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Abstract: Raindrop size distribution (DSD) can be used to improve the accuracy of radar quantitative
precipitation estimation (QPE) and further understand the microphysical process of precipitation;
however, its spatio-temporal characteristics vary with different climates, rain types, and geographical
locations. Due to the lack of observations, the DSD characteristics in the Beibu Gulf, especially at the
rainfall center of Guangxi in South China, is poorly understood. In this paper, these regional DSD
characteristics were analyzed during the warm season with an upgraded version of the OTT Particle
Size Velocity (Parsivel) (OTT2) disdrometer. The DSD datasets from June to October 2020 and March
to May 2021 were grouped into convective and stratiform precipitation by rain rate (R). The rainfall
parameters were calculated from DSDs to further understand the rain characteristics. The results
showed that: (1) the regional DSDs feature the lowest concentration of largest-sized drops when
compared with the statistical results for other areas such as Zhuhai in South China, Nanjing in East
China, Hubei province in Central China and Beijing in North China; (2) the raindrop spectra have an
excellent fit with the three-parameter gamma distribution, particularly in regard to the medium-size
raindrops; (3) the µ–Λ relation is closer to the coastal regions than the inland area of South China;
(4) the localized Z−R relations differ greatly for convective rainfall (Z = 202.542 R1.553) and stratiform
rainfall (Z = 328.793 R1.363). This study is the first study on DSDs in the Beibu Gulf region. The above
findings will provide a better understanding of the microphysical nature of surface precipitation
for different rain types along the Beibu Gulf in southern China, which may improve precipitation
retrievals from remote sensing observations.

Keywords: Beibu gulf; raindrop size distribution; warm season

1. Introduction

As an important part of the global hydrological cycle, precipitation is the product of
large-scale dynamical procedures as well as local microphysical processes [1]. Raindrop
size distribution (DSD) is a basic characterization of rainfall microphysics that allows fur-
ther understanding of the microphysical properties of rainfall processes, and improves
the accuracy of rain rate (R) estimation. The DSD varies with rain types, weather systems,
geographical locations, and seasons. Furthermore, the evaporation and precipitation rate
of microphysical processes are associated with this parameter [2–5]. Knowledge of the rain
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DSD plays a key role in improving not only quantitative precipitation estimation (QPE) [6,7]
but also in microphysical parameterizations in numerical weather prediction models [8,9].
Additionally, the modeling of DSD parameters is critical for rainfall estimation based on
observations from active and passive satellite-based microwave sensors. For example,
the precipitation estimation algorithms of both the Tropical Rainfall Measuring Mission
(TRMM) precipitation radar and Global Precipitation Measurement Dual-Frequency pre-
cipitation radar use three-parameter gamma distribution [10].

Using accurate DSD and scattering models, essential variables such as the radar
reflectivity factor (Z), liquid water content (LWC) and R can be simulated [11]. Two main
types of ground-based disdrometers can be used to directly observe DSD, including acoustic
and optical disdrometers. Acoustic disdrometers are still very limited for measuring rainfall
parameters and are based on the produced sound when raindrops hit the water surface.
In optical disdrometers, on the other hand, data acquisition comes from a light source
(usually a laser) and a light detector (e.g., a photodiode), and relies on the signals derived
from rainfall particles across the calculated area [12,13]. These measurements can provide
spatially representative point information about the surrounding area [14].

