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Abstract: Flood risk assessment is an important tool for disaster warning and prevention. In this study,
an integrated approach based on a D-number-improved analytic hierarchy process (D-AHP) and a
self-organizing map (SOM) clustering algorithm are proposed for urban flooding risk assessment.
The urban flood inundation model and geographic information system (GIS) technology were used to
quantify the assessment indices of urban flood risk. The D-AHP approach was adopted to determine
the weights of the indices, which effectively makes up for the shortcomings of the AHP in dealing with
uncertain evaluation information (such as fuzzy and incomplete information). In addition, the SOM
clustering algorithm was applied to determine the flood risk level. It is a data-driven approach that
avoids the subjective determination of a flood risk classification threshold. The proposed approach
for flood risk assessment was implemented in Zhengzhou, China. The flood risk was classified into
five levels: highest risk, higher risk, medium risk, lower risk, and the lowest risk. The proportion
of the highest risk areas was 9.86%; such areas were mainly distributed in the central and eastern
parts of the Jinshui District, the eastern part of the Huiji District, and the northeastern part of the
Guancheng District, where there were low terrain and serious waterlogging. The higher risk areas
accounted for 24.26% of the study area, and were mainly distributed in the western and southern
parts of the Jinshui District, the southern part of the Huiji District, the middle and eastern parts
of the Zhongyuan District, the northeastern part of the Erqi District, and the northwestern part of
the Guancheng District, which consisted of economically developed areas of dense population and
buildings, matching well with historical flooding events. To verify the effectiveness of the proposed
approach, traditional approaches for risk assessment were compared. The comparison indicated
that the proposed approach is more reasonable and accurate than the traditional approaches. This
study showed the potential of a novel approach to flood risk assessment. The results can provide a
reference for urban flood management and disaster reduction in the study area.

Keywords: urban flood; risk assessment; D-number; self-organizing map

1. Introduction

Flooding problems are among the serious and frequent natural disasters in cities. With
rapid urbanization, the populations and economies of urban areas are highly concentrated,
resulting in social and economic flood damage that is more severe than it was prior to
urbanization [1,2]. Reducing the adverse effects of urban floods has become one of the
priorities in urban disaster management [3,4]. Urban flood risk assessment is an effective
tool for flood disaster management; it can identify the corresponding risk levels and
the main causes of flooding in different regions and provide a basis for the prevention
and reduction of urban floods [5–7]. Notably, large-scale flood mapping and flood risk
assessment, combined with machine learning techniques, are increasingly pursued in
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the context of rapid advances in earth observation technology and computer computing
power [8–10].

The multi-criteria index evaluation method is commonly used for flood risk assess-
ment [11–14]. In that method, the calculation of index weight is one of the key assess-
ments [15]. The analytic hierarchy process (AHP) [16–21], fuzzy logic [22–24], and principal
component analysis (PCA) [25–27] are often used to determine the weights of indices. The
AHP is one of the most widely used methods, due to its simplicity of calculation, but
it involves a high degree of subjectivity because it is significantly influenced by expert
experience and knowledge. Many scholars have made various attempts to reduce the
subjectivity of the AHP. Gigovic et al. [28] used two improved AHP methods, by inter-
val rough number (IR-AHP) and fuzziness (F-AHP), respectively, to evaluate flood risk;
the result using the IR-AHP method had the highest compatibility with historical data.
Lyu et al. [29] used the AHP method and the interval AHP method (I-AHP) to evaluate
the flood risk of the Guangzhou metro system; the results showed that the I-AHP method
produced a wider range of high-risk areas. Cai et al. [30] selected 11 indices for flood
risk assessment in mountain cities, and the index weights were determined based on the
triangular fuzzy number AHP (TFN-AHP). The results showed that the TFN-AHP method
was more efficient than the AHP method in the flood risk assessment of mountain cities.

However, all of the above methods were based on the premise of complete evaluation
information. In fact, an expert evaluation of the AHP inevitably involves various types
of uncertainty, such as imprecision, fuzziness, and incompleteness, due to the subjective
judgment of humans. For example, when comparing the importance of indices in pairs,
the following two situations often occur: (i) expert opinions are not unified and different
evaluations are reached, and (ii) some experts may not provide evaluations, due to devia-
tions in the research field. When these situations occur, traditional AHP methods are either
unusable or the evaluation results are unsatisfactory.

To solve the problem of uncertain information, D-number theory was proposed by
Deng et al. [31], on the basis of the Dempster–Shafer (D-S) evidence theory [32,33] that
was widely used in information fusion systems [34,35]. The D-number theory overcomes
the shortcomings of D-S evidence theory’s expression of uncertain information, as the
basic probability assignment (BPA) is not required to satisfy the completeness constraint
and is able to handle incomplete information. Therefore, the D-number extended fuzzy
preference relationship represents the decision matrix of pairwise comparisons provided
by experts in the AHP, as it can deal with the problems caused by uncertain evaluation
information [31,36,37].

The AHP method with the D-number is called the D-number-improved AHP method
(D-AHP). This method has been successfully used in the supplier selection [31], curtain-
grouting efficiency assessment [36], etc. The D-AHP retains the advantages of the simple
AHP calculation and clear hierarchy logic and overcomes the adverse effects of uncertain
and incomplete evaluation information. Therefore, the D-AHP was adopted to calculate
the weights of urban flood risk assessment indices in this study.

After the index weight is determined, the next step is to classify the flooding risk level.
A reasonable determination of the risk level is a key step in urban flooding risk assessment
and the clustering algorithm is a kind of data-driven method that can classify data in
the absence of definite classification criteria. Xu et al. [38] used the k-means algorithm
to evaluate the flood risk classification in Haikou City, China, and obtained satisfactory
results. However, it was found that the k-means algorithm has certain limitations [39]. The
number of clustering must be initially set, which is often not well determined during the
initial stage of clustering. In addition, as the initial cluster center is random, the result of
each clustering depends largely on the choice of the initial cluster center.

