley, corresponding to a value from 1 to 6. It is generated
after comprehensively considering the difference between the altitude of the target point
and the average altitude of the surrounding points, as well as the slope information. TPI is a
parameter to describe the topography and has considerable significance in the classification
of landforms [43]. The selection of Lat and DEM is based on the conclusions of previous
studies [5,15,22]. The DFBE indicates the transfer distance from the Sichuan Basin to other
areas, which further represents the transformation and reaching difficulties of moisture [44].
The other geographical features are chosen by preliminary results and reasonable deduction
from our ongoing research. It is noteworthy that to obtain a data set with 0.1◦ × 0.1◦ spatial
resolution, ArcGIS software is used to reduce the resolution of the original data sets.

3. Methodologies
3.1. Traditional Statistical Error Metrics

In the general assessment of data quality, continuous traditional statistical metrics,
such as correlation coefficient (CC), relative bias (RB), and their average values are com-
monly used. Specifically, CC describes the agreements between the estimates and true
measurements, and RB can reflect the degree of overestimation or underestimation of
estimates. Meanwhile, contingency statistical metrics, including the probability of de-
tection (POD), the false alarm ratio (FAR), and their average values are frequently used
metrics when evaluating the precipitation detection capabilities of IMERG. The POD re-
flects the probability that precipitation is correctly detected by IMERG among all the real
precipitation events, while the FAR represents the fraction of unreal events among all the
precipitation events. In practice, the threshold of the daily precipitation events is set as
1.0 mm/day [45]. The related equations are listed in Table 1.

http://www.gscloud.cn
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Table 1. Traditional error statistical metrics.

Statistical Metric Equation Perfect Value

Continuous
statistical metrics

CC
1
N ∑N

n=1(Sn − S) (Gn − G)
σSσG

1

RB ∑N
n=1(Sn−Gn)

∑N
n=1 Gn

× 100% 0

Contingency
statistical metrics

POD N11/(N11 + N01) 1
FAR N10/(N11 + N10) 0

Notation: N is the number of samples; Sn and Gn represent IMERG and Gauge data, respectively; S and G are the
mean values of IMERG and Gauge data, respectively; σs and σG are standard deviations of IMERG and Gauge
data, respectively; N11 represents the precipitation detected by IMERG and Gauge simultaneously; N10 represents
the precipitation detected only by IMERG; N01 represents the precipitation detected only by Gauge.

3.2. Independent Error Components

For better tracking the sources of IMERG errors, an error decomposition scheme
proposed by Tian et al. [45] can be used to decompose the total errors (TE, its mean value
being ME) into three independent error components, including the bias of hit precipitation
(HB), missed precipitation (MP), and false precipitation (FP). HB represents the difference
between the estimates and true values when precipitation events are correctly detected
by both IMERG and CMPA. MP indicates the errors due to IMERG not detecting the true
precipitation events. FP denotes the errors of false precipitation only detected by IMERG.

For a given precipitation field R(
→
x , t), its binary mask P(

→
x , t) can be obtained by a

fixed threshold,

P(
→
x , t) =

{
1, R(

→
x , t) ≥ 1.0

0, R(
→
x , t) < 1.0 or null

(1)

For Gn and Sn, their binary masks are Pg(
→
x , t) and Ps(

→
x , t), respectively. There-

fore, the hit, missed, and false precipitation masks are Pgs(
→
x , t), Pgs(

→
x , t), and Pgs(

→
x , t)

respectively, and can be defined as follows:
Pgs(

→
x , t) = Pg(

→
x , t)× Ps(

→
x , t)

Pgs(
→
x , t) = Pg(

→
x , t)× Ps(

→
x , t)

Pgs(
→
x , t) = Pg(

→
x , t)× Ps(

→
x , t)

(2)

where Pg(
→
x , t) and Ps(

→
x , t) are the Boolean complements of Pg(

→
x , t) and Ps(

→
x , t), respec-

tively. Thus, the TE, HB, MP, and FP are defined as:
TE = Rs(

→
x , t)− Rg(

→
x , t)

HB = TE× Pgs(
→
x , t)

MP = −Rg(
→
x , t)× Pg s (

→
x , t)

FP = Rs(
→
x , t)× P g s(

→
x , t)

(3)

Besides, the relationship between the three independent components (HB, MP, and
FP) and TE is TE = HB + MP + FP.