A great number of studies have focused on the DSD characteristics in many parts of
the world and have provided the relationship between radar variables, especially dual-
polarization radar variables and rain rates. For example, these include the microphysical
characteristics associated with seasonal and diurnal variations in Gadanki, Singapore and
Kototabang [15], summer season rainfall over the Western Pacific [16], tropical cyclones and
non-tropical cyclones over Darwin [17], and the pre-monsoon season, post-monsoon season
and summer monsoon season over the coast of India [18]. Based on ground disdrometer
observations over Beijing and Xinjiang, North China, several studies have highlighted the
variation of DSDs in rainstorms and on the ground, the categorization of rain types and
rain rates, and established the Z-R and polarimetric rainfall relationships [19–24]. Research
has been done to better understand the microphysics of DSD and its variation by season
and during the day and night time in the Tibetan Plateau [5,25,26], Central China [1,24],
and East China [27–29]. By employing limited observations from disdrometers and radar,
more and more studies have reported on a variety of rain DSDs in the Pearl River Delta
region [19,30–35], Fujian province [36,37], and Taiwan [10,38] in South China. These
studies’ results indicate that DSDs have different characteristics based on precipitation
types, seasons, orography, and weather systems including typhoons and squall lines.
Therefore, by statistically analyzing such raindrop size information, the average DSDs can
be considered as regionally representative. Through these studies, a series of relational
expressions for different regions are proposed for the QPE of radar variables and rain
rate, including various combination relations of reflectivity at horizontal polarization (ZH),
differential reflectivity (ZDR), specific differential phase shift (KDP) and R. For instance,
relations such as R(ZH), R(KDP), R(ZH , ZDR), R(KDP, ZDR), and so on could be suitable
for local precipitation characteristics. Such relationships are effective in improving the
accuracy of radar QPE and forecasts for local areas.

In contrast, none of the studies have examined the microphysical characteristics of
precipitation in the Guangxi Beibu Gulf in southern China, which is an integral part
of China; not only is it situated in an important connecting area between South China,
Southwest China, and the Association of Southeast Asian Nations (ASEAN) economic
circle, but it is also the only coastal area in southwestern China and the remaining maritime
corridor between China and ASEAN countries [39]. In this study, raindrop size distributions
are given for the coastal Beibu Gulf in Guangxi, South China. Particularly, the low vortex
type of heavy rainfall mainly occurs along the coastline of Guangxi Province, and the
convective available potential energy in the low vortex type is the strongest [40]. The
objective of this study was to quantitatively analyze the variation in the warm season DSD
from June to October 2020 and March to May 2021 in the Qinzhou area, one of the rainy
centers in Guangxi, South China [40,41]. South China is located in the East Asian monsoon
region and is one of the regions with the highest precipitation in China. An analysis of the
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characteristics of the rainfall over South China can bring significant predictive value to
the shift of rain belts in China [42]. Consequently, the research on DSD characteristics in
the Beibu Gulf is crucial in understanding the shift of rain belts in China, and can help to
improve the accuracy of QPE based on local weather radar observations.

Following this introduction, Section 2 briefly describes the datasets and methods
utilized in this study. Section 3 introduces the DSD statistical results for different rainfall
types in detail and compares their characteristics. Section 4 includes the summary and
conclusions drawn from the observations.

2. Data and Methods
2.1. Datasets and Instruments

The datasets used in this study were collected with an upgraded version of the OTT
Parsivel disdrometer (OTT2) at Qinzhou station (21.7◦N, 108.5◦E) located in the coastal
Beibu Gulf in South China (Figure 1). The Beibu Gulf has a subtropical monsoon climate
with southerly ocean winds prevailing from April to September and abundant rainfall [39].
Usually, summer in Guangxi is long, humid, and hot [43]. The temperature is high with
occasional typhoons in October, such as Nangka in 2020. Therefore, data spanning the
warm season from June to October 2020 and March to May 2021 were selected for the
present study. The DSD characteristics of tropical cyclones are distinct from those of
seasonal rainfall [17,44], thus rain DSD datasets collected during typhoons were excluded
in this study. The geographic location of the disdrometer is illustrated by the red thimble
in Figure 1. The results from this disdrometer can be used to characterize the DSD of the
coastal Beibu Gulf since the observations were situated along the coast and in the hilly area
while the observed area avoids the mountainous terrain.
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Figure 1. Geographical location of the Beibu Gulf. The red-colored thimble shows the location of
the OTT2.

