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Abstract: Seabed sedimentary bedforms (SSBs) are strong indicators of current flow (direction and
velocity) and can be mapped in high resolution using multibeam echosounders. Many approaches
have been designed to automate the classification of such SSBs imaged in multibeam echosounder
data. However, these classification systems only apply a geomorphological contextualisation to the
data without making direct assertions on the velocities of benthic currents that form these SSBs. Here,
we apply an object-based image analysis (OBIA) workflow to derive a geomorphological classification
of SSBs in the Moira Mounds area of the Belgica Mound Province, NE Atlantic through k-means
clustering. Cold-water coral reefs as sessile filter-feeders benefit from strong currents are often found
in close association with sediment wave fields. This OBIA provided the framework to derive SSB
wavelength and wave height, these SSB attributes were used as predictor variables for a multiple
linear regression to estimate current velocities. Results show a bimodal distribution of current flow
directions and current speed. Furthermore, a 5 k-means classification of the SSB geomorphology
exhibited an imprinting of current flow consistency which altered throughout the study site due to
the interaction of regional, local, and micro scale topographic steering forces. This study is proof-of-
concept for an assessment tool applied to vulnerable marine ecosystems but has wider applications
for applied seabed appraisals and can inform management and monitoring practice across a variety
of spatial and temporal scales. Deriving spatial patterns of hydrodynamic processes from widely
available multibeam echosounder maps is pertinent to many avenues of research including scour
predictions for offshore structures such as wind turbines, sediment transport modelling, benthic
fisheries, e.g., scallops, cable route and pipeline risk assessment and habitat mapping.

Keywords: object-based image analysis (OBIA); seafloor classification; multibeam echosounder;
seabed sediment bedforms (SSBs); current speed estimate

1. Introduction

Understanding the current regime affecting seabed environments and habitats therein
is a recurrent research requirement. Not only are currents an important influence on habitat
for various organisms, especially filter feeds, but current also have a direct control on
seabed sediment grain-size and composition through selective sedimentation processes. In
areas where current controlled sediment transport produces mobile bedforms such as sedi-
ment waves, these may offer a hazard to cables and pipelines which may become excavated
and exposed [1]. Likewise, structures may also become buried over time. Interpreting
benthic current speeds from bedform morphologies also enables appropriate infrastructure
design and assists sediment transport modelling important for coastal erosion manage-
ment or to predict recovery from marine aggregate extraction [2–4]. Cold-water corals
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(CWCs) are sessile organisms that can generate complex three-dimensional frameworks
that form reefs and coral mounds over time by the accumulation of biological remains
including coral rubble and the trapping of sediments [5,6]. Over hundreds of thousands to
millions of years, such reefs may eventually form giant carbonate mounds through suc-
cessive periods of growth [7,8]. Habitats constructed by framework building scleractinian
CWCs support other marine species, including commercial fish species, and provide refuge,
feeding grounds, and nurseries creating biodiversity hotspots [9–12]. Seabed sedimentary
bedforms (SSBs) have been observed in many CWC habitats implicating an inherent connec-
tion between CWCs and strong benthic currents [5,13–15]. Moreover, studies developing
palaeo-environmental reconstructions of CWC habitat conditions indicate that periods of
CWC habitat decline have been linked to weakened current regimes [16,17]. This is not sur-
prising as CWCs are filter feeders ensnaring and consuming suspended food particles thus,
enhanced current speeds can increase the encounter rate of these suspended food particles
with coral feeding apparatus [18,19]. Although the significance of CWC habitats to marine
biodiversity has widely been acknowledged, anthropogenic activities and environmental
changes in the deep sea continue to adversely impact these environments [20,21]. Further-
more, the slow recuperation rates for these habitats from such impacts underlines the need
to elucidate the processes that govern the success of these vulnerable marine ecosystems
and proactively assign protective status [22]. Effective conservation and management of
these vulnerable marine ecosystems requires detailed and accurate spatial information to
be acquired of CWC and their surrounding environment [23,24]. Providing an accurate
portrayal of seabed environmental conditions requires the production of seabed habitat
maps that are applicable at multiple scales [25,26].

Multibeam echosounder (MBES) data provides bathymetry and backscatter data
that readily portrays the geomorphological context of the seafloor [27,28] offering an
efficient input for seabed habitat maps, depicting the spatial distribution of CWCs and
their relationship with the adjacent seabed environment [14,29,30]. Despite the availability
of this technology, only 18% of the world’s oceans are mapped at a resolution akin to
terrestrial datasets [31]. Consequently, several national and international initiatives have
been established to ameliorate this data deficit [31–33]. Executing this goal necessitates
the acquisition of significant volumes of data, which require processing to create seabed
habitat maps [34]. Additionally, these seabed habitat maps need to be objective and
replicable to ensure the consistency of the analysis when appraising these conditions
over repeated surveys [35]. Manually interpreting such volumes of data is laborious,
dependent on the expertise of the analyst, vulnerable to bias, and introduces variability to
the production of seabed habitat maps [36–38]. Several approaches have been developed to
automate the production of seabed habitat maps in CWC environments [21,24,26]. Object-
based image analysis (OBIA) offers the ability to characterise groups of pixels into distinct
image objects that relate directly to physical seabed features [39,40]. Spectral features
acquired from SSBs enable frequency analysis to be incorporated into OBIA workflows [41].
Stow et al. [42] generated a bedform velocity matrix to offer estimations of current speed,
current direction, and variability using similar spectral characteristics derived from the
seafloor geomorphology. Moreover, this technique has been applied and proven effective in
obtaining current speeds in CWC environments [14]. Despite the demonstrated advantages
of spectral features as part of an OBIA workflow and the importance of hydrodynamic
regimes to CWCs, these features have yet to be exploited to provide automated appraisals
of current speed.
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Here, we provide a semi-automated OBIA workflow designed to categorise CWC
mounds and SSBs present within MBES bathymetric data using a geomorphological classifi-
cation that depicts the consistency of the hydrodynamic regime and provides the framework
for current velocity estimations A fast Fourier transform (FFT) was applied to bathymetric
profiles derived from image objects associated with SSBs crests. Wavelength and wave
height were calculated as part of this analysis and a current velocity estimate was obtained
using a multiple linear regression generated from parameters outlined in Stow et al. [42].
Geomorphological characterisation of the SSB crest image objects was achieved using a
k-means classification deployed on the morphological attributes associated with the crests
including wavelength and wave height. This is the first study to provide a semi-automated
OBIA characterisation of seabed hydrodynamics solely using MBES bathymetry. As ex-
pressed above, this has rich application but is applied here to better understand current
speed controls on cold-water coral reefs.

