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Abstract: The paucity of in-situ records, particularly in the glaciated mountainous region, is an
obstacle in cryosphere ecology and environmental studies. Generally, available gauge station data is
fragmented and covers valleys; thus, the use of gridded precipitation products (GPPs) is crucial in
such complex terrains. However, these GPPs suffer from systematic biases and uncertainties owing to
parameterization deficiencies. Therefore, the main goal of this research is to systematically evaluate
the long-term performance and differences of the newly launched MSWEP in comparison to APHRO,
CHIRPS, ERA-5, and PGMFD over the transboundary region of Indo-Pak (1981–2009) at spatial
(whole to sub-basins) and temporal (daily to seasonal) scales. Findings reveal (1) overall, five GPPs
produced well annual spatial precipitation variability with high magnitudes in the northwestern and
low in the northeastern region. (2) The estimations from GPPs also divulged better correlation with
in-situ observations (MSWEP = 0.86, APHRO = 0.76, ERA-5 = 0.81, CHIRPS = 0.57 and PGMFD = 0.68)
at daily span. Better performance was observed during the monsoon compared to winter and pre-
monsoon seasons. (3) Lately, estimates from MSWEP are more reliable for all the seasons, especially
in the winter season, with the highest CC (0.90) and lowest relative bias (3.03%). (4) All GPPs
(excluding ERA-5) overestimated light precipitation (0–1 mm/day) and underestimated moderate to
heavy precipitation, in contrast to the ERA-5 that tended to underestimate the light but overestimate
moderate (1–20 mm/day) and heavy precipitation (>20 mm/day) events. The CHIRPS was less
accurate in detecting most of the precipitation events. The MSWEP product captured all precipitation
intensities more accurately than other GPPs. The current research indicates considerable implications
for product improvement and data users for choosing better alternative precipitation data at a
local scale.

Keywords: GPPs; APHRO; CHIRPS; ERA-5; PGMFD; MSWEP; Indo-Pak

1. Introduction

Precipitation is a substantial constituent of the hydrological cycle that plays a crucial
role in sustaining hydro-climatic balance and ecological processes. As precipitation varies
in space and time, thus the accurate acquisition of precipitation data on desirable spa-
tiotemporal resolutions is essential for the relevant applications, particularly in data-scarce
catchments [1,2]. However, acquiring the most reliable precipitation data on finer spa-
tiotemporal scales is still challenging for researchers [3,4]. The in-situ gauges can generally
provide accurate and reliable measurements at gauge sites. Still, their scarce distribution,

Remote Sens. 2022, 14, 4773. https://doi.org/10.3390/rs14194773 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14194773
https://doi.org/10.3390/rs14194773
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9018-2837
https://orcid.org/0000-0002-5382-9336
https://doi.org/10.3390/rs14194773
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14194773?type=check_update&version=1


Remote Sens. 2022, 14, 4773 2 of 23

especially in mountainous regions, usually constrains the spatial representation of precipita-
tion patterns [5,6]. Moreover, hydro-meteorological studies are restricted by inhomogeneity,
irregular distribution, and poor spatial coverage of ground-based observations. In recent
years, satellite-based datasets have been introduced as an ancillary alternative source to
detect spatio-temporal variation of precipitation with better spatio-temporal resolutions
compared to conventional observations [7–9]. They are being used in different scientific
research. Although, these datasets vary in design objectives (temporal homogeneity, in-
stantaneous accuracy), source (analysis, reanalysis, gauge, radar satellite, or merged),
spatial resolution and coverage (0.05◦ to 2.5◦ regional to worldwide), sequential span (~1
to 115 years), and computing (~half-hour to various years). These products are derived
from a variety of sources. In general, such products are divided into the following four
primary groups: (1) gauging-based datasets: which are created from observed station data
using various interpolation methods and are being widely used, for instance, at the Global
Precipitation Climatology Centre (GPCC); However, the spatial resolution of these products
is low (0.5◦), always argued particularly in data-scarce glaciated regions; (2) atmospheric
model-based datasets, or numerical weather estimations, are derived from coupling both
in-situ observations and satellite data, considering various atmospheric properties as input.
The European Centre for Medium-Range Weather Forecasts (ECMWF) is an example of
this product group; (3) satellite-based datasets, which mainly use infrared (IR), microwave
(MV), or a combination of both IR and MV algorithms. Validation and assimilation with
rain-gauge data are required primarily to increase the precision of these products. Further-
more, systematic biases in satellite rainfall data are common and can be largely pronounced
in regions with low precipitation amounts or in snow and ice-covered areas. Tropical
Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) is an
example of this group. (4) Satellite-gauged datasets, such as Climate Hazards Group In-
frared Precipitation with Stations (CHIRPS), merge both satellite and gauge datasets using
diverse techniques [10,11]. Hence, using the GPPs, either individually or in combination,
offers a promising solution to the unavailability of climate data. These products have great
worth in sparse and glaciated mountainous regions, especially in developing countries,
where the distribution of conventional observations is heterogeneous [12]. At present, a
variety of products are available at finer spatio-temporal resolutions and have been applied
in multiple applications, for instance, hydrological modeling [13–16], drought analysis [17],
and agronomy [18]. However, these datasets still have some constraints, for instance, the
topographical influences, retrieval algorithms, clouds, and inadequate sensibility of electro-
magnetic signals [19–21]. However, in a windy atmosphere and rugged terrain, detecting
and measuring precipitation occurrences at high altitudes is a challenge for satellites as
reflectivity from snow and ice reduces the effectiveness of passive sensing in mountainous
regions [22]. In cryosphere areas, the atmosphere is typically dry and does not contribute
to satellite measurements [23], which can produce more uncertainties and biases that could
limit our understanding of hydro-meteorological studies. Therefore, the accuracy of these
products is questionable [24]. Thus, the credibility of GPPs should be evaluated against
an appropriate dataset before it can be reinforced as input. Their credibility is beneficial
for developers and users, where developers can diagnose the problems from feedback
and improve the quality of products. On the other hand, analyzed results will enable the
data users to consider the possible uncertainties related to a specific dataset and select an
appropriate product for particular applications in a specific area of interest.

Since the launch of GPPs, the majority of these products have been assessed based
on their suitability and usability for a particular region. Most of these assessments are
carried out in different parts of the world. Still, very few studies are conducted for the
Hindukush, Karakorum, and Himalayas (HKH), including the upper Indus Basin (UIB)
region [2,11,25,26]. This region is termed the third pole as it stores the largest amount of
(frozen) water after polar regions, which feeds the rivers with fresh water and accommo-
dates millions of people living downstream. Previous studies revealed the mass balance
of this region had been significantly altered by significant atmospheric warming, which
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has also impacted the water resources of countries downstream [26–28]. Thus, precise
and accurate precipitation measurements are required to develop actionable, sustainable
water resource management policies. Henceforth, this study is carried out (1) to provide
more information about bias and uncertainties in datasets, specifically in the glaciated
mountain region. Therefore, the primary purpose of our research is (2) to evaluate the
performance and differences of the newly launched Multi-Source Weighted-Ensemble
Precipitation (MSWEP) parallel to four other GPPs over the JRB. The selected four products
are European Atmospheric Reanalysis (ERA5), APHRODITE, Princeton Global Meteoro-
logical Forcing Dataset for Land Surface Modeling (PGMFD), and Climate Hazards Group
Infrared Precipitation with Stations (CHIRPS). We aimed (3) to recognize the datasets with
the best performance combined with available gauged data to procure finer quality data
than individual products. Such rectified precipitation products are essential for operational
applications and ongoing research. The study findings would be significant in understand-
ing the accuracy and error characteristics of multiple products for algorithm developers
and users that could be used as baseline information for similar research, particularly in
snow-fed mountainous watersheds.