The accuracy of the OTT2 measurements was affected by various factors such as
noise and sampling effects, which include strong winds and raindrop splashes. These
potential instrument errors may result in unrealistically small fast-falling and large slow-
falling particles [16]. Herein, the following data quality controls were implemented for
this research: (1) one-minute samples with raindrop numbers of less than 10 or a rain
rate of less than 0.5 mm/h obtained from the disdrometer were considered as noise and
eliminated; (2) raindrops with diameters over 8 mm (bin 24–32) were excluded since the
bigger the diameter, the flatter the shape, and the greater the difference between Deq and
the drop size directly derived by the instrument [19,29,33,45]. Finally, 6369 one-minute DSD
samples for the warm season were used in this study. Similar to the classification scheme
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of Bringi et al. [3] and Chen et al. [29], a standard deviation of R (σR) over 10 consecutive
DSD samples was used. If R ≥ 5.0 mm h−1 and σR > 1.5 mm h−1, this was categorized as
convective rainfall, otherwise, if R ≥ 0.5 mm h−1 and σR ≤1.5 mm h−1, it was assumed
to be stratiform or else it was removed from the investigation. As a result, this study
consists of nearly 6.8% and 53.9% convective (432 one-minute samples) and stratiform
(3435 one-minute samples) rainfall samples, respectively. The mean R values for convective
and stratiform rains are 30.07 mm h−1 and 1.53 mm h−1, respectively.

The OTT2 disdrometer is a laser-optical measurement device based on laser attenu-
ation of particles passing through a beam. It can comprehensively and reliably measure
various types of precipitation. DSD parameters such as rainfall intensity, radar reflectivity,
and precipitation type can be inferred by measuring the particle size and falling velocity
of raindrops [14,46]. The optical sensor of the instrument produces a nominal sampling
area of 54 cm2, but the effective sampling area is recalculated as 180 × (30 − Di/2))/106 m2

(Di stands for raindrop size) considering the boundary effect of the instrument in the actual
detection. The OTT2′s spectral data are divided into 32 diameter bins by 32 fall speed bins.
The diameter ranges from 0 to 25 mm, and the class width increases from 0.125 to 3 mm.
Usually, the first two size classes (bin 1–2) are discarded and the minimum detectable
diameter is approximately 0.25 mm because of the low signal-to-noise ratio. The falling
speed ranges from 0 to 20 m s−1 and the class width grows with the falling speed. The
OTT2 is an upgraded, second-version OTT Parsivel after the first-generation OTT Parsivel
(OTT1) and it provides better homogeneity of the laser sheet than the OTT1 by using a
more expensive laser device; thus, its accuracy has been improved [45,47].

2.2. Raindrop Size Distribution

According to the selected DSD samples, the concentration of raindrops per unit volume
per unit size interval for raindrop diameter, N(Di) (mm−1 m−3), can be given by

N(Di) =
32

∑
j=1

nij

S · ∆T ·Vj · ∆Di
, (1)

where nij denotes the raindrop counts within the size bin i and velocity bin j; S(m2) and
∆T(s) are the effective sampling area and time (set to 60 s), respectively. Vj (m/s) is the
falling speed for velocity bin j, and ∆Di (mm) represents the width of the diameter interval
at the size Di. However, the falling speed measurements from the OTT2 were not used in
this study because they were overestimated when the fall velocity of the raindrops was over
3.35 mm [47]. Instead, the model-based velocity relation, which can obtain more realistic
doppler spectra [48] as follows, was used to access raindrop observations.

V(Di) = 9.65− 10.3exp(−0.6Di) . (2)

The nth-moment of the DSD (Mn) is defined as

Mn =
∫ ∞

0
DnN(D)dD =

23

∑
i=3

N(Di)Di
n∆Di . (3)

The gamma distribution is popularly used to model rain DSDs [4] and it shows
excellent agreement with the observed raindrop spectra [49]. The gamma distribution is
expressed as

N(D) = N0Dµexp(−ΛD) , (4)

where N0
(
mm−1−µm−3), µ, Λ

(
mm−1) are the numerical concentration, the shape, and the

slope parameter, respectively, when D (mm) is the equivalent volume diameter. Further-
more, the three control parameters in this paper were estimated from the gamma DSD by
the truncated second-third-fourth moment estimator [50].
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Based on the measured DSD and fall velocity, the integral rainfall parameters such
as the radar reflectivity factor (Z, mm6 m−3), liquid water content (LWC, g m−3), rain rate
(R, mm h−1), mass-weighted mean diameter (Dm, mm) and normalized intercept parameter
(Nw, m−3 mm−1) were calculated as follows to further determine the characteristics of
the rainfall. Additionally, the calculation of the reflectivity factor (Z) uses the scattering
amplitudes from a T-matrix method [51].