In contrast, the self-organizing map (SOM) algorithm does not specify the cluster
number and the cluster center in the initial clustering, which overcomes the limitations
of the k-means algorithm. In addition, the SOM algorithm has a strong anti-interference
ability with respect to noise data, and it can transform high-dimensional data and map



Remote Sens. 2022, 14, 4777 3 of 24

them to low-dimensional space. Therefore, it can better process nonlinear data [40,41].
Accordingly, the SOM algorithm was adopted in this study to determine the urban flood
risk level.

In this study, we developed a novel approach for urban flood risk assessment by inte-
grating the D-AHP and the SOM algorithm. First, urban flood risk assessment indices were
established based on four aspects: a disaster-causing factor (DCF), the disaster environment
(DE), the disaster bearing body (DBB), and disaster prevention and mitigation capability
(DPMC). Second, the D-number theory was combined with the AHP to calculate the weight
of each index, which mitigates the problem of incomplete expert evaluation information
and subjective preference in the AHP. Then, the SOM algorithm was applied in determining
the urban flood risk level. Finally, a case study from Zhengzhou, China, was conducted to
evaluate the validity of the proposed method by comparing it with the results of traditional
flood risk assessment methods.

2. Study Area and Data
2.1. Study Area

This study was conducted in five main urban districts of Zhengzhou, China: the
Jinshui District, the Zhongyuan District, the Erqi District, the Guancheng District, and the
Huiji District (See Figure 1). Zhengzhou is located in the central part of Henan Province in
China. It is the political, economic, and cultural center of Henan Province. Geographically,
Zhengzhou is located between 112◦42′ to 114◦14′ east longitude and 34◦16′ to 34◦58′

northern latitude, with higher terrain in the southwest and lower terrain in the northeast.
The average annual precipitation in Zhengzhou is 636 mm: the average annual rainfall in
summer is 352 mm, accounting for 55.3% of the annual precipitation. The maximum daily
rainfall is 553 mm, based on rainfall records from 1961 to 2021; 63% of the maximum annual
rainfall occurs in August. Under the comprehensive influence of the climate conditions
and the characteristics of the underlying surface, the study area is a flood disaster-prone
area and Zhengzhou is one of the key flood control cities in China.

From 19 July 2021 to 21 July 2021, Zhengzhou was hit by a heavy rain disaster. The
daily rainfall reached 553 mm from 8:00 p.m. on 19 July 2021 to 8:00 p.m. on 20 July 2021.
The maximum rainfall in 1 h was 201.9 mm, which was the largest hourly rainfall observed
in China. The flood killed 380 people and caused an economic loss of USD 6.3 billion. It had
a serious impact on residents’ lives and on the social production and traffic in Zhengzhou.

Considering the most dangerous scenario and the integrity of data, the rainfall event
from 19 July 2021 to 21 July 2021, which had the greatest impact on the study area in recent
years, was selected to conduct urban flood risk assessment.

2.2. Data

The data used in this study are shown in Table 1.
The basic data used to establish the urban flood inundation model of Zhengzhou were

mainly based on a digital elevation model (DEM), and included slope, river distribution,
building distribution, road distribution, and conduit distribution. The DEM was derived
from the shuttle radar surveying mission (SRTM) data of the US Space Shuttle Endeav-
our (https://www.resdc.cn/data.aspx?DATAID=217 (accessed on 15 August 2021)), with
30 m spatial resolution. The slope was obtained by DEM processing, with the gradient
analysis tool ArcGIS software. The remote sensing data were acquired from the Gaofen-1
satellite of China (https://www.resdc.cn/data.aspx?DATAID=285 (accessed on 15 Au-
gust 2021)), with 16 m spatial resolution. The data for river distribution and building
distribution were obtained from remote sensing data. The road distribution information
and the conduit distribution information were provided by the Zhengzhou Municipal
Administration Bureau.

https://www.resdc.cn/data.aspx?DATAID=217
https://www.resdc.cn/data.aspx?DATAID=285
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Figure 1. Overview of the study area.

The calibration data for the urban flood inundation model mainly included the dis-
tribution of flood-prone areas, historical rainfall data, and historical inundation data. The
distribution of flood-prone areas was provided by the Zhengzhou Municipal Administration
Bureau. The historical rainfall data were collected from the Zhengzhou Meteorological Bureau.
The historical inundated depth information was obtained via field investigation and a web
crawler. The historical inundated area information was obtained via remote sensing data.

The flood risk assessment index of the data contained maximum inundation depth
(MD), maximum inundation volume (MVO), maximum inundation velocity (MVE), DEM,
slope, distance to the river (DRI), density of population (DP), density of building (DB),
average area GDP (AGDP), density of conduits (DC), density of roads (DRO), and distance
to the hospital (DH). The data on MD, MVO, and MVE were obtained from the urban
flood inundation model. The data on AGDP and DP were obtained from the Zhengzhou
Statistical Yearbook. The data on DB, DC, and DRO were calculated by the density analysis
tool of ArcGIS software. Hospital distribution data were provided by the Baidu Map Point
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of Interest. The data on DRI and DH were obtained from the river and hospital distribution,
respectively, by the distance analysis tool of ArcGIS software.

Table 1. Statistical table of data.

Data Name Spatial Resolutions (m) Data Sources

Digital elevation model 30
SRTM data of the US Space Shuttle Endeavour

(https://www.resdc.cn/data.aspx?DATAID=217
(accessed on 15 August 2021))

Remote sensing data 16
Gaofen-1 satellite of China

(https://www.resdc.cn/data.aspx?DATAID=285
(accessed on 15 August 2021))

Slope 100 DEM processing with the gradient
analysis tool of the ArcGIS software

River distribution 100 Remote sensing data processing with the ENVI software
Building distribution 100 Remote sensing data processing with the ENVI software

Road distribution 100 Zhengzhou Municipal Administration Bureau
Conduit distribution 100 Zhengzhou Municipal Administration Bureau

Historical rainfall data - Zhengzhou Meteorological Bureau
Flood-prone areas - Zhengzhou Municipal Administration Bureau

Historical inundated depth - Field investigation and web crawler
Maximum inundation depth 100 Urban flood inundation model

Maximum inundation volume 100 Urban flood inundation model
Maximum inundation velocity 100 Urban flood inundation model

Average area GDP 1000 Zhengzhou Statistical Yearbook
Population 1000 Zhengzhou Statistical Yearbook

Hospital distribution 100 Baidu Map Point of Interest

3. Methods
3.1. Framework

The framework of the proposed approach is illustrated in Figure 2, which includes
the construction of an urban flood risk assessment index system, a quantification of risk
assessment index, an index weight calculation based on the D-AHP method, a flood
risk classification based on the SOM clustering algorithm, and a comparative analysis of
different risk assessment approaches.