2. Materials and Methods
2.1. Study Area Description

The Jhelum River Basin (JRB) is one of the most crucial sub-basins (SBs) of the Up-
per Indus River Basin (UIB), located within the longitude of 73◦–75.62◦E and latitude of
33◦–35◦N, covers the western mountainous region of Himalayas (Figure 1). The entire
basin has large spatio-temporal climate variability with an annual average precipitation
of 835.83 mm and an annual mean temperature of 13.5 ◦C, with increasing elevation from
south to north decreasing the temperature of the basin. For instance, Narran (situated
northern part of the basin) and Mangla (situated southern portion) experience the coldest
and hottest areas, having annual mean temperatures of 7.16 ◦C and 26.54 ◦C, respectively.
Generally, the climate of the JRB is influenced by two central rainfall systems, south Asian
summer monsoon (atmospheric circulation) and winter westerlies circulations (anticyclonic
circulation). Furthermore, JRB is the main eastern tributary of the Indus River, that flows
toward the south slopes of the Himalayan and Pir Panjal, which drainage 33,468 km2

of area, and finally dammed up through Mangla reservoir, which is the second largest
storage reservoir of Pakistan and seventh in the world, having 7.29 km3 of gross storage
capacity [29]. This dammed water is primarily utilized for two primary purposes, (i) for
irrigation, which helps to irrigate 60,000 km2 of land, and (ii) used for the generation
of electricity. Its entire installed capacity is 1000 MW, which is 6% of the country’s total
installed capacity [30].

The area above the Mangla reservoir is called Mangla catchment; about 14.97% area
of the basin is located above 6000 m above sea level (a.s.l.) (Figure 1b, Table 1). Thus,
in the JRB catchment, snow and glacier melt plays a significant role in runoff in early
summer (April-mid-June), while amasses in the winter owing to westerlies influences,
whereas, during the summer season (end of June to August), monsoon precipitation is
dominated [31]. Also, JRB is a straddling river basin distributed between Pakistan and
India. About 56% (18,965 km2) of the area is in the territory of India, while 46% (14,965 km2)
is in Pakistan.
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Figure 1. The geographical location of the study area. (a) seasonal influences of precipitation sources 
(b) Elevation (c) distribution of rain gauges in SBs. Whereas I, II, III, IV and V represent Neelum, 
Kunhar, Jhelum, Kanshi and Poonch sub-basins, respectively. 
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Figure 1. The geographical location of the study area. (a) seasonal influences of precipitation sources
(b) Elevation (c) distribution of rain gauges in SBs. Whereas I, II, III, IV and V represent Neelum,
Kunhar, Jhelum, Kanshi and Poonch sub-basins, respectively.

Table 1. Topological information of five sub-basins of JRB.

S.No Name of
Sub-Basins Mean Elevation (m) Area (km2)

Weather
Stations

I Neelum 3547 7420.98 4
II Kunhar 2805 2660.35 2
III Jhelum 3019 14,396.70 9
IV Kanshi 2168 4191.01 3
V Poonch 2095 4799.69 4

2.2. Conventional Observation from Rain Gauged Stations

The daily observed precipitation data of 12 gauging stations in Pakistan was collected
from Water and Power Development Authority (WAPDA) and Pakistan Meteorological
Department (PMD) from January 1981 to December 2009. However, JRB is characterized
as a highly complex and transboundary (India and Pakistan) catchment whose accurate
information is substantial to water resources management. At the same time, it’s hard to
collect in-situ observation data due to geopolitical issues. Thus, we used daily summaries of
observed precipitation at ten referenced stations provided by the NOAA National Climatic
Data Center, accessed from https://www.ncdc.noaa.gov/cdo-web/ (accessed on 25 June
2020). Geographical information of in-situ weather stations used in the current study is
given in Table S1. The organizations that operate weather stations in the research area follow
the WMO standards for meteorological data collection. The distribution of meteorological
stations is scarce in the study area (Figure 1c). These stations were installed at different

https://www.ncdc.noaa.gov/cdo-web/
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elevations, i.e., Mangla is located at the minimum elevation of 335 m (a.s.l.), while Store is
at the elevation of approximately 5432.32 m (a.s.l.) Table S1. These meteorological stations
use tipping bucket rain gauges to measure liquid precipitation. In cases of infrequent
snowfall, the manually calculated water equivalent is traditionally applied to the daily
rainfall data. During 1994–1995, WAPDA installed automatic data collection platforms
(DCPs) in high-altitude areas [26]. These DCPs use snow pillows to record solid and
liquid precipitation as water equivalents. Due to possible ice bridging and rupture effects,
mostly installed snow pillows experienced technical problems with transmission system
interfacing and unexpected “jumps.” Even though these problems were greatly alleviated
in 1996 by attaching a highly precise potentiometer to convert the shaft encoders from
digital to analog output, wind-induced errors continue to affect the quality of precipitation
records at higher altitudes of >3000 m [31]. As a result, underestimation of precipitation by
gauging observations due to wind-induced errors at higher altitudes may cause a slight
positive bias in GPPs [25,26]. Most of the evaluated products integrate rain gauge data
from various sources and employ multiple algorithms. Therefore, to ensure an independent
evaluation, gauging stations used as ground truth should not be used in the development
of these products to be evaluated. Thus, it is worth noting that the gauging stations
used in this assessment were not included in the Global Precipitation Climatology Centre
(GPCC) network products [25,26], which justifies the independent evaluation in the present
research. In addition, the in-situ gauge-based precipitation estimates are typically regarded
as the authoritative source of precipitation data for validating satellite-based precipitation
products [32]. Thus, the five GPPs data were evaluated against in-situ gauge-based data.
Furthermore, keeping in view the uncertainties in gauge-based data, the quality checks
have also been carried out by using the standard normalized homogeneity test (SNHT)
method [33] by following the procedure proposed by [34]. According to the normality and
homogeneity tests at a 0.05 significant level, overall, the time series was normalized.

2.3. Detailed Information on Gridded Precipitation Products (GPPs)

During the last three decades, the construction of the analyzed fields of precipitation
across the globe has been extensively improved. As documented in the introduction, several
global/regional scale GPPs are now accessible for hydro-meteorological studies. Giving
importance to a primary group of datasets, thus, at least one product from each dataset
category has been selected in this study to evaluate their accuracy and highlight intrinsic
errors associated with these products. The attributes of selected GPPs are summarized in
Table 2. The selection criteria were: (I) a good cross-section of their sources and methods of
generation; (II) ease of accessibility and availability as final products in published datasets;
(III) possible appropriateness for regional-scale applications; and (IV) potential usefulness
for hydrological modeling research.

Table 2. General information of five GPPs assessed in this study.