Z =
4λ4

π4|Kw|2
∫ Dmax

Dmin

| f (π, D)|2N(D)dD , (5)

where λ represents the S-band radar wavelength (10 cm), considering that the S-band
dual-polarization weather radar is widely used for monitoring severe storms and tropical
cyclones over coastal regions; Dmin and Dmax are the minimum and maximum raindrop
size, respectively; Kw denotes the dielectric constant factor of water; and f (π, D) (mm) is
the backscattering amplitude of the droplet at the horizontal polarization.

LWC =
π

6000

23

∑
i=3

N(Di)Di
3∆Di , (6)

R =
6π

104

23

∑
i=3

32

∑
j=1

VjN(Di)Di
3∆Di , (7)

Dm =
∑23

i=3 N(Di)Di
4∆Di

∑23
i=3 N(Di)Di

3∆Di
, (8)

Nw =
44

πρw

(
103LWC

Dm4

)
, (9)

where ρw (1.0 g cm−3) is the density of water.

3. Results
3.1. Distribution of Dm and Nw

Figure 2 presents the frequency histograms of Dm and log10Nw for the whole dataset
and each rain type dataset. The key indexes such as the mean (Mean), standard deviation
(SD), and skewness (SK) were also calculated as shown in Figure 2. Regarding the whole
dataset (Figure 2a), the log10Nw histogram is slightly negatively skewed, whereas the Dm
histogram shows positive skewness. The standard deviation of Dm and log10Nw are both
large (0.56 for Dm and 0.48 for Nw), suggesting that the variability of Dm and log10Nw
for the analyzed dataset is high. When the whole dataset is grouped into convective and
stratiform, it is interesting to note that all the Dm histograms also have positive skewness
while all the log10Nw values are negatively skewed (Figure 2b,c). Compared to convective
rainfall, stratiform rainfall has lower skewness on both the Dm and log10Nw histogram,
while showing a larger standard deviation for Dm but a smaller standard deviation for
log10Nw. In comparison with the stratiform, the convective histogram exhibits a larger
value of Dm and log10Nw.

On average, the overall DSD in the Beibu Gulf is characterized by the largest-sized
drops (1.70 for Dm) and lowest concentrations (3.15 for log10Nw) when compared to those
of other regions such as Zhuhai in South China (1.46 for Dm, 3.86 for log10Nw) [33], Nanjing
in East China (1.40 for Dm, 3.55 for log10Nw) [29], Hubei province in Central China (1.13
for Dm, 3.76 for log10Nw) [1] and Beijing in North China (1.07 for Dm, 3.58 for log10Nw) [22].
This is probably because the rain type in this study is primarily influenced by the low
vortex type of heavy rainfall [40]. Additionally, both elevation difference and orographic
effects are important to the variability of DSD characteristics in South China [33].
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To further explore the raindrop spectra of both rain types, Figure 3 plots the distribu-
tion of log10Nw–Dm scatter points in addition to the statistical results from other areas that
are more than 500 km away from this study in South China. The solid circles represent
the average log10Nw–Dm taken from this study (Qinzhou). The plus signs represent the
corresponding results reported by Zhang et al. (2019) for the summer monsoon climate of
Zhuhai [33]. The cross symbol denotes the results of the summer precipitation in Longmen,
which were obtained by Huo et al. (2019) [30]. The solid triangle shows the summer results
in Taiwan from Seela et al. (2018) [10]. It is noted that different regions have different DSD
characteristics, indicating that the results are different since they come from research in
different regions of South China.

Figure 3 also depicts two boxes marked “marine-like” (with Dm ≈ 1.5–1.75 mm and
log10Nw ≈ 4–4.5) and “continental-like” (with Dm ≈ 2.0–2.75 mm and log10Nw ≈ 3–3.5)
as proposed by Bringi et al. (2003) [3]. In terms of the convective rain, none of the
convective samples belong to the “marine-like” cluster, whereas 23.1% of the convective
samples fall into the “continental-like” cluster even though the observations were located
along the coast, possibly because of the orographic effects. This suggests that compared
with the previously defined “marine-like” and “continental-like” clusters, no small-sized
DSDs feature in a higher concentration, and some points are distinguished by a lower
concentration of larger-size drops.