Figure 2. Research framework diagram.

https://www.resdc.cn/data.aspx?DATAID=217
https://www.resdc.cn/data.aspx?DATAID=285
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3.2. Construction of Urban Flood Risk Assessment Index System

The commonly used urban flood risk assessment indices (DCF, DE, DBB, and DPMC)
were used for reference to establish the assessment system according to the previous
literature [29,42,43].

The flood risk index system used in this study is presented in Figure 3. MD, MVO,
and MVE were selected to represent the disaster-causing factor. These three indices were all
positive indices; the higher the values were, the higher the urban flood risk. DEM, SL, and
DRI were used to evaluate the disaster environment, and they were negative indices. In
flood disasters, population, buildings, and property are important disaster-bearing bodies.
Therefore, DP, DB, and AGDP were selected to characterize the disaster bearing body, and
they were positively correlated with the risk value. DC, DRO, and DH were selected to
evaluate disaster prevention and mitigation capabilities. These three indices were negative
indices, and their values were negatively correlated with the impact of flood disaster.

Figure 3. Risk index system of urban floods.

3.3. Quantification of the Risk Assessment Index

The spatial distributions of the DEM, SL, DRI, DP, DB, AGDP, DC, DRO, and DH
indices were obtained by ArcGIS software (see Section 2.2). MD, MVO, and MVE were
obtained from the urban flood inundation model, which was introduced as set out below.

3.3.1. Urban Flood Inundation Model

The personal computer storm water management model (PCSWMM) developed by
the Canadian Institute of Hydraulic Computing (CHI) was used to establish the urban
flood simulation model, which was based on the storm water management model (SWMM).
The PCSWMM was combined with the independent geographic information system (GIS)
to integrate one-dimensional (1D) and two-dimensional (2D) modeling, which made up
for the defect that the SWMM could only be used to simulate 1D pipeline and river flow
but not 2D surface flooding distribution [44,45]. More importantly, the simulation results
provided data on two-dimensional submerged water depth, water volume, velocity, and
other data for later processing [46–48]. The urban flood inundation model established by
the PCSWMM has been applied in many regions, and the simulation results have been
satisfactory [44–48]. Therefore, this study used the PCSWMM to establish an urban flood
inundation model.

3.3.2. Calibration of Urban Flood Inundation Model

The calibration of urban hydrodynamic model was applied to the flood-prone areas
and the inundation of historical rainfall events. First, the inundation distributions of differ-
ent return period rainfall events were compared with the flood-prone areas in Zhengzhou,
which were provided by the Zhengzhou Municipal Administration Bureau. Second, the
inundation depths of observation points were compared with simulated values by the
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PCSWMM during historical rainfall events. Third, we compared the simulated inundation
area with that of an area obtained by remote sensing data in the rainfall event that occurred
on 20 July 2021, and the remote sensing data has been reported by Reference [49].

3.4. Weight Calculation of Index Based on the D-AHP Method

The D-AHP method was used to compensate for the shortcoming of not being able
to deal with uncertain information evaluation (such as inaccurate, fuzzy, and incomplete
information) by extending the AHP via the D-number. In addition, the optimized method
reduced subjectivity and dealt with the decision-making problems based on fuzzy and
incomplete information [36]. For example, 10 experts assessed two indices. In the first
situation, six experts thought that the preference of index 1 was preferred index 2 at 0.65,
and four experts thought that the preference of index 1 was preferred index 2 at 0.75. In
the second situation, seven experts thought that the preference of index 1 was preferred
index 2 at 0.85, and three experts did not provide any information, due to their lack of
professional knowledge. As shown below, the extended fuzzy preference relationship with
the D-number can represent both cases well, which the pairwise comparison relationship
of the AHP cannot do so [36].

3.4.1. D-number Theory

Deng et al. [31] and Deng and Deng [37] defined the D-number theory as follows:

Definition 1. Let Ω be a finite nonempty set; the D-number is a mapping formulated by

D : Ω→ [0, 1] (1)

with
∑

B⊆Ω

D(B) ≤ 1 and D(∅) = 0 (2)

where ∅ is an empty set and B is a subset of Ω.

From Definition 1, the completeness constraint is released by the D-number. If
∑B⊆Ω D(B) = 1, then the information is complete; if ∑B⊆Ω D(B) < 1, the information
is incomplete.

Definition 2. Let D = {(b1, v1), (b2, v2), · · · , (bi, vi), , · · · , (bn, vn)} be a D-number; then, it
can be represented as

I(D) =
n

∑
i=1

bivi (3)

where bi ∈ R, vi > 0 and ∑n
i=1 vi ≤ 1.

Definition 3. Suppose that set U consists of n assessment indices. Set U = {U1, U2, . . . , Un}. Its
fuzzy preference relation is as follows:

µR : U ×U → [0, 1] (4)

The matrix form can be expressed as R =
[
rij
]

n×n; that is,

U1 U2 · · · Un

R =

U1
U2
...

Un




r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rn1 rn2 . . . rnn




(5)
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where rij represents the degree of preference for Ui relative to Uj. The assignment of rij and its
corresponding meanings are as follows:

rij =





0; when Uj is absolutely more important than Ui
∈ (0, 0.5); when Uj is more important than Ui
0.5; when Uj is just as important as Ui
∈ (0.5, 1); when Ui is more important than Uj
1; when Ui is absolutely more important than Uj

(6)

Definition 4. Let set U = {U1, U2, . . . , Un} of the assessment indices that exist, and let the
preference relatioshipn of the D-number exist in the form of a matrix expressed as

RD : U ×U → D (7)

U1 U2 · · · Un

RD =

U1
U2
...

Un




D11 D12 · · · D1n
D21 D22 · · · D2n

...
...

. . .
...