Product Time Period Spatial
Resolution

Highest Temporal
Resolution Category Category

APHRO 1951-present 0.25◦ × 0.25◦ Daily Gauge RIHN and
JMA/MRI (Japan)

CHIRPS 1981–present 0.05◦ × 0.05◦ Daily Satellite-gauge University of
California

ERA-5 1979–present 0.25◦ × 0.25◦ Hourly/Daily Reanalysis

European Centre for
Medium-Range

Weather Forecasts
(ECMWF)

MSWEP 1979-to ~3 h from
real-time 0.1◦ × 0.1◦ 3-hourly Multi-Source

Weighted
GloH2O, Almere,
the Netherlands

PGMFD 1948–2010 0.25◦ × 0.25◦ Daily Reanalysis, gauge Princeton University
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The Multi-Source Weighted-Ensemble Precipitation (MSWEP) data version 2.2 is
derived from the gauge, reanalysis, and satellite datasets, providing global data from 1979
to the present with a high spatial resolution of 0.1◦ × 0.1◦, at the temporal resolution of 3-h
near to real-time, particularly developed for hydrological modeling. The MSWEP dataset is
unique owing to it combines gauged, for instance, Global Precipitation Climatology Centre
(GPCC), Global Summary of the Day (GSOD), Global Historical Climatology Network-Daily
(GHCN-D), and WorldClim, atmospheric model-based reanalyzes, i.e., interim reanalysis
(ERA-Interim), Japanese 55-year Reanalysis (JRA-55) and European Centre for Medium-
Range Weather Forecasts (ECMWF), satellites, for instance, Tropical Rainfall Measuring
Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42RT), Gridded Satellite
(GridSat), Global Satellite Mapping of Precipitation (GSMaP), and Climate Prediction Center
morphing technique (CMORPH) precipitation measures to exhibit better performance in
both homogeneous gauged and scarcely gauged region. A more exhaustive overview
of algorithm development of MSWEP is given in [35]. It provides good opportunities
to investigate the spatio-temporal variations in precipitation to understand hydrological
processes and their parameterization better and enhance hydrological model performance.
We accessed the latest and improved version of MSWEP data (version 2.2) which was
released in March 2018 for the period spanning from 1979 to 2009. The MSWEP data is
available at http://www.gloh2o.org/mswep (accessed on 21 November 2020).

The European Atmospheric Reanalysis (ERA-5), the 5th generation global atmospheric
reanalysis product with an upgraded atmospheric model and assimilation system, provides
data from 1950–1978 (preliminary version) and from 1979 up to now at the spatial resolution
of 0.25◦. The European Centre released the product for Medium-Range Weather Forecasts
(ECMWF) [36,37]. ERA-5 provides hourly data on several land-surface, atmospheric, and
sea-state variables, along with uncertainty estimates [38,39]. It produces atmospheric
variables at 139 pressure levels using a more advanced 4D-var integration scheme and
is available at hourly steps [40]. As the ERA-Interim reanalysis is substituted by ERA-5
dated 31 August 2019, it is important to evaluate whether ERA-5 can increase performance
compared to ERA-Interim before it can be used in any application. ERA-5 data is available at
the ECMWF portal https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
(accessed on 19 October 2020). More detailed information is written in [36]. Here, we
accessed the total precipitation data on single levels (1981–2009) at hourly timestep and
summed it up to a daily timescale. Nevertheless, ERA-5 provides total precipitation in
equivalent meter units; hence the unit conversion from meter to millimeter is substantial
compared to gauge observation.

APHRODITE stands for the Asian Precipitation-high Resolved Observational Data
Integration Towards Evaluation of Water Resources. It is advanced with a high-resolution
daily precipitation product that was elaborated by the collaboration of the Research Insti-
tute for Humanity and Nature (RIHN) Japan and the Meteorological Research Institute
of Japan Meteorological Agency (JMA/MRI) derived from a dense rain gauges observa-
tional network in Asia. It has been used by serval researchers, specifically in the UIB
region [26,41,42]. More detail about the algorithm can be found in [43]. However, the high-
resolution (0.05◦) precipitation product is prohibited for public use and is available only
for partner institutes. Henceforth, we accessed the latest improved daily dataset for Mon-
soon Asia (APHRO_MA_V1101 and APHRO_MA_V1101EX_R1), covering 60.0E–150.0E,
15.0S–55.0N at a high spatial extent of 0.25◦ for the periods extending from 1981–2007 and
2007–2009 respectively. It is accessible from http://www.chikyu.ac.jp/precip/ (accessed
on 8 September 2020).

Princeton Global Meteorological Forcing Dataset (PGMFD) for land surface modeling
is a blend of gauge and reanalysis data developed by Princeton University. The PGMFD
product provides various climatic variables, including precipitation at the spatial reso-
lutions of 1.0◦, 0.5◦, and 0.25◦ and temporal resolutions of 3 h, daily and monthly, from
1948 to 2010 for a global scale. This dataset is created by combining reanalysis from the
National Centers for Environmental Prediction–National Center for Atmospheric Research

http://www.gloh2o.org/mswep
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
http://www.chikyu.ac.jp/precip/
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(NCEP–NCAR), also denoted as (NCEP reanalysis) and a group of globally gauged-based
products. To generate the final PGMFD precipitation dataset, four products such as TRMM
3-h real-time data, NCEP reanalysis, Climatic Research Unit (CRU) monthly precipitation
data, and GPCP daily precipitation data, are used in various processing mechanisms [44].
The PGMFD data has high spatial resolutions and global coverage that shows this product
has multiple potential applications and has been used only in the UIB region [45], where
JRB was excluded; therefore, we selected this product in our study to evaluate its credibility.
The PGMFD data is available at http://hydrologyprinceton.edu/data.pgf.php (accessed
on 28 September 2020).

The Climate Hazards Center Infrared Precipitation with Station (CHIRPS) is a quasi-
global precipitation product belonging to the satellite-gauge category, covering 50◦S–50◦N.
It provides daily precipitation data at various spatial resolutions, i.e., 0.25◦ and 0.05◦,
and from 1981 to the present [46]. The CHIRPS product is constructed using primary
datasets such as monthly precipitation climatology (CHPclim), which is erected using gauge
observations obtained from GHCH and FAO, Cold Cloud Duration (CCD) information
based on thermal infrared data archived from CPC and NOAA National Climate Data
Center (NCDC), the Version 2 atmospheric model rainfall field from the NOAA Climate
Forecast System (CFS), and the rain gauge stations data from multiple sources. To produce
the 5-daily CCD-based precipitation estimates, at the first stage, CCD data is calibrated
with TRMM 3B42 and then converted to the fraction of the long-term average precipitation
estimations. After that, those fractions are multiplied with CHPclim data to eliminate
systematic errors. Finally, the CHIRPS data is combined with gauge data using an improved
inverse distance weighting algorithm to generate the final CHIRPS product. The CHIRPS
dataset has been used in various hydroclimatic studies across the globe because of the
high quality of the datasets [47–49]. Thus, we used and evaluated daily CHIRPS V2.0
precipitation data at the spatial extent of 0.05◦ from 1981 to 2009. The data are available at:
https://data.chc.ucsb.edu/products/CHIRPS-2.0 (accessed on 23 October 2020).