Given this, the scheme of decomposing the TE into HB, MP, and FP is useful for algo-
rithm developers looking to trace the sources of errors and improve the quality of IMERG.

3.3. Systematic and Random Errors

For the IMERG summer precipitation over Sichuan, HB is the leading contributor to
TE according to our previous study [21]. So, it is necessary to conduct in-depth research on
the HB to separate the systematic and random errors. Of course, uncertainty quantification
relies on the underlying error model [46]. Tang et al. [47] found that the multiplicative
model is a better choice for quantifying the errors in daily precipitation measurements.
In addition, Willmott [48] and AhaKouchak et al. [49] suggested that the mean square
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error (MSE) of precipitation can be divided into systematic errors (MSEs) and random
components (MSEr) as MSE = MSEs + MSEr.

MSE =
1
N ∑

n
(Sn −Gn)

2 =
1
N ∑

n
(S∗n −Gn)

2 +
1
N ∑

n
(Sn − S∗n)

2 (4)

MSEs =
1
N ∑

n
(S∗n −Gn)

2, MSEr =
1
N ∑

n
(Sn − S∗n)

2 (5)

where S∗n is defined in the form of the multiplicative model as

S∗n = a×Gb
n × eε (6)

The Equation (6) is converted into the new expression of (7) after a natural loga-
rithm transformation:

ln(S∗n) = ln(a) + b× ln(Gn) + ε (7)

where a and b are the offset and scale parameters, respectively, and ε is the residual. The a
and b parameters can be estimated easily by using the ordinary least-squares (OLS) method.
The specific calculation process is shown in Equations (8) and (9), where n is the length of
the sequence.

b =
∑
(

Gn − ∑ Gn
n

)
·
(

S∗n − ∑ S∗n
n

)
∑ (Gn − ∑ Gn

n )
2 (8)

a =
∑ S∗n

n
− b× ∑ Gn

n
(9)

Defining sn = ln(Sn), s∗n = ln(S∗n), and gn = ln(Gn), the systematic errors (Es) and
random errors (Er) can be written as

Es = ∑
n
(s∗n − gn)

2/ ∑
n
(sn − gn)

2 (10)

Er = ∑
n
(sn − s∗n)

2/ ∑
n
(sn − gn)

2 (11)

It is noteworthy that Equations (10) and (11) indicate that systematic and random
errors are presented as a percentage of total errors in this study, and the sum of Es and Er
is 100%.

3.4. Regression Analysis

Regression analysis is mainly used to study the relationships between error objectives
(e.g., statistical error metrics, independent error components, systematic and random errors)
and various geographical features, focusing on analyzing the contribution rate of each
geographical feature to the errors, and then determining the principal determinants of the
errors [30]. Note that geographical features as variables, including Lon, Lat, DFBE, DEM,
Slope, Aspect, and TPI, have a commonality that they do not change with the variations in
time and precipitation intensity. For evaluating the accuracy of the regression model, an
important index, namely the coefficient of determination (R2), should be calculated first
before using the model. This index is the goodness of fit in this regression model, and
varies between 0 and 1 (best as 1).

EON = a1 × LonN + a2 × LatN + a3 ×DFBEN + a4 ×NDVIN
+ a5 ×DEMN + a6 × SlopeN + a7 ×AspectN + a8 × TPIN + b0

(12)

R2 = ∑
n

(
ÊON − EON

)2/ ∑
n

(
EON − EON

)2 (13)
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where the subscript “N” indicates normalization, EON represents the normalization of
error objectives, and ai and b0 are the standardized regression coefficient and residual,
respectively. ÊON and EON are the estimated and average values of EON, respectively.

Note that the standard regression coefficients are taken as absolute values, divided
by the sum of all coefficients, and finally shown in the form of the percentages in this
study. Therefore, the sum of all coefficients after processing is 100%. The purpose of this
processing is to focus on the weight distributions of geographical features in EON.