Study Site

The Belgica Mound Province (BMP) is found at the eastern flank of a north–south
trending embayment occurring along the Irish continental margin called the Porcupine
Seabight in the NE Atlantic [43–45]. The BMP consists of two chains of CWC giant carbonate
mounds orientated north–south occurring at 650 m depth and 950 m, respectively [45–47].
A portion of the BMP is encompassed by a Special Area of Conservation (SAC) designated
under the EU habitats Directive [48]. The BMP hosts several examples of active and buried
mounds with sizes varying from giant carbonate mounds approaching 150 m in height
to smaller structures that are approximately 10 m in height, these mounds occur at a
depth range of 550 m to 1030 m [49,50]. Salinity profiles for this region show that the
Mediterranean Outflow Water (MOW) occurs between 800 m and 1100 m water depth
forming a water mass that flows from the Gulf of Cadiz along the continental margin and
creates a cyclonic flow in the Porcupine Seabight [49,51]. The Moira Mounds (MMs) are
a series of small-scale coral mounds, with diameters of 20 m to 50 m, heights of up to
11 m, that occur throughout the BMP [47]. One such MM has shown considerable temporal
variability where erosion by strong currents has likely exhumed dead coral framework
on the mound over 4 years [12,52]. Spatial arrangement of these mounds forms 4 distinct
groups, the upslope area, the midslope area, the northern area, and the downslope area [52].
The downslope MMs are found within a north-north-east trending blind channel and have
the highest density ever recorded at 22.9 mounds per km2 [14]. Mean current flow is
directed poleward and has an estimate speed of between 0.36 m·s−1 and 0.40 m·s−1 [14,49].
Transverse, sinuous, bifurcating SSBs formed due to these currents are prevalent throughout
the site [53]. The location of the MMs study site is shown in Figure 1.
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Figure 1. (A) Study site area. The bathymetry acquired in the downslope Moira Mounds region 
derived from remotely operated vehicle (ROV) based multibeam echosounder (MBES) data display-
ing the extent of (B) outlined in black, (B) moated cold-water coral mounds surrounded by mobile 
sediment worked into sediment waves. Coral ridges appear immediately south of the larger 
mounds. 

  

Figure 1. (A) Study site area. The bathymetry acquired in the downslope Moira Mounds region
derived from remotely operated vehicle (ROV) based multibeam echosounder (MBES) data displaying
the extent of (B) outlined in black, (B) moated cold-water coral mounds surrounded by mobile
sediment worked into sediment waves. Coral ridges appear immediately south of the larger mounds.
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2. Materials and Methods
2.1. Multibeam Echosounder Data Acquisition and Processing

The MBES data were collected using a Kongsberg EM2040 mounted to the Holland 1
ROV operating at a frequency of 300 kHz as part of the QuERCI survey in 2015 aboard the
RV Celtic Explorer [54]. The survey altitude was maintained at 150 m and was recorded
using the ROV altimeter. The navigation and positioning were acquired using a Sonardyne
USBL and a 1200 kHz RDI workhorse DVL beacon and were corrected using a Kongsberg
HAINS (INS) system. Raw MBES data were sorted as *.all file formats and imported into
Qimera processing software to manually remove any erroneous data using the swath editor
tool [55]. Horizontal and vertical offsets within the data were removed using the horizontal
shift tool and the varying vertical shift tool in Qimera [55]. A cross check analysis was
applied to these data to determine the accuracy of the bathymetric data processing against
the processing standards set by the International Hydrographic Organisation (IHO) [56].
These data were gridded at 1 m resolution and exported into an ArcGRID *.asc file format.
All bathymetric data were imported into ArcGIS 10.6 to derive bathymetric derivatives
(Table 1). The slope, aspect, sinaspect, cosaspect, and variance were calculated using the
benthic terrain modeler 3.0 toolbox in ArcGIS 10.6 [57]. The bathymetric position index
(BPI) was generated at 2 separate scales using the equation outlined below:

BPI = Zgrid − f ocalmean(Zgrid, circle, r) (1)

where Zgrid is the bathymetric data [58]. The focalmean derives the mean of the bathymetric
data within a circle shaped kernel of radius r, this was completed in the focal statistics tool
in the neighbourhood toolset in ArcGIS 10.6. The radius of the kernel determines the scale
of the BPI. The BPI layer was then created by subtracting the mean bathymetric layer from
the Zgrid, this was completed in the raster calculator tool in the map algebra toolset in
ArcGIS 10.6.

Table 1. Image layers used for segmentation in eCognition Developer.

Image Layers Scale (Pixel)

Aspect 3
Bathymetric Position Index (BPI) 5, 25

CosAspect (Northness) 3
SinAspect (Eastness) 3

Slope 3
Variance 3

2.2. Object-Based Image Analysis
2.2.1. Morphological Characterisation

Segmentation is a semi-automated process by which an image is separated into dis-
crete image objects and is the first step in object-based image analysis (OBIA) [39,59]. The
effectiveness of object based image analysis is predicated on the efficacy of the segmen-
tation in demarcating the features of interest [60]. In this paper, the segmentation was
deployed as a hierarchal process, to distinguish between features that exhibit a significant
disparity in scale and characterise their morphology. This morphological characterisation
was performed over a series of four phases that were adapted from Summers et al. [61]
(Figure 2). These phases utilise the multiresolution segmentation algorithm (MRS), the
spectral difference algorithm, and the pixel base object resizing algorithm, which are all
found within the eCognition Developer processing suite [62]. The MRS algorithm groups
pixels together into image objects using a predefined homogeneity value that ceases the
amalgamation of pixels once this value is met, this homogeneity value is defined as the
scale parameter [62,63]. Moreover, the influence of image object shape on the segmentation
is controlled by the shape parameter, the smoothness of the image object outline created
by the segmentation is regulated by the compactness factor [64]. An ideal segmentation
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presents an accurate reflection of the outline of the targets of interest [60,65,66]. However,
this is seldom the case, with many features of heterogeneous classes occurring within the
same image object (under segmentation), or one feature being demarcated by multiple
image objects (over segmentation) [67]. Amalgamation of neighbouring image objects can
be completed using the spectral difference algorithm, where image objects are merged
if the difference between mean layer intensities is below a user defined value [62]. The
pixel-based object resizing algorithm can contract or expand image object boundaries until
a specific geometry has been achieved or image layer value has been met [68].
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Figure 2. Workflow chart detailing the separate phases for the morphological characterisation,
outlined in black and the image layers deployed during this section, outlined in green. The steps
required for the seabed sediment bedform frequency analysis are also mapped out, with the outputs
of this analysis feeding into the bedform velocity calculation and the k-means classification.