2.4. Methodology

The difference in spatial resolution of gauge-based (point) data and GPPs is a typical
scale mismatch problem that needs to be addressed prudently. The primary cause of this
issue is the difference in their source of spatial coverages. For instance, rain gauge stations
provide point data, whereas GPPs exhibit the grid-scale precipitation measures (for example,
0.25◦ and 0.1◦ for the APHRO, CHIRPS, ERA5, PGMFD, and MSWEP datasets, respectively).
For a fine comparison among GPPs, the datasets (i.e., MSWEP and CHIRPS 0.10◦, 0.05◦,
respectively) were resampled to the standard grids (0.25) following [50]. However, serval
methods are available for comparing GPPs data with gauging observations, case-in-point
upscaling (US) [51], downscaling (DS) [52], and direct comparison (DC) [53] methods. In
recent decades several interpolation methods have been applied for the upscaling point
data, which include the Kriging Interpolation, Thiessen polygon, and the Inverse Distance
Weighting (IDW) methods [9,54,55]. For the US method, many meteorological stations are
required to create a high-resolution gridded dataset consisting of observations because
coarser grids cannot resolve the processes at fine scales [56]. In contrast, the DS method
can downscale the GPPs and compare them to the observed precipitation. However, the
results from both US and DC have argued that these methods could contain significant
errors and uncertainties [19,57]. To overcome the uncertainties caused by US or DS, a third
(DC) method is introduced [53]. In the DC method, the precipitation from a single station
or the average of all stations within a grid cell is compared to the corresponding grid of
the gridded dataset. DC method is regarded as the most appropriate method as it avoids
the uncertainties caused by US or DS, particularly in the region where the distribution of
gauging stations is heterogeneous. Considering the complexity of the basin (small number
of gauging stations, topography, and influence of two different precipitation systems), the
DC method suites the performance evaluation of GPPs against gauge-based observations.

http://hydrologyprinceton.edu/data.pgf.php
https://data.chc.ucsb.edu/products/CHIRPS-2.0
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Hence, the performance of GPPs was assessed at different spatial (basin to basin) and
temporal (daily, monthly, and annual) scales.

For the credibility evaluation of the five GPPs against rain gauge data, various error
evaluation metrics such as Correlation coefficient/CC, Root Mean square Error/RMSE,
relative bias, and relative BIAS in percentage/rBIAS% were applied. The statistical metric
CC was computed to appraise the degree of collinearity between reference rain gauge
data and GPPs estimations. The RMSE was used to estimate the mean error magnitude
(mm per unit) between reference data and GPPs; having smaller RMSE values of GPPs
estimations indicates it is closer to the reference data. The BIAS (in millimeter) was applied
to evaluate systematic bias in precipitation amounts procured by two data sources. Bias (in
percent) was applied to quantify the differences between reference data and GPPs. These
four continuous statistical metrics were conducted using the following equations:

CC =
∑n

i=1(Oi − O)
(
Gi − G

)√
∑n

i=1 (Oi − O)
2
√

∑n
i=1 (Gi − G)

2
(1)

RMSE =

√
1
n

n

∑
i=1

(Gi − Oi)
2 (2)

Bias =

[
1
n

n

∑
i=1

(Gi − Oi)

]
(3)

rBIAS =

[
∑n

i=1(Gi − Oi)

∑n
i=1 Oi

× 100
]

(4)

where, n = number of samples, Gi = GPPs, Oi = gauge Observation data and G and O are
the averages of GPPs and gauges Observation data, respectively. The GPPs are deemed
perfect once the optimal values of CC, RMSE, Bias, and rBIAS are 1,0,0 and 0, respectively.
Furthermore, some criteria for the performance acceptance of GPPs [58,59]. Consistent with
those criteria, the Correlation coefficient values must be > 0.7 while rBIAS must be between
−10 to 10, whereas positive and negative values indicate both over/underestimation, re-
spectively. The seasonal assessment was conducted by dividing the year into three seasons,
for instance, winter (October–February), pre-monsoon (March–June), and Monsoon (July–
September). Furthermore, the Probability Density Function (PDF) method was used to
evaluate the different precipitation intensities of respective GPPs. Those intensities were
divided into seven classes (mm/day) for example, (1) 0–1; (2) 1–2; (3) 2–5; (4) 5–10; (5) 10–20;
(6) 20–50; (7) >50 following World Meteorological Organization (WMO) standards with
slight amendment owing to the local climate system.

To assess the precipitation detection capabilities of GPPs in contrast to ground truth
data, the categorical statistical metrics, including Probability of Detection (POD), False
Alarm Ratio (FAR), and Critical Success Index (CSI), were applied [60,61]. The calculation
of these metrics is well defined by [62]. The POD is also termed the hit rate, which
indicates the ratio of precipitation events correctly sensed by the GPPs to the number
of actual precipitation incidents; its optimal values show mostly precipitation incidents
were detected. The FAR shows the ratio of precipitation occurrences wrongly sensed as
the number of actual precipitation events. The CSI is known as the function of POD and
FAR, which defines the overall skills of precipitation incidents accurately sensed by GPPs.
To distinguish precipitation and non-precipitation days, the threshold of 1 mm/day was
used following [63]. These categorical skill indices were calculated using the following
equations [64]:

POD =
H

H + M
(5)

FAR =
F

H + F
(6)
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CSI =
H

H + M + F
(7)

where H indicates the number of precipitation events correctly captured by respective
products, M shows the number of precipitation occurrences missed (lost) by GPPs, and F
represents the number of incidents falsely estimated as precipitation events by GPPs. The
perfect value of POD and CSI is 1, whereas 0 is for the FAR.

3. Results
3.1. Evaluation at Annual and Monthly Scales

The annual average precipitation (835.83 mm/year) in JRB is computed from all
available gauging stations from 1981 to 2009. The annual average precipitation, on the other
hand, varied greatly between the observed and selected GPPs (Figure S1). The selected
GPPs over/underestimated annual precipitation amounts. Four GPPs (MSWEP, APHRO,
PGMFD, and CHIRPS) exhibited underestimation (−2.61%, −5.43%, −5.75%, and −10.56%,
respectively), whereas ERA-5 showed significant overestimation (9.23%). Figure 2. depicts
the horizontal spatial distribution of mean annual precipitation from gauges and GPPs
over JRB. The spatial distribution of gauges showed that the higher annual average amount
of precipitation was generally found in the western (from Northwest to southwest, mostly
between II and IV) parts of the JRB. In contrast, lower precipitation was distributed in
the eastern region (from northeast to southeast, particularly I and III SBs, while SB V
has moderate precipitation) with west to east inclination (Figure 2a). Overall, all GPPs
were somehow able to capture such precipitation patterns, especially the MSWEP, which
offers a better spatial resolution. Likewise, the pattern of gauges, MSWEP, captured an
almost concrete pattern that indicated the lower annual precipitation over the eastern part
of the basin (Figure 2b). Although ERA-5, APHRO, PGMFD, and CHIRPS exhibited a
higher annual distribution in the western regions. Still, these datasets were less accurate
in showing the spatial pattern concerning gauge precipitation in JRB. Mainly ERA-5 is
represented by the significantly higher amount of annual precipitation compared to the
rest of the GPPs (Figure 2c–f).

Table 3 represents the metrics list such as CC, RMSE, Bias, and rBIAS (%) of monthly
precipitation estimation, which exhibits that the MSWEP and ERA-5 have better perfor-
mance with higher CC (0.92 and 0.91) and lower RMSE (23.26, 25.48 mm/month), Bias
(−0.30, 0.84 mm/month) and rBias (−10.48%, 28.06%) compared to other GPPs. In par-
ticular, the CHIRPS dataset has the highest value of RMSE, followed by the PGMFD and
APHRO (35.09, 32.81, and 28.25 mm/month, respectively). Among all GPPs, the MSWEP,
ERA-5, APHRO, and PGMFD had relatively fewer errors in the 12 months. In comparison,
the CHIRPS dataset had higher values of −1.10 Bias mm/month.