4. Results
4.1. Traditional Statistical Error Metrics

For all traditional statistical error metrics, the R2 values of the regression model are
between 0.55 and 0.73. Note that the CC has the highest R2 values, exceeding 0.65. These
results indicate that the traditional statistical error metrics and geographical features have
obvious, even significant, linear relationships. Subsequently, the regression analysis is used
to calculate the correlation between statistical error metrics and geographical features, and
the results are shown in Figure 2. Figure 2 shows that for any statistical metrics, longitude,
latitude, DFBE, DEM, and slope are the main contributors to the errors because the sum
of their weights exceeds 94%, which means that NDVI, aspect, and TPI have a nonlinear
relationship with the geographical features.

Figure 2. The weight distribution of regression coefficients is based on statistical error metrics.

For all the IMERG estimates, DEM is the most sensitive feature for the CC (weighs
around 0.47), followed by DFBE and Lat (weighs about 0.26 and 0.10, respectively). Mean-
while, these three geographical features, which have similar weight distributions, are also
the most important sensitive sources of the RB and the FAR, among which DFBE becomes
the most important contributor (weights > 0.38), followed by Lat and DEM (weights are
about 0.2 and 0.14, respectively). The POD is mainly determined by DFBE, Lat, and Lon,
with weights of 0.38, 0.22, and 0.17, respectively. The significant differences in the DEM
weights in the POD between NRT IMERG daily estimates and IMERG-DF are that the
weight of the former is only around 0.01, while the weight of the latter is as high as 0.11. In
addition, we also notice that the influence of slope on the RB, POD, and FAR is much larger
than that on the CC, while DEM shows a much greater impact on the CC than the impact
shown by other metrics.
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Figure 3 shows the spatial distributions of the statistical metrics for all three IMERG
estimates. As shown in Figure 3, all three IMERG estimates exhibit similar spatial distribu-
tions for the same error statistical metric, but there are still some differences in detail. For
the plateau region located in western Sichuan, severe overestimation of precipitation in the
north area is quite common among the three IMERG estimates, while for other regions of
the plateau, NRT IMERG and IMERG-DF only slightly underestimate and overestimate
precipitation, respectively (see Figure 3d–f). IMERG-DF has better performance on CC but
with relatively higher RB than that of NRT IMERG for the basin area in eastern Sichuan
(see Figure 3a–f).

Figure 3. Spatial distributions of the statistical metrics for the IMERG-DE (left column), DL (middle
column), and DF (right column): (a–c) CC, (d–f) RB, (g–i) POD, (j–l) FAR.

In terms of the performance detecting precipitation, the three IMERG estimates have
high POD and low FAR in most areas of Sichuan [see Figure 3g–l], which indicates that
they have a good ability in enhancing precipitation capture. Among these, IMERG-DF
performs the best. However, we find that abnormally high POD and FAR coexisted in the
northern part of the plateau, which illustrates that IMERG has severely over-captured the
precipitation in this region.

In addition to the plateau and basin areas, the region at the boundary between the
plateaus and basins is also worthy of critical attention. All three IMERG estimates show
abnormally low values on the RB, POD, and FAR for the heavy and extreme rainfall events
that often occur in this region, which implies that the estimation accuracy and detection
ability of IMERG are greatly limited by the topographical environment there. The reason
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may be that convective precipitation is easily generated in this unique topographical
environment, but its spatial scale is much smaller than the resolution of remote sensors,
which will cause the peak level of the precipitation intensity to be smoothed, leading to
a significant reduction in the data quality of IMERG. Additionally, it is noteworthy that
we found the three geographical features (NDVI, aspect, and TPI) have almost no intrinsic
relationship with the error of precipitation, thus the results related to them are not presented
in the following content.

The longitude, latitude, DFBE, DEM, and slope ranges are divided into many statistical
intervals with steps of 0.5◦, 0.5◦, 50 m, 500 m, and 10◦, respectively. Then, their average
values are calculated in each statistical interval, and the statistical results are shown in
Figure 4. Figure 4 shows that the curves for the IMERG-DE with any geographical feature
are found to coincide with those of the IMERG-DL, and are very similar to the curves of
IMERG-DF in terms of CC, POD, and FAR. For RB, curves of NRT IMERG daily estimates
and IMERG-DF reveal a noticeable gap among the low longitude and high-latitude areas,
DFBE, and DEM. The variation trend of geographical features makes the curve of POD
little change, but the curves of other statistical metrics show large fluctuations.