The mean Dm and log10Nw measured in Qinzhou (this study), Zhuhai, and Taiwan
are all located in the coastal area. Both the Qinzhou and Zhuhai results are from the OTT2
disdrometer, while the Taiwan study uses the Joss–Waldvogel disdrometer (JWD) [10,33].
In addition, the mean Dm and log10Nw were measured by the OTT1 in Longmen, which is
located inland [30]. It was interesting to find that the mean log10Nw of this study was much
lower than other regions. With regard to the mean Dm, the other regions show smaller-sized
drops, particularly in Longmen and Taiwan. Briefly, as shown in Figure 3, the rain DSDs
of this study are also mainly characterized by the lowest concentration of largest-sized
drops compared to the statistical results for surrounding areas in South China (Zhuhai,
Longmen, and Taiwan). The research on Arecibo, Sydney [3] and northern China [20]
found that the orographic effects may play a significant role in convective rain belonging to
the continental-like cluster, with lower concentrations and larger mass-weighted diameters.
Interestingly, the observed area in this study avoids the mountainous terrain, whereas the
observed areas in Zhuhai [33], Longmen [30] and Taiwan [10] are closer to the mountains.
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Figure 3. Scatterplot of log10Nw and Dm for convective (sky blue) and stratiform (orange) rainfall
during the warm season. MP −Nw denotes the Marshall–Palmer value of Nw = 8000 or log10Nw = 3.9
and the two gray rectangles show the “marine-like” and “continental-like” DSDs defined by
Bringi et al. (2003) [3]. Solid circles illustrate the average result of Beibu Gulf warm rainfall, plus
signs represent the Zhuhai result in monsoon season from Zhang et al. (2019) [33], cross symbols
represent the Longmen result in summer from Huo et al. (2019) [30], and solid triangles represent the
Taiwan result in summer from Seela et al. (2018) [10].

To investigate the variability of the Dm and Nw for rain types and rain rates, the Dm
and Nw versus the convective rain rate (CR) and stratiform rain rate (SR), and the relations
from the Zhuhai [33] and Longmen results [30] are shown in Figure 4. The Dm–R and
Nw−R relationships are fitted power-law relationships calculated by the least-squares
method. For both CR and SR plots, the Dm−R and Nw−R exponents from Zhang et al. [33],
Huo et al. [30] and this paper are all positive, indicating that the Dm and Nw values increase
with increased R for convective and stratiform rain relative to a lower R because of more
efficient coalescence and breakup mechanisms [29].

For the Dm–R relationships, the exponents from both Zhang et al. [33] and
Huo et al. [30] are lower than those of this study and the raindrop size in Qinzhou in
this study increases significantly faster for convective rainfall. There is no significant dif-
ference in the Dm−R relation for both rain types between this study (Qinzhou) and the
Longmen results, whereas the Zhuhai results show that the raindrop size increases faster
for SR than CR with increased R compared with the Qinzhou results. Finally, the Zhuhai
results overlap with the Qinzhou results in regard to the Dm−R relation for stratiform
rainfall. It can be seen that the raindrop size in this study has similar characteristics to
those in Zhuhai, mainly because they have similar coastal locations. In this study, the
Dm shows the largest values among the three regions and tends to be a stable value of
about 3.0 mm for convective precipitation and 2.8 mm for stratiform precipitation at a
higher rain rate, which is expected in equilibrium-state DSD [3]. The Nw−R relationship
is not reported in the Longmen study. Although there is no pronounced difference in the
Dm−R relation between the Qinzhou and Zhuhai study for CR and SR due to the similar
tendency and close gap. The Nw−R relations in these two regions are quite different. For
CR, the Nw values from Qinzhou are very far from the Zhuhai result (Figure 4c), but the
difference in the SR is smaller (Figure 4d). As concluded from Figure 4, raindrops increase
as the rain rate increases over both the coastal and inland regions of South China, whereas
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the Nw values over Zhuhai are higher than those over the Beibu Gulf. Compared to the
convective rain, the stratiform Nw values from Zhuhai are closer to the results of this study.
As the Zhuhai study includes DSD observations over typhoon periods [33], typhoon DSDs
encompass a larger concentration of small to moderate drop sizes [17], which may lead to
the difference in the Nw between Zhuhai and this study.
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3.2. Composite Raindrop Spectra