Table 3. The statistical metrics for monthly performance evaluation of GPPs in contrast to in-situ
gauges data during the entire study period 1981–2009.

Indices APHRO CHIRPS ERA-5 MSWEP PGMFD

CC 0.90 0.74 0.91 0.92 0.78
RMSE (mm/day) 28.25 35.09 25.48 23.26 32.81
BIAS (mm/day) −0.52 −1.10 0.84 −0.30 −0.77

rBIAS (%) −18.57 −27.50 28.06 −10.48 −20.74
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(f) CHIRPS. Whereas I, II, III, IV and V represent Neelum, Kunhar, Jhelum, Kanshi and Poonch
sub-basins, respectively.

Figure S2a depicts the monthly comparison of temporal precipitation trends estimated
by the GPPs against reference data from January 1981 to December 2009. According to
Figure S2a. all GPPs generally have similar trends and are capable of seizing the temporal
variability of gauge-based precipitation across the basin. The higher peaks of precipitation
in March and July confirm the influence of westerlies and summer monsoons in the region.
The slight overestimations were explicitly observed in December with the value of 4.21%,
5.46%, 2.70%, and 1.66% by MSWEP, APHRO CHIRPS, and PGMFD, respectively, and
remain underestimated for the rest of the months. Furthermore, in the case of ERA-5
temporal precipitation trends were overestimated throughout all the months. Overall,
the GPPs have good agreement in monthly precipitation assessments with the value of
CC > 0.7 and lower rBias, except CHIRPs, which showed larger biases and lower correlation.
However, the seasonal precipitation distribution revealed that the contribution of the
monsoon season to annual precipitation was the greatest (42.16%) among all seasons for all
GPPs (Figure S2b). For all datasets, the combined winter and pre-monsoon precipitation
contribution to annual precipitation was between 25% to 32%; this is collectively called
winter precipitation [2] as it mainly occurs because of the dominance of westerlies in
the region.

3.2. Daily Scale Assessment

The performance of GPPs was further evaluated at the daily scale with insight into
different seasons in JRB. Table 4. shows the daily and seasonal statistics of GPPs estimates
in contrast to gauges throughout the entire study period. The MSWEP showed a better
correlation with gauges precipitation having a CC value of 0.86, followed by ERA-5 (0.81),
APHRO (0.77), PGMFD (0.68), and CHIRPS (0.57). This correction revealed good agree-
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ments between GPPs and gauges data. However, the selected GPPs underestimated daily
precipitation over the JRB, with rBias values ranging from −5.94% to −25.76%, except the
ERA-5, which showed an overestimation with the rBias value of 26.43%. These results are
similar to other studies that have concluded similar findings of over and underestimations
by ERA-5 and APHRO, PGMFD, and CHIRPS, respectively, in different regions of the
world [2,19,26,65,66]. In addition, the CHIRPS exhibited high Bias values (−1.36 mm/day),
ensuring more systematic errors still exist. Regarding RMSE, all GPPs displayed error
magnitudes ranging from 2.29 to 3.99 mm/day. All GPPs could detect the precipitation
occurrence in different seasonal periods over the whole basin. The MSWEP could detect
the precipitation occurrence with the highest POD value of 0.75 (75%), whereas ERA-5,
APHRO, PGMFD, and CHIRPS captured 71%, 61%, 60%, and 52% of precipitation occur-
rence, respectively. In terms of FAR, the MSWEP showed the lowest FAR value (0.14),
indicating good performance in the detection of a limited number of unrealistic precipi-
tation events, followed by ERA-5 (0.15) and APHRO (0.17), PGMFD (0.19). The CHIRPS
additionally (0.25) detected precipitation days falsely; these events are not recorded by in
situ gauges. Concerning CSI, the MSWEP dataset also revealed the highest value (0.72),
suggesting the best performance compared to other GPPs. A similar assessment was carried
out to analyze the credibility of the GPPs in estimating seasonal precipitation. Overall,
the MSWEP demonstrated good performance than other GPPs in all seasons. Precisely, it
showed the higher performance in winter season with highest values of CC (0.90), POD
(0.86), CSI (0.83) and lower values of RMSE (1.80 mm/day), Bias (0.10 mm/day), rBias
(3.03%), and FAR (0.06). In the case of ERA-5, that overestimated the observed daily pre-
cipitation amounts in entire seasons. However, it showed better performance in monsoon
indicated highest values of CC (0.85), POD (0.81), CSI (0.78) and lowest values of RMSE
(3.24 mm/day), Bias (0.58 mm/day), rBias (24.18%), and FAR (0.09).The performance
of other products such as APHRO and PGMFD was also good in all seasons, whereas
APHRO performed better than PGMFD during all seasons; particularly, it exhibited the
best performance in monsoon season with the highest values of CC (0.78), POD (0.77),
CSI (0.76) and lowest RMSE (3.35 mm/day) Bias (−0.33 mm/day), rBias (−10.96%) and
FAR (0.10). While PGMFD exhibited the highest CC (0.71) and smallest values of RMSE
(3.61 mm/day), specifically during monsoon season, suggesting moderate agreement with
the reference data. The CHIRPS product consistently indicated poor performance in seven
statistical indices throughout all seasons. Based on its individual performance, it was just
satisfied, particularly in monsoon with the value of CC (0.59), RMSE (3.86 mm/day), Bias
(−1.30 mm/day), rBias (−23.71%), POD (0.58), FAR (0.13) and CSI (0.57) compared to
other seasons. Overall, the CHIRPS product’s performance was poor and can be catego-
rized as a poor-performing dataset among all GPPs in the JRB. In contrast to all GPPs, the
MSWEP exhibited good performance in detecting precipitation incidence, as substantiated
by significant values of CSI ranging from 0.72 to 0.83.

As a way to determine which dataset gives more precisely precipitation estimations
over the JRB, thus, we conspired Taylor diagrams [67] to assess the degree of closeness
between GPPs and gauge data about CC, RMSE, and standard deviation SD (SD shows
the deviation of data from its mean value) at different time scales (Figure 3). In the Taylor
diagrams, the angular coordinates (congress blue dashed lines) represent the CC values, and
the RMSE values are illustrated by the concentric semi-circles (green color). In comparison,
the radical coordinates (black dashed lines) are the standard deviation. In Taylor diagrams,
the dataset is considered a better product when the point of GPPs is closer to the reference
point. Based on Figure 3, the MSWEP performed better than other products throughout all
periods. However, other products showed moderate performance in RMSE and SD during
all time scales, except CHIRPS, which exhibits comparatively poor performance in terms of
both RMSE and SD. In comparison, the MSWEP illustrates the lowest values of RMSE and
SD at all timeframes.
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Table 4. The statistical metrics for daily performance evaluation of GPPs in contrast to in-situ gauges
data during the entire study period 1981–2009 with different seasons.