Figure 4. The distributions of statistical metrics with different geographical features for the IMERG-
DE, DL, and DF estimates. From left to right, four columns represent the CC (a,e,i,m,q), RB (b,f,j,n,r),
POD (c,g,k,o,s), and FAR (d,h,l,p,t). From top to bottom, the five rows represent longitude (a–d),
latitude (e–h), DFBE (i–l), DEM (m–p), and slope (q–t), respectively.

In terms of longitude trends, we noticed the obvious shift in the curves of all the
statistical metrics occurs around 98◦E, except for POD. More specifically, the data quality
tends to degrade (with CC decreasing and RB, FAR increasing) with increasing longitude
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until 98◦E, then gets better quickly. In conclusion, for most regions, the increase in longitude
has a positive effect on the improvement of IMERG data quality (see Figure 4a–d).

Regarding latitude trends, we found that the curves of almost all the statistical metrics
except POD change radically near the latitudes 27.5◦N and 33◦N, which are located at the
southernmost and northern borders of the Sichuan Basin. From 27.5 to 30.5◦N, the data
quality degrades slowly (CC decreases while RB and FAR increase), followed by a sharp
deterioration until 33◦N. Conversely, these statistical metrics only get better with increasing
latitude in small areas at both ends of the region (<27.5◦N and >33◦N). This suggests that
the data quality of IMERG reveal negatively correlated with the latitude in most regions
(see Figure 4e–h).

For DFBE, the CC, RB, and FAR metrics remain stable when DFBE is in the range
of 200–350 km but deteriorate rapidly as DFBE increases in other ranges. According
to Figure 3, the area with DFBE < 200 km includes the inner and outer edges of the
Sichuan Basin, where IMERG estimates significantly overestimate and underestimate the
precipitation, respectively. Therefore, the slightly higher or lower estimation of precipitation
in this region is attributed primarily to the mutual cancellation of overestimation and
underestimation, and the high FAR in IMERG estimates should be borne by the inner edge
of the basin (see Figure 4j,l). Furthermore, in the area with DFBE > 200 km, the changes in
statistical metrics are completely determined by the performance of IMERG in the western
Sichuan plateau. The shift of the curve around 500 km (located at the westernmost end
of the plateau) should be attributed to the instability of data quality caused by the sparse
ground observation networks.

With the increase in DEM, the CC and RB remain stable inside 1.5 km and then
deteriorate above 1.5 km. 1.5 km is also a cut-off point of the FAR, and the FAR decreases
slowly and then increases rapidly inside or outside of the cut-off point. Meanwhile, we
note that the data quality of IMERG is quite poor (CC < 0.5, RB > 200%, and FAR > 0.5)
more than 3 km above altitudes, which reminds us that IMERG is no longer suitable as a
dataset to analyze and estimate the precipitation in this region.

Furthermore, it is also found that, with the increase in slope, the fluctuations of all
statistical metrics are smaller than that with other geographical features. The trend of
statistical metrics reveals that the increase in slope slightly reduces the overestimation
error of IMERG estimates and weakens the positive correlation with the precipitation
observations but does not affect the precipitation detection capability. Finally, an obvious
conclusion is that slope has a significantly weaker impact on IMERG data quality than
other geographical features. Finally, to clearly show the inputs, statistical techniques, and
results of each step in the analysis, the flowchart is shown in Figure 5.

4.2. Independent Error Components

For all independent error components, the R2 values of the regression model are
between 0.51 and 0.62. Hit bias has the highest R2 values (>0.60), while the R2 values of
other error components are relatively low (>0.51), illustrating that the regression model is
an appropriate approach to show the relationships between the errors and the topographic
features. Figure 6 represents the weight distributions of the seven geographical features
in the three independent error components, and the total errors for all kinds of IMERG
estimates. The results suggest that the effect of NDVI, aspect and TPI on these errors is
negligible due to the sum of the three weights being less than 8%. That mirrors similar
results shown in Figure 2. Therefore, the remaining analysis in subsequent sections will
focus on the effect of the other five geographical features (longitude, latitude, DFBE, DEM,
and slope) on the errors.
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Figure 5. The flowchart of the analysis of the traditional statistical error metrics.

Figure 6. Same as Figure 2 but based on independent error components.