In the first phase, the MRS algorithm was deployed on the cosaspect, sinaspect,
slope, and variance image layers with a scale parameter of 10, a shape factor of 0.1, and
a compactness factor of 0.1. Any image object with a mean BPI25 of ≥100 standard of a
deviation of BPI25 were merged using the spectral difference algorithm. This algorithm
merges adjacent image objects if the difference in mean image layer values between the
image objects is below a defined threshold [62]. Slope, sinaspect, and cosaspect were the
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image layers included in this process and a maximum spectral threshold value of 12 was
chosen. A second iteration of the spectral difference algorithm was applied to image objects
with a mean BPI25 value of <100% of a standard deviation of BPI25. This combination of
algorithms provided preliminary outlines of large-scale features such as the coral mounds
and their surrounding moats. Thus, a classification was developed to add geomorphological
context for these two larger scale features. “Mound” image objects—hereafter described
as “mounds”—were identified as positive topographical features depicted in the BPI25
image layer. “Moat” image objects—hereafter described as “moats”—were identified as
negative topographical features depicted by the BPI25 image layer. Any image object with
a mean BPI25 value of >50% of a standard deviation of BPI25 was classified as a “mound”.
The pixel-based image object resizing algorithm was deployed to improve the accuracy
of the “mounds” by expanding their borders until a threshold of >12.5% of a standard
deviation of BPI25 was met. Any image object with a mean BPI25 value of <−50% of
a standard deviation of BPI25 was classified as a “moat”. The pixel-based image object
resizing algorithm was deployed to improve the accuracy of the “moats” by expanding
their borders until a threshold of <−12.5% of a standard deviation of BPI25 was met.

Phase two of the morphological characterisation process was deployed on the remain-
ing “unclassified” image objects to delineate regions that potentially represented SSBs. The
MRS algorithm was used to segment the sinaspect and cosaspect layers with a scale pa-
rameter of 3, a shape parameter of 0.1, and a compactness factor of 0.1. These initial image
objects were merged using the spectral difference algorithm on the cosaspect and sinaspect
layers with a maximum spectral difference threshold value of 0.3. A “sediment waves”
class was assigned to image objects that represented SSBs. To execute this classification, a
hue-saturation-value (HSV) colour transformation was employed to help capture truncated
image objects with a common slope direction. This colour transformation was applied
twice, once with an image layer configuration of slope as red, cosaspect as green, and
sinaspect as blue, and a second time with slope as red, sinaspect as green, and cosaspect as
blue. Any image object with a HSV value derived from the first image layer configuration
of ≥0.9 and a border length/area of 0.32 were classified as “sediment waves”. Any image
object with a HSV value derived from the second image layer configuration of ≥0.9 and a
border length/area of 0.32 were classified as “sediment waves”.

During phase three, “sediment waves” image object boundaries were adjusted over
several iterations to provide a more accurate representation of these. Summers et al. [61]
identified BPI5 as the most appropriate image layer for accurately identifying the extent of
SSBs. Accordingly, the BPI5 image layer was used here with the pixel-based object resizing
algorithm to improve the coverage of SSBs by “sediment waves”. All “sediment waves”
were grown until a threshold of >12.5% of one standard deviation of BPI5 had been met. A
second implementation of this algorithm grew the “sediment waves” until a threshold of
<−12.5% of a standard deviation of BPI5 was met. Any inset “unclassified” image objects
found within the “sediment waves” were removed by shrinking the “unclassified” image
objects using the pixel-based object resizing algorithm. The candidate surface tension
parameter was used as the criterion for this contraction. This parameter creates a square
that is defined in image pixels by the user and determines the relative proportion of the
classified pixels within this square. Any portion of an inset image object that had <40%
labelled as “unclassified”, the resulting portion of that inset image object would be shrunk.
Be replaced with an “intermediate” class, if this “intermediate” image object shared ≥65%
of its border with “sediment waves” and if the border length/area was ≥0.35, then it would
be classified as a “sediment wave”. Any remaining “intermediate” image objects were
redesignated as “unclassified” image objects.

Phase four of the morphological characterisation is similar to the third phase detailed
in Summers et al. [61]. However, this phase deviates from the previous workflow by
using the MRS algorithm to demarcate the individual sediment wave crests and their
corresponding troughs. To complete this action the MRS algorithm is deployed separately
to segment the “ridge” image objects—hereafter described as “crests”—and the “valley”
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image objects—hereafter described as “troughs”—by using the cosaspect and sinaspect
bathymetric derivatives. The scale parameter, shape parameter, and the compactness factor
were set to 12, 0.1, and 0.1, respectively.

2.2.2. Seabed Sediment Bedform (SSB) Frequency Analysis

Upon conclusion of the morphological characterisation, the data were exported as a
line shapefile. Any line object that was classified as “crest” was selected for processing. The
mean trend for each “crest” line object was acquired using the linear directional mean tool
from the spatial statistics toolbox in ArcGIS 10.6 (Figure 3A). The mean compass bearing
derived as part of this analysis was integrated with the “crest” line objects to bestow
them with the trend direction. A perpendicular line was generated extending 50 m from
either side of each line object to avoid geometrical distortions introduced by measurements
taken at oblique cross sections (Figure 3B) [69]. This length was chosen as it exceeded
the maximum perceived wavelength of all SSBs within the area [69]. The bathymetric
profile was extracted at every metre along the perpendicular line, corresponding with
the minimum horizontal spatial resolution achievable with these data. As two separate
principal SSB orientations were observed in the region, the data were separated by the
orientation values after classification.