To further understand the rainfall microphysical processes, Figure 5 shows the com-
posite raindrop spectra for the two precipitation systems, which were obtained from the
average of all the instant size spectra for each subset. Moreover, Table 1 lists the integral rain
parameters and gamma parameters that were calculated from the composite spectra. Here,
the composite raindrop spectrum for both rainfall systems was fitted to three-parameter
gamma distribution models by truncated moments using the second, third and fourth
moment method. The red line and the blue line in Figure 5 are the gamma function fitted
for the convective and stratiform spectrum, respectively.

Table 1. Integral rain parameters and gamma parameters of both rain types.

Rain types R Dm LWC log10Nw log10N0 µ Λ

Convective 30.07 2.37 1.21 3.46 3.53 1.35 2.17
Stratiform 1.53 1.54 0.08 3.04 3.89 2.90 4.49

Whole 6.20 1.70 0.27 3.15 3.06 0.72 2.14
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Figure 5. Composite raindrop spectra for two different rain types (convective and stratiform).

Generally, the spectral widths for the convective and stratiform precipitation become
wider with the increased raindrop diameters. The convective spectrum is much broader
than the stratiform spectrum and the log10Nw is larger at each diameter D, revealing that R
and LWC are much higher in convective regions than those from stratiform regions (see
Table 1). The peaks of the two types of precipitation relatively overlapped, around 0.5 mm.
Nevertheless, the maximum raindrop diameter of the convective spectra is 7.5 mm, while
the stratiform spectrum is narrower, with a maximum raindrop diameter of 5.5 mm. A three-
parameter gamma distribution can better depict the measured raindrop size distribution,
particularly for convective rainfall and the medium raindrop sizes (1.0 to 3.25 mm) for
stratiform rainfall. However, the gamma distribution does not fit so well with the large
raindrop size in the stratiform spectrum for underestimating drops larger than 3.25 mm in
diameter. Natural rain DSD may not be the same as the mathematically modeled gamma
distribution [52], especially for stratiform rain in this study. The biases of RDSD parameters
are not considered here (for more detailed error propagation from moment estimators to
RDSD parameter estimators can be found in [52]). Furthermore, the three parameters of
the gamma DSD for the convective spectrum are all smaller than those for the stratiform
spectrum (Table 1).

3.3. µ−Λ Relation

It is known that the three parameters, intercept (N0), slope (Λ), and shape (µ), are not
separate from each other [4]. The µ–Λ relationship not only provides useful information
through the description of the mean behavior of DSD parameters and the characteristics of
actual DSDs, but it also improves the retrieval of DSD parameters with measurements (e.g.,
radar reflectivity) from remote observation instruments (e.g., ground- and satellite-based
radar), thus reducing the bias and standard errors in the retrieval of rainfall parameters [52].
The shape and slope relations are dependent on precipitation types, climatological con-
ditions, and geographical location [1]. Figure 6 shows the scatterplot between the µ and
Λ values of convective rainfall. To minimize the sampling error effects, only convective
DSDs with a large number of counts (over 1000) were selected in this study, and only those
results with 0 < Λ ≤ 20 were applicable since larger values were regarded as a result of
measurement errors [52,53].
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Figure 6. Scatterplots of µ versus Λ for convective rainfall with the filtered whole drop counts over
1000. The red line, blue line, cyan line, green line and magenta line exhibit the results from this
study and other areas of South China. The black dashed lines show the corresponding expression
ΛDm = 4 + µ with Dm of 1.5, 2.0, and 3.0 mm.