The longitude and DFBE (weights > 0.3) are major sources of the high sensitivity-of-
hit bias for IMERG-DE and DL, followed by latitude, DEM, and slope (weights < 0.15).
However, for IMERG-DF, DEM replaced longitude and together with DFBE as the most
significant contributors to the high sensitivity of hit bias (weights > 0.3). Besides, DEM and
DFBE are also the leading causes of false precipitation for the three IMERG estimates, and
the sum of the weights for the three estimates is around 0.7. For missed precipitation, the
most significant contributor to the errors is DFBE (weight > 0.42), followed by longitude
(weight > 0.23). In general, from IMERG-DE to DL, to DF, the weights of DEM in hit
bias and false precipitation are continuously increasing, while the weights of longitude
are decreasing. Finally, due to the combined influence of the three independent error
components, the largest contributor to the total errors of the three IMERG estimates is
DFBE, and the other two main error determinants are longitude and slope.
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The spatial distributions of the total errors and their independent components are
displayed in Figure 7. The three IMERG estimates are similar in spatial distribution of total
errors and individual error components. One of the most obvious features is the total errors
and hit bias of the three IMERG estimates all being positive in the basin area, but negative
at the boundary between the plateau and basin. Moreover, the missed precipitation for
the three IMERG products is evenly distributed over the entire region with small values.
The false precipitation in the plateau region is much larger than that of other regions, and
the false precipitation in the plateau region has a similar spatial distribution as that of the
total errors.

Figure 7. Spatial distributions of mean errors components for the three IMERG estimates: columns
from left to right are (a,e,i) total errors (TE), (b,f,j) hit bias (HB), (c,g,k) missed precipitation (MP),
and (d,h,l) false precipitation (FP), respectively; rows from top down are IMERG-DE, IMERG-DL,
and IMERG-DF, respectively. The error components are related by TE = HB + MP + FP, all in mm/d.

However, there are some differences in the spatial distribution of errors for the three
IMERG estimates. Specifically, the NRT IMERG and IMERG-DF show the opposite capa-
bility of the hit bias in the plateau region, that is, the former underestimates precipitation
while the latter overestimates it. Furthermore, the hit bias of the NRT IMERG reveals
greater estimate errors than that of IMERG-DF at the boundary between the plateau and
basin, but the errors of false precipitation from the former are smaller than those of the
latter. The total errors are determined by the three independent error components, and
thus the total errors of the IMERG-DF are positive scores in the entire region, while the
total errors of the NRT IMERG show negative scores in large areas of the plateau (see
Figure 7a,e,l).

The above analysis shows that the errors of IMERG-DL, and DF do not reduce greatly
in comparison to those of IMERG-DE, which indicates that the bias correction scheme
used in IMERG-DL does not suppress the three independent error components efficiently.
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However, we find that the total errors of IMERG-DF are the sum of the total error of
NRT IMERG daily estimates and an additional positive bias, which causes the severe
underestimation in the original estimates to be mitigated and the slight overestimation to
be exacerbated. This additional positive bias mainly comes from the significantly increased
hit bias and false precipitation, which may be caused by the calibration using the GPCC
monthly observation during the generation of IMERG-DF.

As can be seen from Figure 8, the curves for IMERG-DE and DL almost completely
overlap with any geographical features, indicating that the two estimates have the same
variation in errors. Additionally, the total errors, hit bias, and false precipitation of IMERG-
DF are always larger than those of IMERG-DE and DL, while the missed precipitation
curves of the three IMERG estimates are all horizontal straight lines with amplitudes
around 0. The above results show that geographical features have a large impact on hit
bias and false precipitation, but hardly affect missed precipitation. Therefore, the following
analysis will be focused on these two error components (i.e., HB and FP).

Figure 8. The distribution of total errors and three independent components with five geographical
features for the IMERG-DE, DL, and DF estimates. From left to right, five columns represent longitude
(a,f,k), latitude (b,g,l), DFBE (c,h,m), DEM (d,i,n), and slope (e,j,o), respectively. From top to bottom,
three rows represent errors of IMERG-DE (a–e), DL (f–j), and DF (k–o), respectively.