Contemporary research has deployed fast Fourier transformations (FFTs) to deliver
spatial series information on profiles derived from SSBs [41,70–72]. This technique provides
the capacity to derive the number of SSBs over a defined interval of space, represented
as wavenumber, and the space between each individual SSB, defined as wavelength [73].
Therefore, after acquisition of the bathymetric profile data had been achieved, they were
imported into a pythonic coding environment to apply a FFT to extract the wavelength
and wave height of each sediment wave. This workflow was executed using the numpy
library in Python 3.7 [74]. An effective FFT approach requires the data to meet certain
prerequisites including stationarity [75]. Stationarity is a property of the data that asserts
that a superimposed trend is not present, and that the wavenumber content remains
constant along the length of the appraised profile [75,76]. Here, this stationarity was
assessed using an augmented Dickey–Fuller (ADF) unit root test [77]. As many of the SSBs
were found to occur on larger scale slope features, detrending techniques were deployed to
ensure stationarity was achieved [78,79]. Thus, preventing these regional low frequency
slopes from dominating the analysis and obfuscating the local wavenumber value [76].
The Savitsky Golay filter was deployed to achieve this, which fits data points contained
within a moving window to a polynomial [80–82]. Several values for moving window
size were assessed in each instance, with the window size set at 10 step intervals ranging
from 21 to 101. The window size chosen was the one that achieved stationarity and the
lowest combined root mean square and standard deviation values and was subtracted
from the bathymetric profile (Figure 3C,D). Another assumption of FFT is the presence of
an integral number of SSBs within the analysis [75]. Data that fail to fulfil this condition
can introduce spectral leakage into the analysis, where many additional wavenumbers
occur adjacent to the high amplitude peaks [78]. The solution was to window the SSB
profile, which ensures that the edges of the sample taper to 0 m and an integral value of
wavelength is achieved (Figure 3E) [70,78]. After windowing, the data were then zero
padded to ensure that the associated wavenumber is more resolvable in the spectral profile.
FFT was applied to the data after zero padding had been completed. Once achieved, the
wavenumbers that were derived were limited to below 0.01 m−1 to further exclude any
large profiles. The wavenumber with the highest spectrum value from this subset was
converted to wavelength in each instance (Figure 3F). Any SSB profile that failed to achieve
stationarity after the initial processing were filtered at a moving average of 11 to capture
regional slopes with a higher wavenumber. If this failed to achieve the stationarity, then
the SSB was designated a wavelength and wave height value of 0. The Nyquist interval is
the minimum measurable wavelength discernible within a dataset, this was obtained by
doubling the sampling resolution of the data [70].
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Figure 3. Displaying (A) an example of a mean line, its corresponding perpendicular and the extent
of (B) outlined in white, (B) the points generated along the perpendicular line (C) the bathymetric
profile extracted from the bathymetry with a profile generated by a Savitzky Golay filter with a chosen
window of 21 and a polynomial value of 3, (D) the bathymetric profile after the subtraction of the
Savitzky Golay filter profile, (E) the filtered bathymetric profile with a window function applied, and
(F) a Fast Fourier Transform of the windowed profile providing a spectral view of the wavelengths
present in the profile after the removal of the Savitzky Golay filter.
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2.2.3. K-Means Classification

K-means classification separates the objects into a group or cluster with a similar
data profile while ensuring that the object is sufficiently distinct from other groups in
the analysis [83]. The number of clusters employed is user defined by determining the
cluster with the lowest Euclidean distance from its cluster centre to the object within the
multi variant data space [84]. Initially these cluster centres are randomly distributed. Data
are categorised by bestowing the class of the closest cluster centre [85]. The positions
of these cluster centres are optimised by discerning the centre configuration with the
lowest aggregated squared error in n-dimensional space, with n corresponding to the
number of variables included [84–86]. K-means clustering is the most common clustering
technique due to its simplicity and effectiveness and is frequently used to partition marine
environmental data [85–87].

Upon morphological characterisation of the data, the image objects were exported as a
polygon shapefile. Any image object classified as “crest” was selected as an input for the k-
means classification, the remaining image objects were excluded (Figure 4). The wavelength
for each “crest” derived during the seabed sediment bedform frequency analysis were
added to the shapefile attributes. All “crest” image objects were imported into a python
coding environment to classify them based on morphology, spatial density, and mean
bathymetric derivatives (Table 2). Values 2 to 8 were assessed for values for k by comparing
their respective inertial values, which represents the sum of squared distances of the
samples to their closest cluster centre [88]. The value of k found before a significant change
in the slope of inertia values will be deemed the most appropriate value for k. As, this
would indicate the effective clustering of the morphologies displayed by the “crests” while
maintaining the minimum number of classes required to describe the data. A separate class
density distribution layer was derived for each k-means class. Calculating the density of
the features as points for each class over a defined pixel neighbourhood (75 m) with density
being displayed as number of class point features per km2. Geometrical features available
in eCognition were derived from the image objects and were the principal component to
the classification, all features used in the k-means classification are outlined in Table 2. The
features that displayed the greatest degree of inter class variation were used to reconcile
the k-means classification to the environment from which they were derived.

Table 2. Image object features employed in the k-means classification and their respective fea-
ture categories.

Feature Category Image Object Feature

Morphology

Length/Width
Shape Index
Length/Area

Area
Roundness
Elliptic Fit

Asymmetry
Rectangular Fit

Curvature/Length
Wavelength

Spatial Density Point Density

Bathymetric Derivative Mean depth difference to neighbouring “troughs”
Mean Slope
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Figure 4. Displaying the multi-scale morphological characterisation output with the larger scale
coral mound features—the “mounds” and “moats”—and the lower scale features—the “crests”
and “troughs”.