Dn1 Dn2 . . . Dnn




(8)

where Dij = {(bij
1 , vij

1 ), (b
ij
2 , vij

2 ), · · · , (bij
m, vij

m)}; Dji = {(1− bij
1 , vij

1 ), (1− bij
2 , vij

2 ), (1− bij
m, vij

m)},
∀i, j ∈ {1, 2, · · · , n}; Dii = {(0.5, 1.0)}, ∀i ∈ {1, 2, · · · , n}; bij

k ∈ [0, 1], ∀k ∈ {1, 2, · · · , m};
bij

k represents the degree of importance that kth expert considers index i to be relative to index j; vij
k

represents the expert’s support for the importance.

Consequently, the preference relationships of case 1 and case 2 could be expressed as
(9) and (10), respectively, according to Equation (10).

RD =

[ {(0.5, 1.0)} {(0.65, 0.6), (0.75, 0.4)}
{(0.35, 0.6), (0.25, 0.4)} {(0.5, 1.0)}

]
(9)

RD =

[ {(0.5, 1.0)} {(0.85, 0.7)}
{(0.15, 0.7)} {(0.5, 1.0)}

]
(10)

3.4.2. Steps in Calculating Index Weight by the D-AHP Method

Step 1. Equations (11) and (12) were used to standardize positive and negative
indices, respectively.

x′i =
xi − xmin

xmax − xmin
(11)

x′i =
xmax − xi

xmax − xmin
(12)

where x′i is the xi value of the index i after normalization; xmin is the minimum values of
the corresponding index; and xmax is the maximum values of the corresponding index.

Step 2. Experts were organized to measure the importance of each index in terms of
the D-number preference relationship to establish the D-number preference matrix, RD.

Step 3. The crisp matrix RC was calculated by the D-number preference matrix RD
according to Equation (3).

Step 4. The preference probability used to represent the pairwise comparison indices
was the probability matrix RP constructed by the crisp matrix RC [50]. The elements in
the matrix were recorded as cij, while the elements in the matrix RP were denoted as
pij = Pr

(
Ui > Uj

)
, ∀i, j ∈ {1, 2, . . . , n} :

(i) cij + cji = 1: if cij > 0.5, then Pr
(
Ui > Uj

)
= 1; if cij ≤ 0.5, then Pr

(
Ui > Uj

)
= 0;
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(ii) cij + cji < 1: if cij ≥ 0.5, then Pr
(
Ui > Uj

)
= 1 and Pr

(
Uj > Ui

)
= 0; if cji ≥ 0.5, then

cji ≥ 0.5 and Pr
(
Ui > Uj

)
= 0;

(iii) cij + cji < 1, cij < 0.5, and cji < 0.5; the unallocated preference is cup = 1−
(
cij + cji

)
.

The degree of preference for considering one index to be more important than another is:

Pr
(
Ui � Uj

)
= 1−

(
0.5− cij

)

cup
(13)

Pr
(
Uj � Ui

)
= 1−

(
0.5− cji

)

cup
(14)

Step 5. The triangulation matrix RT
P was obtained by adjusting the order of the rows

and columns in RP according to the sum of the rows in the RP matrix. Equation (15) was
used to calculate whether the inconsistent coefficient was within the acceptable range.

I.D. =
∑n

i=1 RT
P(i, j)

n(n−1)
2

, j < i (15)

where I.D. is the inconsistent coefficient, RT
P(i, j) is the element of row I and column j in the

triangulation matrix RT
P(i, j), and n represents the number of indices compared in pairs.

Step 6. We triangulated the crisp matrix RC to RT
C as RT

P described above. If the
elements in RT

C met the requirements of RT
C(i, j) + RT

C(j, i) < 1 (incomplete information),

then RT
C needed to be further normalized to matrix RT

C′ according to Equation (16):

RT
C′(i, j) = RT

C(i, j) +
1−

[
RT

C(i, j) + RT
C(j, i)

]

2
(16)

Step 7. The weight of each index was calculated, based on the RT
C (or RT

C′ ) matrix.

3.5. Flood Risk Classification Based on the SOM Clustering Algorithm

The SOM clustering algorithm was proposed by Kohonen [51]. It can classify data
with similar quality without the need to specify a cluster number and a cluster center in
advance. Therefore, this paper adopted the SOM clustering algorithm to carry out risk
classification. The SOM structure contains components called nodes and consists of two
parts: an input layer and a clustering layer. The method uses an iterative process to identify
weight vectors during the training phase [51]. The Euclidean distance between indices
is used as the input vector in the SOM training algorithm [51,52]. The size of the neural
network was calculated by Equation (17) [52,53]. The number of clusters was determined
by Equation (18) [52,53].

The heuristic equation was proposed to determine the optimal solution of the map’s
side length. In the case of combining quantization error and topographic error, its calcula-
tion was as follows:

M = 5
√

N (17)

where M is the number of map units and N is the number of samples of the training data.
The number of clusters can be determined by the Davies–Bouldin index (DBI). The

smaller the DBI is, the better the clustering effect, which can be calculated by the
following equation:

DBI =
1
c

c

∑
i=1

m

(
Ci + Cj

||ci − cj ||

)
(18)

where C is the average distance from all samples of this cluster to the center of this cluster.
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4. Results
4.1. Urban Flood Inundation Model in Zhengzhou
4.1.1. Model Building

The model consisted of two modules. A rainfall-runoff model and a flow-routing
process model were selected for hydrological and hydraulic modeling, respectively. For
hydrologic analysis, the study area was divided into 3283 sub-catchments, according to
the distribution of buildings, roads, and rivers in the Zhengzhou urban area, and the
direction of a catchment was determined according to DEM and slope (Figure 4a). The
hydrology input parameters of the sub-catchments included area, flow length, slope, and
imperviousness. In addition, the Horton infiltration method was selected for this hydrology
module [54]. For hydraulic simulation, the conduit distribution was generalized into the
conduit model via ArcGIS software for simple data processing. First, the one-dimensional
(1D) conduit model consisted of 2522 junctions and 2561 conduits (Figure 4b). Then, a
two-dimensional (2D) floodplain model was established in the PCSWMM, which was
composed of 100,528 grids with a size of 100 m × 100 m. Finally, the 1D conduit model and
2D floodplain model were linked via orifices (Figure 4c). In addition, the dynamic wave
method was used in the hydraulic simulation [54].