As longitude increases, false precipitation exhibits larger amplitudes and more severe
fluctuations than hit bias in the region below 102◦E, which being highly similar to the total
errors. This indicates that longitude has a greater impact on false precipitation than hit bias,
but this effect is positive. Meanwhile, false precipitation is the most important contributor
to the total errors. However, in high longitude regions, false precipitation remains stable
around 1.0 mm/d, but hit bias shows large fluctuations. That is to say, the increased
longitude has no relationship with the performance of false precipitation, but seriously
affected hit bias. Besides, although the magnitudes of the total errors in this region come
from hit bias and false precipitation, their trends are almost entirely determined by hit bias.

With increasing latitude, hit bias and false precipitation show downward fluctuation
and relatively stable change trends, respectively, until 31◦N is reached. Above this latitude,
both error components increase rapidly, with a peak at 33◦N. Furthermore, after comparing
the fluctuation amplitudes of the hit bias and false precipitation, we found that the sensitiv-
ity of hit bias is amplified at low latitudes, while the large fluctuation of false precipitation
occurred at high latitudes. Finally, combined with the changing trend of the total errors, we
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can conclude that the fluctuation of the total errors at the low and high latitudes is mainly
determined by hit bias and false precipitation, respectively.

As for DFBE, hit bias shows more obvious fluctuations than false precipitation within
a small area of 100 km, and its trend is very similar to the total errors. Beyond 100 km, hit
bias remains stable, while false precipitation shows the same upward trend as the total
errors and peaks at 600 km. From the above analysis, it can be seen that for most areas of
DFBE, the increase in DFBE presents a significant negative impact on false precipitation,
but hardly affects hit bias.

Below 1.5 km, hit bias decreases rapidly with the increase in DEM, while false pre-
cipitation remains stable around 0.8 mm/d. Above this elevation, the former gradually
stabilize, while the latter rapidly increases. This indicates that DEM at low altitude mainly
affects hit bias, and the increase in DEM can effectively suppress hit bias. However, in the
high elevation, the strong impact of DEM is evident for false precipitation compared to hit
bias, and the increase in DEM has a significant negative effect on the control of error.

Regarding slope, both total errors and hit bias show a decreasing trend and the gap
between them remains stable, while false precipitation is relatively constant with almost
negligible variations. It can be concluded that the increase in slope has a strong negative
influence to hit bias but has almost no relationship with false precipitation. The same is
true for Figure 5, and the flowchart of this subsection is shown in Figure 9.

Figure 9. The flowchart of the analysis of independent error components.

4.3. Systematic and Random Errors

The systematic and random errors of hit precipitation are separated based on the
multiplicative model, and then the relationships between them and geographical features
are analyzed by the regression method. For a given geographic feature, because systematic
and random errors are complementary, the standard regression coefficients of systematic
errors and random errors have equal absolute values but opposite signs, suggesting their
weight distributions are the same. Therefore, only the results related to systematic errors
are shown in Figure 10.
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Figure 10. Same as Figure 6 but based on systematic errors.

The results clearly show that longitude, latitude, DFBE, DEM, and slope have signifi-
cant effects on the systematic and random errors of all IMERG estimates, and the weight
values of aspect and TPI are almost negligible. For IMERG-DE, the first four geographical
features have similar weight values, which are almost twice the weight values of the slope.
Compared with IMERG-DE, the weight value of latitude in IMERG-DL decreases signifi-
cantly (from 0.2 to 0.1). For IMERG-DF, DEM is the most critical error determinant, and its
weight value is far ahead of that of other geographical features. At the same time, we also
found that with the increasing complexity of error correction schemes from IMERG-DE to
DL and then to DF, the role of DEM in error determination is becoming more and more
important, while the influence of slope and latitude is declining.

Figure 11 shows the spatial distributions of systematic and random errors of the
three IMERG estimates. Systematic errors of NRT IMERG exhibit large spatial variations
in plateau and basin regions. Errors in the plateau are notably larger than those in the
basin, and the peak appears in their border area. The systematic errors of IMERG-DF
show better spatial homogeneity across the whole region and have smaller values. In
contrast, because random errors are complementary to systematic errors, the areas with
small systematic errors will have larger random errors. The comparison results of the three
IMERG estimates indicate that the backward-morphing scheme and bias adjustment using
a climatological gauge cannot effectively suppress the systematic errors of IMERG-DL in the
plateau, which are greatly reduced in IMERG-DF calibrated by GPCC monthly observations.
These conclusions suggest that NRT IMERG should focus more on the fast error correction
algorithm to reduce systematic errors of IMERG estimates in complex terrain.