2.3. Bedform Velocity Calculation

Current speed calculations were based on the bedform velocity matrix presented by
Stow et al. [42]. Stow et al. [42] delineated transverse bedforms into 6 separate categories
including ripples, sinuous dunes, barchanoid dunes, sand waves, gravel waves, and
giant sediment waves (mud waves). These categories are defined using the wavelength,
wave height, and the sinuosity of the bedform. Furthermore, each category is given a
corresponding minimum and maximum current velocity. In our study, we established
individual multiple linear regression using the ranges for wavelength, wave height, and
current velocity provided by Stow et al. [42] for each SSB category. With wavelength and
wave height as the explanatory variables and current velocity as the response variable. The
resultant wavelengths and wave heights obtained from the FFT workflow outlined above
were used to identify each “crest” as one of these transverse SSB categories. Once labelled, a
predicted velocity was derived for the “crest” using the regression model developed for that
category. Median values for current speed were obtained for each k-means class separately
at ≤25 m, ≤50 m, ≤100 m, ≤150 m, and ≤200 m distances from the “mounds” to observe
any relationships between current speed variation and proximity to “mounds”. Median
values were also obtained for each class for the 2 dominant SSB orientations. Furthermore,
current orientations were derived for each k-means class at ≤25 m and ≤200 m from
“mounds” to determine any potential influences the CWC mounds may have on current
orientation. Median values for current orientation were also derived at these distances for
each k-means class.
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3. Results
3.1. Multibeam Cross Check Analysis

Cross checking revealed that these MBES bathymetry data achieved the IHO special
order standard for accuracy of bathymetric data.

3.2. Morphological Characterisation

The median area for “crests” was 140 m2. The median curvature to length value was
7.80 and the median length to width value was 2.31.

3.3. Fast Fourier Transform and SSB Frequency Analysis

Three SSB categories were observed within the “crests”, sediment ripples, sinuous
dunes, and sand waves. Forty-eight “crests” exceeded the filter parameters and thus
were designated a wave height and wavelength of 0 m. The minimum sampling interval
observed was 2 m.

3.4. Classification

A 5 k-means clustering was chosen as it occurred before a significant local variation
in the inertial value slope (Figure 5A,B). Class 0 had the highest median length/width of
3.62 m, and the largest areal extent with a median area of 233 m2. This class exhibits a low
sinuosity with the second lowest median curvature/length value of 6.34◦. Median wave
height for these objects was the second highest observed at 0.315 m. The median wavelength
for these image objects was the shortest for any class at 11.29 m. These image objects had
a mean slope of 1.47◦. Class 1 is the second most linear with a median length/width of
2.79 m and a moderate areal extent with a median value of 155 m2. This class exhibits a low
sinuosity with the lowest median curvature/length value of 6.29◦. These image objects had
a mean slope of 1.46◦. Class 2 had the lowest length to width ratios with a median value of
1.65 m. It also had the lowest median areal extent (90 m2). This class had the second highest
median curvature/length at 9.72◦ and the second lowest mean slope at 1.39. This class also
had a median wave height of 0.293 m. Class 3 had a low median length/width of 1.93. They
also had the second lowest median area value at 114 m2. This class had the highest median
curvature/length value length at 10.35◦. These image objects a mean slope of 1.31◦. Class
4 had the highest median wavelength value recorded at 12.43 m and the lowest median
wave height value at 0.128 m. These image objects had moderate median curvature/length
and length/width values of 7.15◦ and 1.93 m, respectively. These image objects had a mean
slope of 3.27◦. Further median values for each k-means class are provided in Table 3.

Table 3. Median area, length/width, curvature/length, mean slope, and wave height for each class.

Class Area (m2) Length/Width Curvature/Length Slope (Deg) Wave Height (m)

0 233 3.62 6.34 1.47 0.315

1 155 2.79 6.29 1.46 0.323

2 90 1.65 9.72 1.39 0.293

3 114 1.93 10.35 1.31 0.293

4 170 1.93 7.15 3.27 0.128
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Figure 5. Displaying (A) the slope image layer and the product of the 5 k-means classification of
morphology, spatial density, and mean bathymetric derivative, (B) inertial values for each value of k.

6605 “crests” were orientated from south-west to north-east, 5105 “crests” were orien-
tated from south-east to north-west. Furthermore, 64% of all “crests” that were classified as
class 0 and 58% of “crests” that were classified as class 1 are orientated to the north-east.

3.5. Current Velocity Analysis

A bimodal distribution in current speeds was identified occurring throughout the
study site with a mean current speed of 0.37 m s−1 (Figure 6A). Therefore, the “crests” were
separated into 2 groups: >0.40 m·s−1 (the fast group abbreviated to FG), and ≤0.40 m·s−1

(the slow group abbreviated to SG) to ensure successful production of summary statis-
tics for each mode. The median current speed for all SG “crests” was 0.28 m·s−1 and
the median current speed for all FG “crests” was 0.60 m·s−1. When comparing the me-
dian current speeds taken at ≤25 m from “mounds” and median current speeds taken at
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≤200 m from “mounds”, an increase current speed with increasing distance away from
the “mounds” was noted. For instance, the SG “crests” displayed a consistent increase in
current speed across the 2 chief orientations with increasing distance from the “mounds”
(Figure 6B,C). The north-north-west aligned SG “crests” showed an increase in median
current speed for all 5 classes when comparing median current speeds acquired at ≤25 m
and ≤200 m from the “mounds”. Class 0 showed an increase in median current speed of
0.013 m·s−1 from 0.266 m·s−1 to 0.279 m·s−1. Class 1 exhibited an increase of 0.007 m·s−1

from 0.273 m·s−1 to 0.280 m·s−1. Class 2 displayed a rise in median current speed of
0.007 m·s−1 from 0.269 m·s−1 to 0.276 m·s−1. Class 3 showed an increase in median current
speed of 0.006 m·s−1 from 0.271 m·s−1 to 0.277 m·s−1. Class 4 exhibited a rise in median
current speed of 0.002 m·s−1 from 0.26 m·s−1 to 0.262 m·s−1.
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The SG image objects orientated to the north-north-east displayed an increase in
median current speeds when comparing median current speeds taken at ≤25 m and ≤200 m
from the “mounds” in 4 of 5 classes. Class 0 displayed an increase in median current speeds
of 0.012 m·s−1 from 0.268 m·s−1 to 0.280 m·s−1. Class 1 displayed an increase in median
current speeds of 0.014 m·s−1 from 0.266 m·s−1 to 0.280 m·s−1. Class 2 exhibited an increase
in median current speeds of 0.001 m·s−1 from 0.277 m·s−1 to 0.278 m·s−1. Class 3 displayed
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an increase in median current speeds of 0.014 m·s−1 from 0.266 m·s−1 to 0.280 m·s−1.
Conversely, class 4 exhibited a decrease in median current speeds of 0.0002 m·s−1 from
0.264 to 0.263 m·s−1.