The µ–Λ relations exhibited in Figure 6 by the red line, blue line, cyan line, and green
line were derived from OTT2 observations in the Beibu Gulf, Zhuhai [33], the South China
Sea [54], and using JWD measurements from Taiwan [10], respectively. These four studies
use measurements from coastal locations in South China and show nearly consistent trends,
which could be related to their similar locations. In particular, the relationships in the Beibu
Gulf overlap with the results from Zhuhai with Dm ranging from 2.0 to 3.0. However, the
µ–Λ relation in this work (Beibu Gulf) differs from Longmen’s study in the inland region,
which is in Guangdong province in southern China [30], which gradually deviate from
each other with the increased Λ value. These results could possibly be due to different
instruments, climatic regimes, rain microphysics, and geographical locations [55].

Ulbrich [4] found that the shape–slope relationship can also be expressed as
ΛDm = 4 + µ, hence calculating Λ by a given Dm and µ. As illustrated in Figure 6,
the fitted parameters in the coastal area of South China (Zhuhai, South China Sea, and
Taiwan) are located in a relatively higher Dm region than those of the Longmen study.
When all five µ−Λ relationships are derived for South China with a given Λ value larger
than 5 mm−1, the µ values in the Longmen study are lower than those of other coastal
areas, showing that lower Dm may lead to a smaller µ for the same Λ. This result is similar
to the study on Indian summer monsoons [55]. Figure 6 demonstrates that the DSDs in
coastal regions show larger Dm values compared to those in inland regions, revealing that
the shape–slope relations rely on geographical location. Previous research has shown that a
lower total concentration of drops and higher mass-weighted mean diameter appear from
0000–0600 LST and 1800–2400 LST than in the daytime (0600–1800 LST) in West Sumatra
(coastal region) [56], while there are more large-size drops in the daytime precipitation
over the Tibetan Plateau (inland region) [57]. Possibly, large drops contribute more to
precipitation at night than during the daytime in coastal regions, whereas large drops
contribute more to precipitation in the daytime in inland areas.

3.4. Z−R Relation

The relationship Z = aRb has been widely used in single polarized radar QPE. Neverthe-
less, the Z–R relations are not unique since the coefficient a and exponent b are considerably
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dependent on the DSD variability [21,58] and vary with rainfall types, atmospheric con-
ditions, and geographical locations [59]. Therefore, a better understanding of the DSD
characteristics in the Beibu Gulf during the warm season is helpful for improving radar
rainfall estimation there.

Figure 7 presents the scatterplots between radar reflectivity and rain rate for both
precipitation types and the whole categorized dataset. The exponents from the three rainfall
types are all over 1, mainly being influenced by the size or mixed controlled processes such
as collision–coalescence [60,61]. However, the Z–R relations between convective rainfall
and stratiform rainfall show great differences in regard to the coefficient and exponent. For
a better comparison, Z = 300 R1.40 [62] for the standard Next-Generation Weather Radar
(NEXRAD) of the United States is also overlaid in Figure 7. This relationship for the whole
categorized dataset is in good agreement with the measured data.
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Figure 7. Scatterplots of Z−R relationships for convective (gray circles) and stratiform rainfall (gray
plus signs). The fitted power-law Z−R relationships for the convective, stratiform, and whole dataset
are shown by the red, blue, and black solid lines. The relationship for the standard NEXRAD is
depicted by the magenta lines. The inset diagram is an enlargement of the black rectangular region in
the top right corner.

In addition, the Z–R relations from other regions are also compared in Table 2. Inter-
estingly, the coefficients for stratiform rainfall are all higher than that of convective rainfall
in South China, whereas both East China and North China have higher coefficients for
convective rainfall than for stratiform rainfall. This might be because South China is under
the influence of the South China Sea (SCS) monsoon, thus the environmental conditions,
as well as microphysical structures and processes in South China, are generally different
from those of other continental regions [35,63]. Moreover, the obvious difference in these
Z–R relations can be observed whether the same OTT2 disdrometers were used for similar
climatic regimes or different regions with different disdrometers were studied in the similar
period. Therefore, this paper further confirms the conclusion from previous studies, which
is that Z–R relationships depends on the geographical locations, climatic regimes, and
disdrometers [42,59].
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Table 2. The Z-R relations for this study and different regions.