Figure 4. (a) Distribution of sub-catchments and buildings; (b) distribution of junctions and conduits;
(c) link of one-dimensional conduit model and two-dimensional floodplain model.
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4.1.2. Calibration of the Model

In this study, the rationality of the model was calibrated with the flood-prone areas
and the inundation of historical rainfall events.

• Calibration by flood-prone areas:

The design rainfall with return periods of 10 years, 50 years, and 100 years, respectively,
were obtained from the designed rainfall equation provided by the Zhengzhou Urban and
Rural Planning Bureau and were adopted as the input boundaries of the urban flood
inundation model in Zhengzhou.

The simulation results were compared with the flood-prone areas in Zhengzhou and
the results are shown in Figure 5 and Table 2. Considering the actual situation, the area
with the inundation depth greater than 10 cm was considered to have the greatest impact
on people’s daily life. The results with a return period of 10 years showed that 33 of
39 flood-prone areas generated waterlogging (Figure 5a). There were 40 flood-prone areas
that generated waterlogging with a return period of 50 years, 35 of which were over 10 cm
(Figure 5b). Forty-one flood-prone areas with a return period of 100 years generated
waterlogging, 38 of which were over 10 cm (Figure 5c). It can be seen from Table 2 that
in the three designed rainfall events, the proportion of flood disasters that occurred in
flood-prone areas was 78.5%, 83.3%, and 90.5%, respectively, each of which was greater
than 75%. Therefore, the model was considered to have high simulation accuracy.

Figure 5. (a) Simulation results of rainfall during 10 year return period, (b) 50 year return period, and
(c) 100 year return period.
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Table 2. Calibration results of flood-prone areas.

Return
Period

The Actual Number of
Flood-Prone Areas

The Simulated Number of
Flood-Prone Areas

The Proportion of Flood Disasters in
Flood-Prone Areas

10years 39 33 78.5%
50years 40 35 83.3%

100years 41 38 90.5%

• Calibration by historical inundation depth and area:

The inundation depth of the rainfall event from midnight to 2:00 p.m. on 20 July
2021 (hereinafter referred to as rainfall event A) and the rainfall event on 26 July 2011
(hereinafter referred to as rainfall event B) were used to verify the accuracy of the model (as
shown in Tables 3 and 4). For rainfall events A and B, the average relative errors between
the historical inundation depth and the simulated inundation depth were 13.89% and
17.36%, respectively. The Nash coefficient (ENS) of the A rainfall event was 0.78, and that of
the B rainfall event was 0.75. Therefore, the model simulated the maximum inundation
depth well.

Table 3. Calibration results of rainfall event A.

Serial Number Locale Historical
Inundation Depth (m)

Simulated
Inundation Depth (m) Relative Error (%)

1 Guoji Road,
Zhongzhou Avenue 0.65 0.60 7.69

2 East Third Ring Road,
Hanghai Road 0.40 0.35 12.50

3 Hanghai Road, Airport
Highway South Side 0.45 0.37 17.78

4 Liuzhuang Subway Station,
Huayuan Road 0.40 0.52 30.00

5 Dongfeng Road,
Huayuan Road 0.20 0.20 0.00

6 New North Station,
Huayuan Road 0.25 0.28 12.00

7 Jingqi Road, Hongqi Road 0.10 0.12 20.00
8 No.11 Street, Hanghai Road 0.45 0.40 11.11

Table 4. Calibration results of rainfall event B.

Serial Number Locale Historical
Inundation Depth (m)

Simulated
Inundation Depth (m) Relative Error (%)

1 East Third Ring Road,
Dahe Road 0.40 0.45 12.50

2
South Third Ring Station of
Beijing-Hong Kong–Macao

Expressway
0.15 0.13 13.33

3 Longzihu Road, Mingli Road 0.25 0.20 20.00

4 Longhai Road,
Jingguang Road 0.15 0.13 13.33

5 University Road, Ruhe Road 0.20 0.25 25.00
6 Tongbai Road, Huaihe Road 0.20 0.24 20.00

The historical inundation area obtained by remote sensing data for rainfall event
A was used for comparison with the simulated inundation area. The detailed process
for visualizing the historical inundation area was presented in Section 3.3 of [54]. The
simulated inundation area for rain event A is shown in Figure 6b. The historical inundation
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area (Figure 6a) and the simulated inundation area (Figure 6b) account for 75.3% and 76.6%
of the total area of the study area, respectively. The relative error was 1.7%. Notably, there
was a similar distribution of the inundation area. For example, the inundation area in the
Huiji District was concentrated in the south, while the inundation area in the Zhongyuan
District was in the central region. In addition, the northeast corner of the Jinshui District,
the southwest corner of the Erqi District, and the southeast corner of the Guancheng District
were less affected by the flood. Therefore, the model simulated the inundation area well.

Figure 6. Distribution of (a) historical inundation area, and (b) simulated inundation area.

4.2. Calculation of Urban Flood Risk Assessment Indices

Twelve indices were selected to construct the urban flood risk assessment index system
from four perspectives (i.e., DCF, DE, DBB, and DPMC). As the resolution of the urban
flood inundation model was 100 m × 100 m, the 12 evaluation indices were also divided
into 100,528 grids with the same resolution.

The disaster-causing factor included MD, MVO, and MVE, which were obtained from
the model’s simulation results of rainfall events in Zhengzhou from 19 July 2021 to 21 July
2021 (see Section 4.1). As shown in Figure 7a–c, most of the severely flooded areas were
located in the northeastern part of the study area, and the maximum inundation velocity
was larger in the western part of the study area. The disaster environment indices include
DEM, slope, and DRI in the study area. As shown in Figure 7d, the southwestern part of
the study area was higher and the northeastern part was lower; the terrain of southwestern
part was steep (Figure 7e); the eastern channel as more densely distributed (Figure 7f). The
disaster-bearing body indices included DP, DB, and AGDP in the study area. As shown
in Figure 7g–i, the middle area of the study area was well developed with a concentrated
population, a developed economy, and dense buildings. The disaster prevention and
mitigation capability indices included DC, DH, and DRO. Figure 7j–l shows that there ere
dense roads in the middle of the study area, and the distribution of conduits and hospitals
was relatively uniform.
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Figure 7. Spatial distribution of the evaluation indices (a) MD, (b) MVO, (c) MVE, (d) DEM, (e) slope,
(f) DRI, (g) DP, (h) DB, (i) AGDP, (j) DC, (k) DH, and (l) DRO.
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4.3. Index Weight Calculation Based on the D-AHP

The weight of each index was calculated from the steps described in Section 3.4. As an
example, we present below the weight calculation process of DCF, DE, DBB, and DPMC.