The FG image objects orientated north-north-west have the largest increase in median
current speeds between these distance intervals from the “mounds”. Four of the 5 k-means
classes contained in the FG “crests” mode exhibit an increase in median current speed
between the ≤25 m and ≤200 m distance intervals from the “mounds”. For instance, the
FG objects assigned to class 0 and aligned to the north-north-west experienced an increase
in median current speed of 0.033 m·s−1 from 0.542 m·s−1 m to 0.575 m·s−1. Class 1 from the
same orientation and current regime also experienced an increase in median current speed
of 0.034 m·s−1 from 0.543 m·s−1 to 0.577 m·s−1. Class 2 “crests” from this subset exhibited
a smaller increase in current speed of 0.006 m·s−1 from 0.559 m·s−1 to 0.565 m·s−1. An
increase in current speed of 0.030 m·s−1 from 0.530 m·s−1 to 0.560 m·s−1 was observed for
class 3 “crests”. Conversely, class 4 for the same orientation and current regime experienced
a decrease in median current speed of 0.023 m·s−1 from 0.571 m·s−1 to 0.548 m·s−1.

For the north-north-east aligned FG “crests”, 2 classes exhibited an increase in me-
dian current speed. Class 0 had an increase in median current speed of 0.006 m·s−1 from
0.564 m·s−1 to 0.570 m·s−1. Class 1 had an increase in median current speed of 0.021 m·s−1

from 0.556 m·s−1 to 0.577 m·s−1. Three classes aligned north-north-east in the FG cur-
rent regime have shown a decrease in current speed. Class 2 had a decrease in median
current speed of 0.026 m·s−1 from 0.590 m·s−1 to 0.564 m·s−1. Class 3 displayed a de-
crease in median current speed of 0.002 m·s−1 from 0.56 m·s−1 to 0.558 m·s−1. Class 4
exhibited a decrease in median current speed of 0.001 m·s−1 from 0.545 m·s−1 to 0.544 m·s−1

(Figure 6B–E).
Moreover, when comparing the relative proportion of FG “crests” versus SG “crests”

at the same distance intervals relative to the “mounds”, an increase in the proportion of
FG “crests” was observed in both orientations. An increase of 11.4 percentage points from
15.6% to 27.0% was noted for “crests” orientated to the north-north-west (Figure 7A). A
smaller increase in the proportion of FG “crests” orientated to the north-north-east was
noted with an increase of 4.5 percentage points from 23.3% to 27.8% (Figure 7B).

An increase in median current speeds was observed for all k-means classes when
comparing the median current speed per class acquired at ≤25 m away from the “mounds”
and the median current speed per class for all SG “crests” aligned to the north-north-west
(Figure 7C). The largest increase was observed for class 0 at 0.013 m·s−1. Similarly, an
increase in median current speeds per k-means class was observed for 4 of the 5 classes
when comparing the median current speed per class acquired at ≤25 m away from the
“mounds” and the median current speed per class acquired for all SG “crests” aligned to the
north-north-east. The largest increase was observed for class 1 at 0.014 m·s−1 (Figure 7D).
A decrease of 0.00173 m·s−1 was noted for class 4. There was an increase in median current
speeds for 4 of the 5 k-means classes when comparing the median current speed per class
acquired at ≤25 m away from the “mounds” and the median current speed per class for all
FG “crests” aligned to the north-north-west (Figure 7E). The largest increase was observed
for class 1 at 0.034 m·s−1. A decrease of 0.023 m·s−1 was observed for class 4. There was an
increase in median current speeds for 3 of the 5 k-means classes noted when comparing
the median current speed per class acquired at ≤25 m away from the “mounds” and the
median current speed per class for all FG “crest” “class aligned to the north-north-east.
The largest increase in median current speed was observed for class 1 at 0.020 m·s−1. The
largest decrease in median current speed was observed for class 3 at 0.026 m·s−1.
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“crests”, (F) north-north-east aligned FG “crests”.

Current speed and current direction were extracted for each class image object at
≤25 m and ≤200 m away from the “mounds” (Figure 8A–J). However, as the direction
derived from the linear directional mean tool was ambiguous when observed in the full 360◦

range 180◦ was subtracted from all direction values above 180◦, allowing for separation
between the 2 dominant SSB orientations. Thus, any “crest” with orientation values
occurring between 0◦ and 90◦ represent those SSBs whose crests aligned to the north-
north-west. Any “crest” with orientation values occurring between 90◦ and 180◦represent
SSBs whose crests were aligned to the north-north-east. The median current orientations
acquired at ≤200 m from the “mounds” for classes 0, 1, 2, 3, and 4 aligned to the north-north-
west were 340◦, 342◦, 327◦, 332◦, and 329◦, respectively. The median current orientations
acquired at ≤25 m from the “mounds” for classes 0, 1, 2, 3, and 4 with the same alignment
were 325◦, 341◦, 322◦, 321◦, and 325◦, respectively. A bimodal distribution of current flow
was noted for class 0 at ≤200 m from the “mounds” however, this was not noted for any
of the other k-means classes. The median current orientations acquired at ≤200 m from
the “mounds” for classes 0, 1, 2, 3, and 4 aligned to the north-north-east were 20◦, 19◦, 29◦,
29◦, and 28◦, respectively. The median current orientations acquired at ≤25 m from the
“mound” image objects for classes 0, 1, 2, 3, and 4 with the same alignment were 28◦, 24◦,
37◦, 33◦, and 20◦, respectively.
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Density distribution layers reveal that the greatest density of class 0 occurs to the
north-east of the study site (Figure 9A). The greatest density of class 1 occurs to the centre
and south of the study site (Figure 9B). The greatest density of class 2 and 3 occurs to
the east and north-west (Figure 9C,D). Class 4 “crests” occur in greatest density to the
north-east directly surrounding the CWC mounds in this area (Figure 9E).
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and (E) class 4 displaying the extent of (F) outlined in black, (F) displays the k-means classification
for the “crests” in the north-western portion of the study site.