Entire Period

Product CC RMSE
(mm/day)

BIAS
(mm/day) rBIAS (%) POD FAR CSI

APHRO 0.76 3.42 −0.51 −11.25 0.61 0.17 0.69
CHIRPS 0.57 3.99 −1.36 −25.76 0.52 0.25 0.43
ERA-5 0.81 3.38 0.82 26.43 0.71 0.15 0.70

MSWEP 0.86 2.29 −0.30 −5.94 0.75 0.14 0.72
PGMFD 0.68 3.85 −0.76 −15.27 0.60 0.19 0.51

Winter

APHRO 0.74 3.60 0.17 4.95 0.59 0.11 0.57
CHIRPS 0.58 3.88 0.55 8.27 0.49 0.29 0.47
ERA-5 0.81 3.32 0.89 32.72 0.64 0.10 0.60

MSWEP 0.90 1.80 0.10 3.03 0.86 0.06 0.83
PGMFD 0.69 3.63 0.45 6.76 0.55 0.18 0.50

Pre-Monsoon

APHRO 0.77 3.64 −1.15 −13.04 0.74 0.13 0.70
CHIRPS 0.51 5.25 −2.37 −24.67 0.55 0.15 0.53
ERA-5 0.79 3.55 0.97 28.36 0.75 0.11 0.70

MSWEP 0.88 2.09 −1.02 −10.18 0.75 0.10 0.73
PGMFD 0.67 3.76 −1.44 −14.73 0.65 0.14 0.64

Monsoon

APHRO 0.78 3.35 −0.33 −10.96 0.77 0.10 0.76
CHIRPS 0.59 3.86 −1.30 −23.71 0.58 0.13 0.57
ERA-5 0.85 3.24 0.58 24.18 0.81 0.09 0.78

MSWEP 0.86 3.11 −0.14 −2.86 0.83 0.08 0.80
PGMFD 0.71 3.61 −0.74 −14.39 0.66 0.11 0.66

Figure 4 depicts the spatial distribution of evaluated statistical metrics such as CC,
Bias, and RMSE of selected GPPs with reference data during the entire period of daily
precipitation over different parts of the JRB (Indo-Pak). Generally, the estimates from
MSWEP showed the highest CC values and smaller values of Bias and RMSE across the
basin (at lower and higher altitudes), suggesting a strong similarity with gauges data. In
contrast, the CHIRPS exhibited the lowest degree of agreement (higher Bias and RMSE
values), specifically in the western part of the basin from mid to high altitudes. However,
some moderate CC values are observed in the center, stretching to the southeastern part
of the basin at lower and middle latitudes. In addition to MSWEP, the ERA-5, APHRO,
and PGMFD all display higher and lower correlation values in the western and eastern
zones, respectively (Figure 4a). The selected GPPs showed Biases over the highlands of
JRB, mainly in the western parts (Figure 4b). The overestimations by ERA-5 are owing to
erroneous numerical models and observations in the data integration system [68]. However,
one of the plausible explanations for the underestimation findings of GPPs (except ERA-5)
is high evaporation rates. Thus, liquid water in the atmospheric profile doesn’t entirely fall
as precipitation in this region [69]. Many researchers have also reported significant rates of
evaporation in the highlands of Hindukush Karakurm and the Himalayas [25,70,71]. The
GPPs estimates showed fewer Biases at lower altitudes (in the western region) of the basin.
In general, MSWEP displayed substantial signs of progress in estimating the precipitation
occurrences than the other four products. The findings divulged that the newly developed
precipitation dataset (MSWEP) improved all statistical evolution indices across the JRB
more than other GPPs.
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3.3. Comparison at the Sub-Catchment Scale

The spatial variability of five GPPs with reference data was also assessed and compared
at Sub-Basins (SBs) scales. Based on the topologic relationship between the mainstream and
tributaries, the five SBs were delineated (Figure 1c), where the SBs I and II to upper reach
are high elevated zones, III and IV SBs are situated at a mid-elevation region associated
with middle reach and SB V is located at low to mid-elevation zone related to lower reach
Table 1. For the performance evaluation of five GPPs, the box diagrams were plotted
to emphasize the distribution of 22 stations. Tables were created to show the attributes
of seven statistical indices together with different seasons and in different SBs. Based
on the daily assessment, the average CC value of MSWEP (0.61) is higher than ERA-5
(0.59), APHRO (0.58), and PGMFD (0.46); however, the highest and lowest agreement
with reference data was observed in SBs V and I (at minimum and maximum elevations)
respectively. Furthermore, during the winter, MSWEP, ERA-5, and APHRO underscored
better correlation than daily scales, whereas PGMFD was inadequate, thus highlighting
a smaller mean CC value Figure 5. It is worth mentioning that the CHIRPS continuously
showed poor performance at mid to high elevation zones, particularly in SBs III, II, and
I, with CC values of 0.38, 0.37, and 0.14, respectively, while it had the highest CC values
of 0.45 and 0.59 in SBs IV and V (at lower elevation) respectively (Table S2). All GPPs
(excluding ERA-5) underestimated precipitation with average BIAS values varying from
−10.33% to −38.97%, in particular, SBs I, II, IV, and V at a daily scale, and in SBs I and
II during the winter season, while overestimated with BIAS value stretching from 2.65%
to 61.64% in SB III at daily scale and in SBs III, IV and V (43.97–69.95%, 8.3–37.23% and
17.76–55.81% respectively) in winter.
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Among all GPPs, the CHIRPS product mostly underestimated the rainfall (with slight
overestimation), with average BIAS from −38.97% to 15.63%. ERA-5 was the most overes-
timated precipitation, with mean BIAS 30.98% to 49.39% in all seasons, with the highest
(69.95%) and lowest (37.23%) in SBs III, IV, and V during the winter season. Although,
it also showed underestimations with BIAS values ranging from −7.96% to −1.35% in
SB II at both (Daily and winter) scales. The number of sites overestimated by ERA-5
(BIAS > 0) is higher than the rest of the GPPs on the SBs level and are entirely basin. It
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can be observed from the average values of RMSE that MSWEP has low errors (ranging
from 2.88 mm to 4.01 mm) in contrast to other products in all SBs and seasons. Generally,
the mean POD values of GPPs show the occurrence of precipitation events were correctly
captured during monsoon than in other seasons, particularly at low elevated SBs like IV
and V. Similarly, incorrectly estimated the occurrence of precipitation event (FAR values)
by GPPs were larger (as elevation increases) in SBs III, II and I concerning V and IV (as
elevation decreases). Conversely, the average detection capability of all products (CSI)
is higher in V and IV than in III, II, and I in the monsoon season. As aforementioned in
Section 2.1, this region is mostly influenced by monsoon precipitation during the summer
season. However, detecting and measuring precipitation occurrences in various weather
conditions at high altitudes is a challenge for satellites as reflectivity from snow and ice
reduces the effectiveness of passive sensing in mountainous regions [22]. Therefore, all
GPPs outperformed, particularly in SBs IV and V, whereas their low performance was ob-
served at high elevated SBs, for example, III, II, and I, due to orographical effects (Figure 6,
Table S3). However, during winter, the precipitation was lowest at a high elevation, such
as SBs I and III. In contrast, higher precipitation amounts are recorded from mid to low
elevation in SBs II, IV, and V. In addition, during the pre-monsoon season, all GPPs revealed
higher average values of RMSE, BIAS, FAR, and lower CC, POD, and CSI compared with
the monsoon, because these high elevated SBs are covered by ice and snow during the
winter and partially in the pre-monsoon season. Consequently, the reflectivity of snow and
ice influences the accuracy of GPPs in high-elevated regions. So, their performance was
low in that season. Nevertheless, all GPPs tended to overestimate the light (1 mm/day)
precipitation intensities, except ERA-5, which tended to underestimate the light but overes-
timated moderate (1–20 mm/day) and heavy precipitation (>20 mm/day) events. Among
all GPPs, the MSWEP revealed an intimate relationship with gauge data in capturing the
light, medium, and high precipitation intensities, suggesting it has the superior capability
to detect precipitation events (0–50 mm/day) more precisely in all seasons.
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Figure 6. The performance of GPPs at SBs during pre-monsoon and monsoon seasons. The lines
of each box from bottom to top represent the minimum, first quartile, median, third quartile, and
maximum values, respectively. (a) Correlation coefficient, (b) Root Mean Square Error, (c) relative
Bias, (d) Relative Bias in percentage, (e) Probability of Detection, (f) False Alarm Ratio, (g) Critical
Success Index.
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3.4. Detection Abilities of Diverse Precipitation Intensities