With the change in geographical features, the performance of the systematic errors
of IMERG estimates is shown in Figure 12. Figure 12 shows that the systematic error
variation curves of IMERG-DE and DL are highly consistent and have larger fluctuation
amplitudes and overall amplitudes than IMERG-DF. More specifically, the systematic errors
of NRT IMERG show an obvious growth trend with the increase in DFBE, DEM, and slope,
but show a decreasing and increasing trend with the increase in longitude and latitude,
respectively, which then reverse when a specific high longitude and latitude (105◦E or 32◦N)
are reached. Regarding IMERG-DF, its systematic errors keep steady in most regions of
all geographical features and only fluctuate greatly in the high-value regions of longitude,
latitude, DFBE, or DEM. The above analysis shows that the systematic errors of NRT
IMERG are mostly sensitive to the variations in these geographical features. However,
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this high sensitivity is greatly inhibited in IMERG-DF, but the sharp increase in systematic
errors in areas far from the basin and at high altitude cannot be ignored. The same as in
Figure 5, the flowchart of this subsection is shown in Figure 13.

Figure 11. Spatial distributions of systematic errors (the first row, a–c) and random errors (the second
row, d–f) in percentage form for the three IMERG estimates. From left to right, three columns
represent IMERG-DE (a,d), DL (b,e), and DF (c,f), respectively.

Figure 12. Relationships between systematic errors and five geographical features for three IMERG
estimates. (a–e) represent longitude, latitude, DFBE, DEM, and Slope, respectively.
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Figure 13. The flowchart of the analysis of the systematic errors.

5. Discussion

The characteristic of the elevation in this study (high in the west and low in the east,
see Figure 1a) suggests that the longitude is correlated with changes in the elevation. The
first, third, and fourth rows of Figure 4 clearly show that for any traditional statistical error
metric, its variation with the increase in longitude and DEM is almost the opposite. In
addition, similar to the elevation, the increase in DFBE has a negative influence on the
quality of IMERG estimates. Meanwhile, similar variations are also found in the correlation
analysis of independent error components, systematic errors, and random errors with
geographical features (see Figures 8 and 12). The above analysis indicates that longitude
and DFBE do not have a direct impact on the errors, but indirectly affect the precipitation
errors through the changing DEM. Therefore, we can reasonably believe that the influence
patterns of longitude and DFBE are a reflection of the change in DEM.

Most of the precipitation error metrics exhibit high sensitivity to DEM and latitude
changes, especially in regions with elevations greater than 1 km or latitudes higher than
30◦N. With the increase in DEM and latitude, the ground temperature shows a clear
downward trend. Therefore, DEM and latitude could partly represent the temperature,
then influence the atmospheric circulation and precipitation phase, and ultimately affect
the quality of satellite precipitation estimates. In general, the quality of IMERG estimates
would decrease with the increasing DEM and latitude. The most likely reasons are: (1) IR
brightness temperature, which is an important data source for the generation of IMERG
estimates, is more effective in identifying no-rain instances in areas with high ground
temperatures; however, this effectiveness is reduced in cold regions [24]. This indicates
that the quality of IMERG estimates would decrease with the temperature drops; (2) DEM
will distort the interpolation results because the applied algorithm often assumes that the
surface is flat [50]; (3) high DEM has a major influence on the structure of the precipitation
field, thereby promoting the generation of convective precipitation with a scale smaller
than the spatial resolution of GPM, which may seriously enlarge the error of satellite
precipitation estimates [51]; (4) the snow/ice-covered land surfaces, caused by low ground
temperature, can also cause large uncertainty in precipitation measurements, especially
in high-DEM and high-latitude regions; (5) thick fog often occurs at high DEM and high-
latitude areas with lower ground temperatures. Therefore, the sizes of fog or cloud droplets
that are increased by higher concentrations of aerosols in these regions may intercept
the capability of precipitation estimation by the IMERG estimations, which leads to high
false precipitation [52]; and (6) high DEM could become a hindrance to the vertical and
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horizontal moist wind from the eastern part of the study area. Besides, the low temperature
caused by high elevation also has an obvious cooling influence on convection currents and
the moist winds from the warm region [53].