(1) The assessment information of experts on the indicators was collected through ques-
tionnaires. Based on the assessment information of experts, the D-number preference
matrix RD was established:

DCF DE DBB DPMC

RD =

DCF
DE

DBB
DPMC




{(0.50, 1.00)} {(0.60, 1.00)} {(0.65, 1.00)} {(0.70, 1.00)}
{(0.40, 1.00)} {(0.50, 1.00)} {(0.60, 0.80), (0.50, 0.20)} {(0.65, 1.00)}
{(0.35, 1.00)} {(0.40, 0.80), (0.50, 0.20)} {(0.50, 1.00)} {(0.50, 0.40), (0.60, 0.40)}
{(0.30, 1.00)} {(0.35, 1.00)} {(0.50, 0.40), (0.40, 0.40)} {(0.50, 1.00)}




(19)

(2) The matrix RD was converted to a crisp matrix RC, according to Equation (3).

RC = I(RD) =




0.50× 1.00 0.60× 1.00 0.65× 1.00 0.70× 1.00
0.40× 1.00 0.50× 1.00 0.48 + 0.10 0.65× 1.00
0.35× 1.00 032 + 0.10 0.50× 1.00 0.20 + 0.24
0.30× 1.00 0.35× 1.00 0.20 + 0.16 0.50× 1.00


 =




0.50 0.60 0.65 0.70
0.40 0.50 0.58 0.65
0.35 0.42 0.50 0.44
0.30 0.35 0.36 0.50


 (20)

(3) The probability matrix RP was constructed based on the crisp matrix RC.

RP =




Pr(DCF > DCF) = 0.00 Pr(DCF > DE) = 1.00 Pr(DCF > DBB) = 1.00 Pr(DCF > DPMC) = 1.00
Pr(DE > DCF) = 0.00 Pr(DE > DE) = 0.00 Pr(DE > DBB) = 1.00 Pr(DE > DPMC) = 1.00
Pr(DBB > DCF) = 0.00 Pr(DBB > DE) = 0.00 Pr(DBB > DBB) = 0.00 Pr(DBB > DPMC) = 0.70
Pr(DPMC > DCF) = 0.00 Pr(DPMC > DE) = 0.00 Pr(DPMC > DBB) = 0.30 Pr(DPMC > DPMC) = 0.00


 (21)

(4) The probability matrix RP was converted to the matrix RT
P using the

triangularization method.

DCF DE DBB DPMC

RT
P =

DCF
DE

DBB
DPMC




0.00 1.00 1.00 1.00
0.00 0.00 1.00 1.00
0.00 0.00 0.00 0.70
0.00 0.00 0.30 0.00




(22)

The ranking of the indicators was calculated as DCF > DE > DBB > DPMC, where the
symbol “>” indices preference.

According to Equation (15) in Section 3.4, the inconsistency coefficient I.D. was 0.05,
within the acceptable range.

(5) The RT
C and RT

C′ may be expressed as follows, according to Equations (13), (14)
and (18):

RT
C =




0.50 0.60 0.65 0.70
0.40 0.50 0.58 0.65
0.35 0.42 0.50 0.44
0.30 0.35 0.36 0.50


 (23)

RT
C′ =




0.50 0.60 0.65 0.70
0.40 0.50 0.58 0.65
0.35 0.42 0.50 0.54
0.30 0.35 0.46 0.50


 (24)

(6) The weight equations were constructed by the weight relationship of the indices
represented in the matrix RT

C′ [29,43]:
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



λ(a1 − a2) = 0.6− 0.5
λ(a2 − a3) = 0.58− 0.5
λ(a3 − a4) = 0.54− 0.5
a1 + a2 + a3 + a4 = 1

λ > 0, ai > 0, ∀i ∈ {1, 2, 3, 4}

(25)

where ai represents the weight of the ith index; λ is the credibility of the information
provided by experts, and the higher the expert’s knowledge in the field of problem
assessment, the higher the credibility. The specific calculation of λ is as follows:
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λ =





dλe; For highly reliable in f ormation

n; For moderately reliable in f ormation
n2

2 ; For low reliable in f ormation

(26)

Because the experts are experienced, λ = dλe = 1, according to Equation (26).

Therefore, the corresponding weights of DCF, DE, DBB, and DPMC were 0.375, 0.275,
0.195, and 0.155, respectively.

Similarly, the weights of all indices could be obtained, and the results are shown in
Table 5. In addition, the weights calculated by the AHP methods, which were used in
Section 5.1, are also shown in Table 5.

Table 5. Index weights calculated by the D-AHP, AHP, and entropy-weighting methods.

Index MD MVO MVE DEM SL DRI DP DB AGDP DC DH DRO

D-
AHP 0.153 0.116 0.106 0.113 0.083 0.079 0.073 0.056 0.066 0.083 0.029 0.043

AHP 0.267 0.167 0.077 0.143 0.113 0.053 0.043 0.037 0.030 0.053 0.006 0.011

4.4. Flood Risk Classification of Urban Floods Based on the SOM Algorithm

A 40 × 40 SOM neural network was established, according to Equation (17) in Sec-
tion 3.5. The input planes (Figure 8a) and the weight distance matrix (Figure 8b) were
visualized, according to the established SOM neural network. The input planes showed the
correlation of different indices. The more similar the connection pattern of the inputs, the
more relevant the inputs were. For example, MD and MVO were highly related, due to their
inputs (Figure 8a). The weight distance matrix showed the distance of different neurons
(Figure 8b). The small hexagon represents neurons, while the large hexagon visualizes the
distance between neurons. The darker the color of the large hexagon, the farther the dis-
tance. A total of 100,528 grids were stored in different neurons and were classified based on
the distance between the neurons. The DBI of different clustering numbers was determined
by Equation (18). As shown in Figure 8c, when the clustering number corresponded to
5, the DBI value was the smallest. Therefore, the optimal effect was achieved when the
number of clusters was five. The urban flood risk was classified into five corresponding
levels from high to low: highest risk, higher risk, medium risk, lower risk, and the lowest
risk.