Figure 7 depicts the Probability density function estimated from the GPPs and gauges
throughout the entire period in different seasons over JRB for seven classes of daily precipi-
tation frequency distribution as described in Section 2.4. All GPPs and gauges exhibited
a higher percentage of low-intensity precipitation events between 0 and 1 precipitation
classes. In contrast, the high intensity was recorded in the class where precipitation was
greater than 50 mm/day in this region. Overall, the ratio of lowest precipitation occurrence
(<1 mm/day) is greater than heavy precipitation events (>20 mm/day). ERA-5 showed
underestimation of light (≤1 mm/day) and overestimation of moderate (1–20 mm/day)
and heavy (>20 mm/day) precipitation events for the entire period as well as in the win-
ter and pre-monsoon seasons (Figure 7a–c). However, it was much closer to reference
data with slightly overestimating moderate precipitation events in the winter (Figure 7d).
Furthermore, PGMFD behaved differently as it overestimated the light but underesti-
mated the moderate precipitation events and overestimated the heavy precipitation events
(Figure 7a–c). Notably, MSWEP and APHRO have a higher degree of similarity with the
reference data during the entire winter season and pre-monsoon. Still, APHRO, in com-
parison with MSWEP, was less accurate in showing such resemblance with the reference
data for moderate and heavy precipitation intensities in the monsoon season. The CHIRPS
product had feebleness in detecting precipitation events. It could not capture the moderate
and heavy precipitation intensities, particularly during the monsoon season (Figure 7d);
that’s why it has higher FAR values than other GPPs (Table 4). All other GPPs performed
well in capturing the precipitation classes from 1 to 50 mm/day.
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4. Discussion

According to the evaluation findings of Section 3, the vertical performance of GPPs
revealed that these products were less accurate at capturing large variations in precipitation
at higher altitudes than horizontal and showed both spatial (basin to basin) and temporal
(season to annual) biases (Section 3.3), which might be caused by coarser resolution and no-
ticeable orographical influences in the highlands of JRB. Nevertheless, the inter-comparison
of the five GPPs revealed that the newly launched precipitation dataset (MSWEP) per-
formance is better (with slight underestimates) than all other products. These findings
are consistent with the available performance evaluation studies [2,11,26,66,69,72]. The
CHIRPS displayed more considerable BIAS during all time scales, signifying that it could
not accurately capture rainfall in the complex topographical region and exhibited a weaker
correlation at daily and seasonal scales with CC values (<0.6) over the entire basin (Table 2).
The results are consistent with Dembélé and Zwart [73], who found a poor (CC = 0.47
nearest to 0.42) correlation in Eastern Nile Basin Burkina Faso (West Africa). However, it
intimates that possibly merging those in MSWEP offers maximal improvements.

The substantial bias in the estimations of precipitation amounts from ERA-5, APHRO,
CHIRPS, and PGMFD are also pointed out by many researchers in different regions such as
the UIB [2,26], Adige Basin (Italy) [19], Mainland of China [74], Iran [65], and the eastern
periphery of the Tibetan plateau [66]. The superior performance of MSWEP to the rest of
the products could be owing to the latest development in (1) addition of the cumulative
distribution function (CDF) and precipitation frequency correction for the spurious light
rain, temporal discontinuities, and high peaks. (2) increment in spatial resolution to enhance
the local suitability of precipitation estimations, which is significant for the high water
yielding mountainous areas, and (3) implementation of precipitation estimations derived by
Gridded Satellite (GridSat) thermal infrared (IR) imagery. On the other hand, the CHIRPS
product doesn’t merge passive microwave-based precipitation retrievals. It is available
at daily temporal (5-daily timescales) resolution that hampers its use in particular highly
dynamic precipitation environments [35]. The better performance in the Adige Basin (Italy)
and Qinghai-Tibet Plateau might be owing to a dense network of rain gauges applied
during its development.

The overestimation by ERA-5 is due to the parameterization deficiencies in the control-
ling procedure of precipitation generation [35], indicating the importance of precipitation
frequency corrections supplemented in MSWEP. Generally, JRB receives light precipitation,
so retrieving precipitation occurrence at a finer scale is indispensable in capturing light
precipitation events. Besides, it is worth noting that because coarser spatial resolution
(0.25◦) with considerable model’s erroneous characteristic of ERA-5 tends to smoothen
precipitation, it underscores considerable overestimation in this region. The findings align
with the results of Nogueira [75], who found that ERA-5 had an overestimation with RMSE
values ranging from 0 to 4.5 mm/day across China. The underestimation of the low precip-
itation intensities and overestimation of higher precipitation intensities indicate that more
attention is required when reanalyzing precipitation products in particular complex terrain
(Figure 7a–d). These results have also been reported by Jiang et al. [74] on the Chinese
Mainland. Nonetheless, MSWEP has high spatial (0.1◦) temporal (3 hourly) resolutions,
making it more apt to detect even precipitation events at the smaller spatial extent, which
are common in this region. Approximately 66% of total precipitation events occur as low-
intensity events (<1 mm/day) in this region [25]. The high-frequency sensor-based satellite
products can observe low-intensity precipitation events [35,76]. The MSWEP is integrated
the gauge, satellite, and reanalysis along with precipitation estimations contingent on IR
data from the GridSat B1 archive to improve precipitation estimations, particularly in the
convection-influenced areas, by employing a parsimonious CDF-matching method. Such a
product can estimate the light precipitation more precisely than other GPPs because of the
increased sensitivity of the cloud-top IR from the GridSat and high-frequency channels [35].

The existing literature review suggests that the performance evaluation of newly
launched products (MSWEP) has been investigated worldwide. Where it exhibited moder-
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ate agreement with reference (ground-based) data in Qinghai-Tibet Plateau [69]; however,
a better correlation was observed in the highlands of JRB (in this study), Australia, and
Africa [11], and southeastern south America [72]. This is due to the fact that MSWEP
is a global precipitation dataset intended primarily for hydrological modeling [35]. The
data is designed to optimally combine the best quality rainfall data sources. In the first
step, the long-term mean of MSWEP is derived from the Climate Hazards Group Pre-
cipitation Climatology (CHPclim) dataset, which was just recently released. CHPclim
is a worldwide precipitation product using gauge observations and satellite data with a
resolution of 0.05◦. In the second step, orographic impacts are removed using data from
various sources, such as the 13,762 catchment stations located worldwide. Seven datasets
determine the temporal variation of MSWEP: two gauge-based observations (CPC Unified
and GPCC), three satellite-based products (CMORPH, GSMaP-MVK, and TMPA 3B42RT),
and two atmospheric model reanalyzes (ECMWF Interim Reanalysis and the Japanese
55-year Reanalysis).