4. Discussion
4.1. K-Means Classification of Sediment Bedform Type

A five k-means classification produced a robust identification of transverse SSB types
separating each class chiefly by linearity, sinuosity, and areal extent (Table 4). Linearity
and sinuosity in this classification are depicted by the values for length/width and curva-
ture/length. Higher length/width and lower curvature/length values designate greater
SSB linearity. Lower length/width and higher curvature/length values reveal increased
SSB sinuosity. Sinuosity gradually increased from class 0 to class 3, with class 0 represent-
ing large straight SSBs and class 3 representing medium sinuous SSBs (Table 4). A slight
decrease in median current speed was observed for classes 2 and 3—small and medium
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sinuous SSBs—when comparing them with classes 0 and 1—large and medium straight
SSBs (Figure 7C–F). Therefore, the increase in sinuosity observed for the medium and small
sinuous SSBs is not due to an increase in current speed, rather this increase in sinuosity
is a result of the superimposition of one or more sets of bedforms onto another. Large
straight SSBs represent the most linear SSBs that occur in regions of local unidirectional flow.
Furthermore, the unidirectional flow denoted by this category is supported by the clear
bimodality of the current flow orientations acquired for these SSBs at ≤200 m proximity
to the “mounds” (Figure 8B). Few intermediate current flow orientations occur between
these two modes, indicating the presence of two dominant current regimes, one flowing
to the north-north-east, and the other flowing to the north-north-west. This bimodality
is not detected at ≤200 m proximity to the “mounds” for any of the other SSB categories.
Hence, this suggests an increase in interference between the two dominant current regimes
for each of the remaining categories. Moreover, this interference is most pronounced in
the small and medium sinuous SSBs, where SSBs exhibit a greater level of sinuosity and
thus, a greater degree of SSBS superimposition. Class 4—medium obstructed SSBs—are
SSBs adjacent to CWC mounds, whose wave heights are reduced due to the obstruction in
current flow created by the CWC mounds. Consequently, these SSBs consistently have the
lowest median current speed (Figure 7C–F).

Table 4. Reconciliation of k-means classes to environmental categories complete with a brief
interpretation.

K-Means Class Category Interpretation

0 Large straight SSBs Elongate parallel SSBs formed due to consistent
unidirectional flow.

1 Medium sinuous SSBs
Truncated parallel SSBs formed due to consistent

unidirectional with an increase in bedform
superimposition.

2 Small sinuous SSBs

Sinuous crests with the smallest areal extent
whose profile formed due to bedform

superimposition rather than increased local
current speeds.

3 Medium sinuous SSBs

Sinuous crests with a moderate areal extent, this
class represents the bedforms with the highest

degree of interference between the two dominant
current regimes.

4 Medium obstructed SSBs

Profoundly influenced by the obstruction of the
current flow induced by the CWC mounds,

causing a significant reduction in their wave
height relative to the other classes.

4.2. Regional, Local and Micro Hydrodynamics

This study site occurs between 941 and 1006 m depth which is within the MOW
water mass which generates northerly flowing contour currents that are influenced by tidal
rectification processes [47,49,51]. Dorschel et al. [51] observed north-north-west migrating
sediment waves to the east of the nearby Galway Mound postulated that the regional
geostrophic contour currents were chiefly responsible for their formation. Given that the
north-north-west aligned currents observed here align with these findings, the associated
bedforms are considered to have a similar origin. However, this does not explain the clear
presence of a north-north-east current regime within this region. The density of distribution
of each of the SSB categories can be used as a surrogate for the consistency of local current
flow. An increase in the density of medium and small sinuous SSBs can be found to the
east and north-east of the study site, this increase implies an increase in the inconsistency
of the current flow within this portion of the site. Moreover, this increase occurs as the site
approaches the margin of the blind channel (Figure 1A), suggesting that the topographical
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effects of the channel margin cause this disruption. Consequently, the north-north-east
aligned flow may be due to the local topographical steering of the contour currents by
the channel margin. Additionally, the presence of the large linear SSBs to the north-west
of the study site coincides with the centre of the channel and may signify a decrease in
the disruption of the contour currents, leading to more consistent unidirectional flow
(Figure 8F). This is also supported by the larger proportion of north-north-west aligned
large linear SSBs to the west of the region. This local increase in unidirectional flow to
the north-west of the study site also corresponds with the greatest density of mounds
reported by Lim et al. [14], suggesting that this type of flow is more favorable for CWC
growth. This may explain the decrease in mound density to the east of the site, where
greater disruption of currents occurs. Therefore, the interaction of the regional MOW tidally
influenced contour currents coupled with the local topographical steering by the blind
channel may be the cause of the bimodal distribution of current flow direction.

A change of >7◦ in median current direction is observed for both dominant current
regimes when comparing the orientations of the current flow acquired within ≤25 m of
the “mounds” and ≤200 m to the “mounds” for large linear SSBs and small sinuous SSBs
(Figure 8A,B,E,F). This suggests that current flow for both current regimes is refracted as it
approaches the “mounds” thus, demonstrating topographic steering that is proximal to the
“mounds” where topographical steering occurs on a micro scale directly surrounding the
“mounds”. Nevertheless, this topographic steering is not as apparent when observing the
smaller coral mounds, suggesting larger mounds have a more profound influence on the
current regime, this is in agreement with the analysis conducted by Lim et al. [14].

In addition to the current orientation, a bimodal distribution of the current speed
values is also evident (Figure 6A). The >0.40 m·s−1 FG mode is significantly lower than the
≤0.40 m·s−1 SG mode suggesting that these higher current speeds are locally intensified
currents and are not indicative of the prevailing regional current speed. While the mean
value for current speed procured for the entire “crest” class may not adequately reflect the
overall current speed distribution observed in Figure 6A, it is similar to previous regional
current speed estimations for this and nearby areas [14,51]. Moreover, this mean value
may demonstrate how current speed estimations derived from a single or limited sediment
samples can be misleading and therefore, not a reflection of the significant spatial variations
in local current speeds.