—

—
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tance. A total of 100,528 grids were stored in different neurons and were classified based on
the distance between the neurons. The DBI of different clustering numbers was determined
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Similarly, the weights of all indices could be obtained, and the results are shown in

Table 5. In addition, the weights calculated by the AHP methods, which were used in
Section 5.1, are also shown in Table 5.

Table 5. Index weights calculated by the D-AHP, AHP, and entropy-weighting methods.

Index MD MVO MVE DEM SL DRI DP DB AGDP DC DH DRO

D-AHP 0.153 0.116 0.106 0.113 0.083 0.079 0.073 0.056 0.066 0.083 0.029 0.043
AHP 0.267 0.167 0.077 0.143 0.113 0.053 0.043 0.037 0.030 0.053 0.006 0.011

4.4. Flood Risk Classification of Urban Floods Based on the SOM Algorithm

A 40 × 40 SOM neural network was established, according to Equation (17) in
Section 3.5. The input planes (Figure 8a) and the weight distance matrix (Figure 8b) were
visualized, according to the established SOM neural network. The input planes showed
the correlation of different indices. The more similar the connection pattern of the inputs,
the more relevant the inputs were. For example, MD and MVO were highly related, due
to their inputs (Figure 8a). The weight distance matrix showed the distance of different
neurons (Figure 8b). The small hexagon represents neurons, while the large hexagon
visualizes the distance between neurons. The darker the color of the large hexagon, the
farther the distance. A total of 100,528 grids were stored in different neurons and were
classified based on the distance between the neurons. The DBI of different clustering
numbers was determined by Equation (18). As shown in Figure 8c, when the clustering
number corresponded to 5, the DBI value was the smallest. Therefore, the optimal effect
was achieved when the number of clusters was five. The urban flood risk was classified
into five corresponding levels from high to low: highest risk, higher risk, medium risk,
lower risk, and the lowest risk.

Figure 9a shows the classification of neurons. The radar diagram of the average values
of different cluster indices (after standardization) is shown in Figure 9b. Cluster 5 had
the highest disaster-causing factor index value, especially for MD and MVO, which were
much higher than other clusters. DEM and DRI (after standardization) were also the largest
among the disaster environment. The cluster was considered to be extremely vulnerable to
flooding, so cluster 5 was the highest risk area. Cluster 4 had the largest disaster-bearing
body index, and its DP, DB, and AGDP were higher than those of other clusters. MD and
MVO were second only to cluster 5, so cluster 4 was considered as the higher risk area. The
index values of cluster 1 were all relatively small; DEM, MD, and MVO were the smallest
and were the least prone to flood disasters. Therefore, cluster 1 belonged to the lowest risk
area. Cluster 2 had dense conduits and larger DEM, but the largest MVE; other indices
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were greater than those of cluster 1, so cluster 2 was classified as the lower risk area. Cluster
3 had the smallest DRI, a smaller DC, and a lower DEM than those of clusters 1 and 2, so
cluster 3 belonged to the medium risk area.

Figure 8. (a) The input planes; (b)the weight distance matrix; and (c) the DBI values corresponding
to different clustering numbers.

Figure 9. (a) SOM cluster distribution; (b) radar diagram of mean value of cluster indices (after
standardization).
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Figure 10 shows the spatial distribution of the urban flooding risk in Zhengzhou. It
indicates that the highest risk areas were mainly distributed in the central and eastern
parts of the Jinshui District, the eastern part of the Huiji District, and the northeastern
part of the Guancheng District, accounting for 9.86% of the total area. The higher risk
areas accounted for 24.26% of the total area and were mainly located in the western and
southern parts of the Jinshui District, the southern part of the Huiji District, the middle
and eastern parts of the Zhongyuan District, the northeastern part of the Erqi District, and
the northwestern part of the Guancheng District. The medium risk areas accounted for
the largest proportion (27.57%) of the total area and were mainly located in the central
and northern parts of the Huiji District, the northern part of the Zhongyuan District, and
the eastern part of the Guancheng District. The lower risk areas and the lowest risk areas
accounted for 24.26% and 8.95% of the total area, respectively and were mainly distributed
in the southwestern part of the study area and the western part of the Huiji District. In
order to verify the accuracy of the risk distribution, the above assessment results were
compared with the inundation data and actual economic loss data of the rainfall events
from 19 July 2021 to 21 July 2021. The highest risk areas and the higher risk areas in the
study area were consistent with the area with the most severe flood disaster, which proved
that the application of the D-AHP method and the SOM clustering algorithm in flood risk
assessment was feasible and that the calculation results were reasonable.

Figure 10. Spatial distribution map of flood risk in Zhengzhou based on the D-AHP and the SOM
clustering method.
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5. Discussion
5.1. Comparison with Other Methods

The results of the D-AHP method and the SOM clustering method were compared
with those of AHP-SOM clustering (Figure 11a), the D-AHP method (Figure 11b), and
the TOPSIS method (Figure 11c), respectively, in order to establish the differences in their
algorithms in flood risk assessment.