Reference Location Climatic Regime Disdrometer Z–R Relation

This study Beibu Gulf,
South China

Warm season
(June–October 2020,
March–May 2021)

Convective
OTT2

Z=202.542 R1.553

Stratiform Z = 328.793 R1.363

Whole Z = 308.136 R1.423

[30] Longmen,
South China

Summer
Convective

OTT1,
VPR-CFMCW

Z = 144.0 R1.57

Stratiform Z = 453.0 R1.20

Whole Z = 135.2 R1.58

[10] North Taiwan,
South China

Summer
Convective

JWD
Z = 237.88 R1.41

Stratiform Z = 276.13 R1.41

Whole Z = 266.42 R1.38

[27] Nanjing,
East China

Summer
Convective

Two-dimensional
video disdrometer

Z = 230.85 R1.34

Stratiform Z = 193.73 R1.54

Whole Z = 232.44 R1.34

[22] Beijing,
North China

Warm season
(April–October,

2017–2018)

Convective
OTT2

Z = 733.55 R1.222

Stratiform Z = 247.19 R1.348

Whole Z = 265.14 R1.399

4. Conclusions

In this paper, the DSD characteristics for the warm season (June–October 2020,
March–May 2021) were studied using measurements from the OTT2 disdrometer de-
ployed at a coastal site in the Beibu Gulf, South China. The main findings of this study are
summarized as follows:

(1) For the distribution of Dm and Nw, the log10Nw histogram is negatively skewed,
whereas the Dm histogram shows positive skewness for all types of rainfall. The
convective histogram exhibits a larger value of Dm and log10Nw than those for strat-
iform rain. The rain DSDs of this study are primarily characterized by the lowest
concentration of largest-sized drops among the statistical results from other regions
in China (Zhuhai, Longmen, and Taiwan in South China, Nanjing in East China,
Hubei in Central China, and Beijing in North China), which match the continental-like
cluster reported by Bringi et al. (2003) for some of the convective rain. The Dm and
Nw of raindrops increase with increasing R in both the coastal and inland region of
South China.

(2) The raindrop spectra in this study for both convective and stratiform rain rates when
diameters D range from 1.0 to 3.25 mm fit well with a three-parameter gamma distri-
bution. The convective spectra have a larger log10Nw at each size bin corresponding
to a much higher R and LWC than those from the stratiform region. The three pa-
rameters for the gamma DSD of the convective spectra are all smaller than those of
the stratiform spectra. The µ–Λ relation in this paper is closer to the coastal region
in Zhuhai, the South China Sea and Taiwan. The DSDs in these coastal areas have
higher Dm values than those in the inland area (Longmen in Guangdong province in
southern China).

(3) The Z–R relations differ greatly for convective rainfall (Z = 202.542 R1.553) and strat-
iform rainfall (Z = 328.793 R1.363), and when this relation is derived for the whole
dataset (Z = 308.136 R1.423) it is in good agreement with the one for NEXRAD in
the United States (Z = 300 R1.4). Obvious differences appeared for the Z–R rela-
tions whether the same OTT2 disdrometers were used for similar climatic regimes or
different regions with different disdrometers were studied in a similar period.

This study is the first to investigate the characteristics of DSD measured by the OTT2
in the Guangxi Beibu Gulf, South China. Through the DSD results of this study, a series of
relational expressions for the QPE of radar variables and precipitation rate can be proposed
that are suitable for precipitation characteristics of the Beibu Gulf so that QPE developers
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can further improve the accuracy of radar QPE products in this region. Despite some
interesting findings that were obtained from the DSD characteristics of different types
of warm-season rainfall in the Beibu Gulf, these conclusions are not complete because
the sample size of precipitation episodes is still limited and due to the lack of intensive
observations for sufficient surface sites. Long-term observations should be adopted with
more collected data. Moreover, the statistical characteristics of cold season on DSDs is not
yet well understood, and observations during the cold season are needed to compare with
the warm season. Instrumental errors will result in incorrect DSD measurements. Thus, the
raindrop data from different observation tools such as radar, the two-dimensional video
disdrometer (2DVD) and meteorological particle spectrometer (MPS) [33,64,65] can be used
to better understand and compare the characteristics of DSD. Distinct weather categories
such as typhoon cases can also be analyzed individually in the near future when more
DSD data for typhoon cases are available for the Beibu Gulf. Some related research will be
completed in our future work.
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