Additionally, we note that the obvious shift in the curves of almost all the error metrics
occurs around 33◦N. This phenomenon should be attributed to the sparse networks of
ground observations in this area. We treated the gauge reference data as error-free when
evaluating the quality of the IMERG estimates, which is not true (even though a necessary
bias adjustment of gauge-based observations has been applied to correct the undercatch
bias). Therefore, the ground reference data at the high end of latitude and DEM is under
quality control [36], which may weaken the robustness and reliability of our results.

6. Conclusions

Many previous precipitation assessment studies have expounded that satellite precipi-
tation performs worse in complex terrain areas. However, the relationships between these
precipitation errors and geographical features have not been systematically investigated
and compared. In this study, we have characterized and compared the spatial distributions
of summer precipitation errors for the three IMERG estimates over Sichuan, which has a
unique complex terrain in southwestern China. Afterward, the comprehensive analysis
was carried out on the inner connections between spatial variations in errors and geograph-
ical features (e.g., longitude, latitude, DFBE, DEM, Slope, etc.) with the continuous and
statistical metrics, independent error components, systematic and random errors, etc. The
main conclusions are summarized as follows:

Both aspect and TPI have significantly smaller weights than other geographical fea-
tures for all error metrics, and their influences can be ignored. DEM is the leading factor
to determine the changes in CC and false precipitation. The quality of IMERG estimates
decreases (CC < 0.5, RB > 100%, FAR > 0.4) and the false precipitation increases rapidly
with the increase in DEM on elevations above 2.5 km. However, in the lower regions
(DEM < 1.5 km), the increased DEM plays a positive role in reducing the hit bias. It mainly
suppresses the random errors of hit bias, but also amplifies the systematic errors of hit bias.

DFBE shows the most prominent effect on RB, POD, and FAR, and it is also an
important factor leading to the high sensitivity of CC. Overall, the increase in DFBE has a
negative relationship with the variations in the statistical error metrics, except for POD. In
addition, the high sensitivity of hit bias is mainly reflected in the low end (DFBE < 100 km),
while false precipitation shows an increasing trend throughout the entire range of DFBE.
Similar to DEM, the systematic errors of hit bias continue to grow linearly with DFBE.

For latitude, the influence on RB, POD, and FAR is second only to DFBE. Specifi-
cally, in the low and high regions (<27.5◦N and >33◦N), RB and FAR are significantly
improved with increasing latitude. However, in the intermediate region (30.5◦N–33◦N),
all statistical metrics show a sharp deterioration. Furthermore, although latitude has a
relatively small weight among the three independent error components, its contribution is
still non-negligible. At the low end (<31◦N), hit bias shows a downward trend, while false
precipitation remains stable, and this situation is in contrast to that of the other regions
(in other regions, hit bias is relatively stable while false precipitation experiences larger
fluctuations). Additionally, the changes and fluctuations of the systematic errors from
IMERG-DE and DL are much larger than those of IMERG-DF, indicating that the increasing
latitude has a significantly greater negative impact on the former than that of the latter.

POD and FAR are also sensitive to changes in longitude, but the sensitivity is slightly
weaker than that of latitude. But in general, for any traditional statistical error metric, its
variation with the increase in longitude and DEM is almost the opposite. This suggests
that longitude does not have a direct impact on the errors, but is often related to changes
in other variables (e.g., DEM and ground temperature) that are directly related to errors.
Compared to longitude, latitude, DFBE, and DEM, the slope has the least influence on all
error metrics. The increasing slope slightly reduces the overestimation of IMERG estimates
and also weakens the CC. Furthermore, slope shows a strong negative relationship with
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hit bias, but is not highly correlated to false precipitation. Besides, the increasing slope
amplifies the systematic errors of all three estimates, where IMERG-DE and DL show higher
sensitivity than that of IMERG-DF.

Both POD and MP show weaker fluctuations and better performances than other error
metrics with the change in geographical features, which means that the excellent detection
capability for hit precipitation and the superior suppression capability for miss precipitation
of IMERG estimates are almost independent of the change in geographical features.

By analyzing the relationships between the error metrics in the three IMERG estimates
and various geographical features, the findings of this work provide valuable reference
and feedback for IMERG producers to infer the sources of precipitation estimation errors in
complex topographical areas.
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