Figure 11. Spatial distribution map of flood risk in Zhengzhou: (a) based on the AHP-SOM method;
(b) based on the D-AHP and natural-breaks method; and (c) based on the TOPSIS-with-entropy-
weighting method. Areas 1–16 in sub-figures (a) and (b) were selected to compare the results of
different risk assessment methods.
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The flood risk distribution obtained by the AHP-SOM method is shown in Figure 11a.
The index weights obtained from the AHP method are shown in Table 5. The proportion
of the highest risk areas and the higher risk areas were 11.18% and 20.54%, respectively.
The area proportions were basically consistent with that determined by the D-AHP and the
SOM clustering method, but their spatial distributions were quite different. The results of
the AHP-SOM method were obviously unreasonable. For example, as shown in Figure 11a,
region 1 is located in the highest risk areas, but it has high elevation, an extremely low
population density, and a backward economy; therefore, it was in the lower risk area.
Although the terrain of regions 2 and 3 are relatively low, they were more suitable for
classification as medium risk areas with large DC, low DP, and a backward economy.
Regions 4 to 9 are low-lying, with large MD, close to the river, and with a relatively
developed economy; the risk level was the higher risk or the highest risk. The main reason
for the inaccuracy of the AHP-SOM method was that the traditional AHP method ignores
the uncertainty of evaluation information, resulting in some index weight that does not
conform to reality; therefore, a specific index is aggregated into a class. For example, the
weights of MD and MVO in this study were too high, leading to a small impact of other
indices on flood risk results. Therefore, it may be concluded that the AHP-SOM method
was greatly influenced by expert evaluations and had strong subjectivity, and the evaluation
result was not ideal.

Figure 11b shows the flood risk map based on the D-AHP and natural-break method.
The proportions of the highest risk areas and the higher risk areas were 10.36% and 24.11%,
respectively. The proportions of the lower risk areas and the lowest risk areas were 26.84%
and 12.08% respectively. The spatial distribution of the different levels of flood risk differed
greatly from those of the D-AHP and the SOM clustering methods, and the risk levels in
some areas were obviously unreasonable. In Figure 11b, regions 10 and 11 are the banks of
the Yellow River. Although the DRI in these areas was very small, the DP and DB ere very
small and the economy was not developed; therefore, it was reasonable for these areas to
be medium risk areas. Regions 12 and 13 are located in high-altitude areas that are sparsely
populated and economically backward; therefore, it was appropriate to change the risk
level to lowest risk. Although the DC in regions 14, 15, and 16 was relatively dense, they
all had high DB, DP, AGDP, and MD, which were vulnerable to flood disasters. Therefore,
there was good reason to rate them as higher risk areas. It may be concluded that the flood
risk classification by the SOM clustering algorithm was reasonable, and the evaluation
results of the D-AHP and natural-breaks method were not as accurate as the methods
proposed in this study.

The flood risk distribution obtained by the TOPSIS-with-entropy-weighting method
is shown in Figure 11c. Compared with several other methods, the evaluation result of
this method was quite different. The proportion of the lowest risk areas and the lower risk
areas were as high as 41.23% and 29.22%, respectively. In contrast, the highest risk areas
and the higher risk areas had ratios of only 0.75% and 7.35%, respectively. However, most
areas of Zhengzhou were flooded on 20 July 2021, indicating that the classification for flood
risk by the TOPSIS method was not reasonable. In addition, the highest risk areas were
rarely distributed in the eastern part of the Jinshui District, which suffered from severe
floods on 20 July 2021, and the results did not correspond to the actual situation. Therefore,
the proposed method was more useful for the flood risk assessment in the study area.

5.2. Limitation of the Proposed Approach and Future Work

In this study, we developed a novel approach for urban flood risk assessment by
integrating the D-AHP and the SOM algorithm. The D-AHP method describes the uncertain
evaluation information well and solves the subjective problem of the AHP. The SOM
clustering algorithm avoids the subjective problem caused by the artificial determination
of the flood risk classification threshold. This study proved the accuracy of the proposed
method in urban flood risk assessment. Of course, there are limitations, as follows:
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(1) In this article, a case study of Zhengzhou, China, was adopted to test the applicability
of the proposed D-AHP method and the SOM clustering algorithm. Due to the limita-
tion of data, 12 indices were selected for urban flood risk assessment. In the future,
a more comprehensive index system should be selected for urban flood risk assess-
ment from the perspectives of DCF, DE, DBB, and DPMC, such as considering the
distribution of critical infrastructure, pumping stations, and flood warning stations.

(2) Because the observed data of inundation depth in the study area were difficult to
obtain, the study mainly adopted the data of flood-prone areas that were provided
by the Zhengzhou Municipal Administration Bureau and the observed data of two
rainfall events to calibrate the urban flood simulation model. In the future, with an
increase in observed inundation data, the accuracy of the urban flood simulation
model may be further improved, and more accurate index values, such as maximum
inundation depth, maximum inundation volume, and maximum inundation velocity
can be obtained.

(3) Urban flood risk distribution is the basis for determining flood reduction measures.
In the future, we will conduct research on the selection, placement, and scale opti-
mization of flooding measures, according to the distribution of high-risk areas.

6. Conclusions

In this study, an integrated approach based on the D-number-improved AHP and
the self-organizing map (SOM) algorithm was proposed for urban flood risk assessment.
Taking Zhengzhou in China as a case study, 12 indices were selected from four aspects of
DCF, DE, DBB, and DPMC. An urban flood inundation model and GIS technology were
used to quantify the evaluation indices. Considering the uncertainty of the evaluation
information, the D-AHP method was adopted to quantify the index weight. In addition,
the SOM clustering algorithm was used to classify flood risk level automatically and to
solve the subjective determination of the flood risk classification threshold.

The flood risk distribution in Zhengzhou showed that the flood risk was classified
into five corresponding levels from high to low: highest risk, higher risk, medium risk,
lower risk, and the lowest risk. The highest risk areas were mainly distributed in the
central and eastern parts of the Jinshui District, the eastern part of the Huiji District, and
the northeastern part of the Guancheng District, accounting for 9.86% of the total area. The
higher risk areas accounted for 24.26% of the total area and were mainly located in the
western and southern parts of the Jinshui District, the southern part of the Huiji District,
the middle and eastern parts of the Zhongyuan District, the northeastern part of the Erqi
District, and the northwestern part of the Guancheng District. As a comparison, the other
three approaches (the AHP-SOM method, the D-AHP and natural-break method, and
the TOPSIS-with-entropy-weighting method) were also considered for urban flood risk
assessment. The results demonstrated that the integrated approach of the D-AHP method
and the SOM clustering algorithm is more reasonable and scientific.

This study provides a new approach for urban flood risk assessment, which can pro-
vide valuable information for urban flood risk management, flood control, and mitigation
planning in the study area and in other areas.
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