4.3. Mound Proximity and SSB Characteristics

The presence of the “moats” surrounding the larger “mounds” illustrates intensive
scouring, forming a comet and tail morphology, and is postulated to occur due to high
intensity, low frequency north–south cold water cascade events [14]. However, when
examining the BPI25 bathymetric derivative layer, we can see that the tails alter direction
with movement towards the east and north-east of the study site (Figure 10). This change
in tail orientation coincides with the increase in density of medium and small sinuous
SSBs, indicating an increased disruption of current flow potentially attributable to the local
topographic steering imprinted by the approach to the channel margin [26]. The resulting
current flow would become more aligned with the CWCs occurring on slopes orientated to
the SW, exposing the CWCs on slopes orientated to the NE to more erosive conditions that
are unfavorable to CWC growth. Conversely, a consistent reduction in the median current
speed is observed with increasing proximity to the mounds for each of the SSB categories.
For instance, the lowest current speeds for each SSB category for the north-north-west
aligned “crests” are found within ≤25 m of the “mounds”. This is consistent for the SG
and the FG “crests” except for the FG medium obstructed SSBs. Additionally, the declining
proportion of FG SSBs with increasing proximity to “mounds” for the north-north-west
SSB orientation further indicates the deceleration of current speed.
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Figure 10. BPI25 bathymetry derivative layer displaying the intense scouring as negative topographic
features surrounding the CWC mounds forming a comet and tail morphology.

However, the decline of current speed is not equal across the two dominant current
orientations. What is evident is a slight decline in the current speed values for the SG and
FG SSBs orientated to the north-north-east, however this decline is not as significant as those
orientated to the north-north-west. Moreover, the proportion of FG SSBs orientated to the
north-north-east remain relatively consistent with proximity to the “mounds”. Suggesting
that the currents originating from the south-south-west are not impeded as much as their
south-south-eastern counterparts. This direction specific obstruction may be influenced by
the intensely scoured moats, causing increased erosion of CWC framework, and removing
a portion of the obstruction that they provide on north-east aligned slopes. These findings
are reflected by Conti et al. [26] who note that live coral framework mainly occur on the
north of Piddington Mound across two main slope orientations, at 300◦ and 70◦, with most
of the live coral framework occurring on slopes with an orientation of 300◦. The diminished
presence of CWCs on the north-eastern side of the Piddington Mound may indicate that
the conditions imposed by the postulated cold water cascade events may prevent effective
growth of CWCs for slopes with this orientation or that regular current speeds are too
high for corals to thrive. The reported mean slope value of 300◦ is shallower than the
north-north-west current flow direction derived at ≤200 m from the “mounds” for all SSB
categories. However, the slightly shallower median direction of the current flow observed
at ≤25 m to the “mounds” suggests that currents slow down and alter direction upon
approach to the “mounds”. These micro scale topographic steering forces imprint a better
alignment with the live coral framework. Moreover, the slower current speeds proximal to
the “mounds” encourage better conditions for food capture (Figure 8A–J).

4.4. Implications

Lim et al. [15] demonstrated the use of acoustic Doppler current profiler (ADCP)
derived hydrodynamic data in augmenting the interpretative capabilities of high resolution
semi-automated classification of CWC environments. Here, we have provided a means of
estimating the current speed from bathymetric data without the use of ADCP instrumenta-
tion that is largely congruent with their findings. Furthermore, ADCP deployment offers
the opportunity for finer calibration of this technique, enabling the direct extrapolation of
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knowledge deduce from ADCP current data from individual points to entire bathymetric
mosaics. Future research could focus on implementing this strategy to provide a more
robust current speed estimation. The OBIA morphological characterisation employed with
this classification scheme has been proven to be robust to significant disparities in spatial
resolution, making this technique flexible to a wide range of scales [61]. Such properties
render this technique an essential mechanism to produce multi scale seabed habitat maps
for MPA management and monitoring, logistics for offshore physical infrastructure [25].

On a broader scale, the method described can be used to quickly derive objective,
allogenic environmental information from bathymetric data. This can subsequently be
used in maritime industrial development, environmental impact assessments as well as
preliminary desktop studies. With large scale datasets now readily available, such methods
can simply be applied by non-experts. Digital elevation models (DEMs) and sedimentary
bedforms are not unique to the marine realm and as such, the workflow presented here
could be used to integrate terrestrial DEM data, promoting the potential of a seamless
geomorphological habitat map [89]. Furthermore, such workflows could be applied to
extraterrestrial settings, where seafloor bedforms provide an excellent analog for thick
atmosphere environments [90].

5. Conclusions

This research has established the first OBIA workflow that can provide an indication
of the consistency, direction, and velocity of the hydrodynamic regime directly above
the seafloor solely using MBES bathymetry data. Our findings have wide applications
but are used here to report that CWC growth in the downslope Moira Mounds area
was shaped by regional north-north-west aligned geostrophic contour currents induced
by the MOW that were influenced themselves by local and micro topographic features.
Local topographic steering resulted in the disruption of the contour current flow with
approach to the channel margin, resulting in the presence of a bimodal distribution of
current flow direction throughout the area. This bimodal current direction corresponds
with the two predominant CWC slope orientations found within the region [26]. Moreover,
geomorphological characterisation of the SSBs provided a proxy to define regions of
consistent unidirectional flow. Previous observations on CWC mound spatial density
within this region indicates that the CWC mounds occur in the greatest densities in regions
with consistent unidirectional flow [14]. While micro topographic steering forces resulted in
the decrease of current speeds with increasing proximity to the CWC mounds. Furthermore,
these micro topographic steering forces imprinted a current direction that was more aligned
with CWC occurring on slopes facing away from the prevailing current direction, congruent
with findings acquired in other CWC mound regions. These results underline the capacity
of this approach to derive qualitative data on hydrodynamic regimes on the seabed surface
with minimal sampling requirements. Additionally, this technique can be reconciled with
current measurements taken from in situ monitoring equipment such as ADCPs to ensure
a more effective hydrodynamic regime appraisal.
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