Up to the present, estimated precipitation estimates from MSWEP exhibited a good cor-
relation with reference (ground-based) data in our study area. Conversely, the APHRO un-
derestimated precipitation magnitudes because it uses the non-representative low-altitude
conventional observatories with lower (0.25◦) resolution to reproduce the spatial distribu-
tion of high-altitude precipitation [26]; another possible reason might be wind-induced
precipitation under-catch that have not been adjusted in APHRO product. Similar results
are presented by Dahri et al. [26] over UIB suggested that precipitation estimated from
APHRO shows substantial underestimations and is not suitable to use directly in hydro-
meteorological studies without correction, despite the fact that their study area is larger
than the current study and this area was excluded. However, this product is derived
from reference gauges; thus, it underscores a higher correlation. The MSWEP displayed
better agreement with daily gauge precipitation data in the JRB, which might be owing
to the integration of four categories of product and high spatial and temporal (3 hourly)
resolutions. Another possible reason for ERA-5 overestimation in this region might be
the somewhat contribution of wind-imputed errors and increasing concentration of aerial
aerosols [25,77]. The aerosol concentration in the environment has been increasing in Asia,
which can interrupt the precipitation and thus can decrease its magnitude [78,79].

Previous studies also pointed out that high aerosol concentration can influence the
cloud drop size, which is ultimately a cause of overestimation by satellite sensors [25,80].
To improve the precipitation retrieval algorithm of the ERA-5 product, the algorithm
developers should also consider the influence of aerial aerosols. Based on our results, the
bias correction of GPPs’ daily precipitation estimates with referenced data is recommended
before it can be enforced in direct applications, particularly in the glaciated region.

Uncertainty and Limitations

Despite that, the newly launched MSWEP revealed a better performance in estimating
the spatial precipitation distribution and erroneousness than all other products. However,
it still has some uncertainty in estimating the accurate magnitude of daily precipitation
over highly mountainous areas. Thus, users of MSWEP must be circumspect about overes-
timating light precipitation occurrence, particularly in this type of study area. The finer
spatial (0.1◦) resolution and long-term data availability with considerable bias correction
will favor the MSWEP product in hydro-climatic applications. However, bias correction is
recommended for all GPPs before they can be used in any kind of meteorological investi-
gation over the JRB and a similar topographic characteristic catchment. Lately, due to the
inaccessibility of recently observed data, this study was only limited from (1981–2009). For
that, the continuous monitoring of precipitation variation within the study scope using
recently observed data is open for future research.
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5. Conclusions

The current study conducted a baseline and timely assessment of the recently launched
precipitation product MSWEP (V2.2) in the highland transboundary region of Indo-Pak
(JRB) at the common period from 01-January 1981 to 31-December 2009 by comparing with
referenced (in-situ gauges) data at spatial (entire basin and SBs) and temporal (annual,
monthly, daily, and seasonal) scales. For its systemic performance comparison, four other
products, APHRO, ERA-5, CHIRPS, and PGMFD, were also evaluated parallel to MSWEP.
The continuous statistical metrics (CC, RMSE, BIAS, and BIAS (%)) and categorical indices
(POD, FAR, and CSI) were applied to examine their accuracy and contingency. The key
findings of this study are:

1. All GPPs exhibited spatial variability of entire annual precipitation during the whole
period, with high and low amounts of precipitation in northwestern and northeastern parts
of JRB, respectively. Similarly, monthly precipitation estimates with temporal variability
trend well performed by GPPs, with slight overestimation during winter (specifically in
December) and underestimation in the next two seasons. However, ERA-5 displayed a
significant overestimation amount of precipitation at all scales.

2. The correlation of all GPPs is better with in situ gauges at daily and seasonal spans,
but the CHIRPS showed a smaller (<0.6) correlation, indicating its feebleness. Therefore,
more efforts must be employed for its improvement in respective periods. Comparing the
current findings with existing findings on different regions of the world, we realized that
the performance of GPPs is highly dependent on topographical and atmospheric settings.
Since the latest MSWEP product integrates the rain gauge, reanalysis, and satellite dataset
to make it most advanced by minimizing these disadvantages thus, its performance was
better in all seasons (with slight overestimation in winter).

3. Overall, the GPPs performed well in the monsoon season compared to the winter
and pre-monsoon seasons. Better performance on a daily scale is observed in SBs V, IV, the
upper part of SB I, and some western portion of SB III, whereas poor performance can be
found in the middle and southeast portion of SB III and the lower portion of SB II.

4. The MSWEP exhibited better skills in terms of precipitation detection capability,
followed by ERA-5, APHRO, and PGMFD, with approximately 51–72% of success ratio in
sensing realistic and unrealistic precipitation events. Conversely, the CHIRPS had a larger
FAR than other GPPs. The precipitation detecting ability was best in the monsoon season
compared to the next two seasons.

5. All selected GPPs showed a tendency to overestimate light precipitation (0–1 mm/day)
and underestimate moderate to heavy precipitation, whereas the ERA-5 tends to under-
estimate the light but overestimate moderate (1–20 mm/day) and heavy precipitation
(>20 mm/day) events. The CHIRPS showed less accuracy in detecting mainly precipitation
events, significantly overestimating unrealistic precipitation (0–1 mm/day) events and
underestimating moderate to heavy precipitation events. On the other hand, the MSWEP
had a better ability to capture light, medium, and high precipitation intensities than all
other GPPs. These results suggest that MSWEP has superior overall performance products.
Conversely, the CHIRPS divulges poorer performance; thus, it needs more improvement
efforts to enhance its ability to detect light precipitation more accurately.

Based on the aforementioned results, we found that the performance of the newly
launched precipitation dataset (MSWEP) was better than all other products. The results
of this study provide a better understanding of the performance of global GPPs at a local
scale that can assist hydro-meteorological applications in such glaciated types of regions.
The differences and errors in measuring precipitation amounts at multi-temporal scales
demonstrate the importance of performance evaluations and allow other investigators to
select an appropriate product/s according to their specific requirements.
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distribution derived from five GPPs and reference gauges in JRB during the entire study period; Table
S1: Geographical information of in-situ gauging stations used in the current study; Table S2: The
statistical metrics for performance evaluation of GPPs in contrast to in-situ gauges data during the
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Abbreviations

GPPs Gridded Precipitation Products

APHRODITE
Asian Precipitation-high Resolved Observational Data Integration
Towards Evaluation of Water Resources

CHIRPS The Climate Hazards Center Infrared Precipitation with Station
ERA-5 European Atmospheric Reanalysis, the 5th generation
PGMFD Princeton Global Meteorological Forcing Dataset
MSWEP Multi-Source Weighted-Ensemble Precipitation
Indo-Pak India and Pakistan
HKH Hindukush Karakorum and Himalayas
JRB Jhelum River Basin
SBs sub-basins
MW megawatt
A.S.L. above sea level
WAPDA Water and Power Development Authority
PMD Pakistan Meteorological Department
NOAA National Climatic Data Center
WMO World Meteorological Organization
GPCC Global Precipitation Climatology Centre
GSOD Global Summary of the Day
GHCN-D Global Historical Climatology Network-Daily
ECMWF European Centre for Medium-Range Weather Forecasts
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