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Abstract: Sensors onboard satellite platforms with short revisiting periods acquire frequent earth
observation data. One limitation to the utility of satellite-based data is missing information in the time
series of images due to cloud contamination and sensor malfunction. Most studies on gap-filling and
cloud removal process individual images, and existing multi-temporal image restoration methods
still have problems in dealing with images that have large areas with frequent cloud contamination.
Considering these issues, we proposed a deep learning-based method named content-sequence-
texture generation (CSTG) network to generate gap-filled time series of images. The method uses
deep neural networks to restore remote sensing images with missing information by accounting for
image contents, textures and temporal sequences. We designed a content generation network to
preliminarily fill in the missing parts and a sequence-texture generation network to optimize the
gap-filling outputs. We used time series of Moderate-resolution Imaging Spectroradiometer (MODIS)
data in different regions, which include various surface characteristics in North America, Europe and
Asia to train and test the proposed model. Compared to the reference images, the CSTG achieved
structural similarity (SSIM) of 0.953 and mean absolute errors (MAE) of 0.016 on average for the
restored time series of images in artificial experiments. The developed method could restore time
series of images with detailed texture and generally performed better than the other comparative
methods, especially with large or overlapped missing areas in time series. Our study provides an
available method to gap-fill time series of remote sensing images and highlights the power of the
deep learning methods in reconstructing remote sensing images.

Keywords: gap-filling; data reconstruction; content generation; sequence-texture generation; deep
learning

1. Introduction

The rapid development of remote sensing technology provides abundant earth obser-
vation images at varied spectral, spatial, and temporal resolutions and promotes a broad
range of applications, such as land cover and land use classification [1,2], map vector-
ization [3], land surface phenology monitoring [4,5], and natural disaster modeling [6,7].
Multispectral imaging sensors that typically operate in a few spectral bands ranging from
visible, near infrared, and shortwave infrared wavelengths are common among a variety
of remote sensing sensors, as the multispectral imaging system acquires the images of
the earth’s surface by detecting solar radiation reflected from targets on the ground. The
utility of multispectral images is limited by large amounts of missing information in the
remote sensing data due to cloud contamination and sensor malfunction [8]. Restoring
missing information and gap-filling for remote sensing images help provide continuous
and consistent data for downstream applications.
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A number of methods for image gap-filling have been developed in studies. One
approach is to apply image inpainting techniques to individual remote sensing images
with gaps. Studies have developed image inpainting techniques, such as homomorphic
filtering [9], linear histogram matching [10], and other transformation methods, to enhance
the weak information in the images due to cloud contamination. These methods are useful
to recover land surface information influenced by thin clouds, but they encounter difficulties
in areas covered by thick clouds and often generate blurred images. There are also image
inpainting techniques that aim to recover missing pixels in the images by accounting
for contextual information [11], such as similar pixel interpolator [12], ordinary kriging
and co-kriging techniques [13,14], Markov random field model [15], and total variational
method [16]. Recently, Wang et al. [17] developed an interpolation method based on space-
spectral radial basis function to recover missing band information in Landsat ETM+ images.
These techniques are able to reconstruct the images influenced by thick clouds in a relatively
small area but often have difficulties in images with considerable missing data.

Another approach is to use supplementary information such as multi-spectral and/or
multi-temporal information for image gap-filling [18]. The idea underlying the multispectral-
based methods is to develop a model that reflects the relationship between contaminated
band data and supplementary data from cloud-insensitive bands in multi-spectral images
or from cloud-free images acquired at a similar time by the other sensors. For example,
the cirrus band in Landsat 8 has been widely used to remove noise, such as haze and
clouds [19,20]. Zhang et al. [21] developed the algorithm of haze optimized transformation
to account for different band sensitivities to clouds and then removed cloud noise using a
virtual cloud point method. Gladkova et al. [22] combined the histogram matching method
and the local least square method to reconstruct the missing band 6 data from the band 7
data in MODIS-Aqua images. In recent years, the approaches of multi-sensor data fusion
have been developed for image recovery [23,24]. Remote sensing images from sensors
such as MODIS, Landsat 8, and Sentinel have been used in data fusion to fill the missing
data in Landsat ETM+ images. Roy et al. [25] proposed a semi-physical fusion method
that combined MODIS and Landsat images to remove the effects of cloud contamination
from the Landsat ETM+ images. Moreno-Martínez et al. [26] developed a time-adaptive
reflection fusion model by using a bias-corrected Kalman filter method to fuse Landsat with
MODIS data. By comparison, the multi-temporal-based methods utilize images acquired
by the same sensor but at different times as supplementary information to restore images
with gaps or cloud [27]. There are a variety of techniques to replace cloudy pixels in images
with cloud-free pixels from multi-temporal images [28]. The algorithm of neighborhood
similar pixel interpolator [29] used images acquired at similar dates to search for pixels
with similar reflectance and make predictions of the missing data. The multi-temporal
weighted linear regression model [30] combined multi-temporal reference information and
the non-reference regularization algorithms to predict missing values in Landsat ETM+
images. Although both multispectral-based and multi-temporal-based methods could
achieve image gap-filling and remove thick clouds, both rely on supplementary images,
which are often not available.

Accompanying the rapid development in computer sciences, the deep learning-based
methods based on sophisticated neural networks have been developed and widely applied
to reconstruct images with missing data. Goodfellow et al. [31] proposed the Generative
Adversarial Nets (GAN) based on a game learning strategy for reconstructing natural
images, where the generative networks randomly generate the missing parts in an image
and the discriminant networks evaluate the generated results. GAN is widely used for
reconstructing face pictures and landscape images [32,33]. As the models for reconstructing
natural images continued to blossom, scholars used the deep learning methods to recon-
struct remote sensing images. Chen et al. [34] combined multi-temporal methods with
convolutional neural networks (CNN) to remove thick clouds in ZiYuan-3 satellite data.
Zhang et al. [35] proposed a progressive spatiotemporal patch group learning framework
that is able to recover several multi-temporal images at the same time. Li et al. [36] devel-
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oped the Convolutional-Mapping-Deconvolutional Network using both optical and SAR
images to realize thick cloud removal. Although the proposed framework made progress
in restoring multi-temporal remote sensing images using deep learning approaches, there
is room for improvements as the restored images are prone to blurring and become inaccu-
rate when large areas have thick cloud covers or when multi-temporal images have large
overlapping areas with missing data.

Aiming at addressing the above-mentioned limitations, we propose a content-sequence-
texture generation (CSTG) network, which is based on a deep learning reconstruction
method that accounts for restoring the content, temporal sequence, and spatial texture of
images. The goal of this study is to design and evaluate the method that consists of two
networks (i.e., a content generation network and a sequence-texture generation network)
for recovering time series of remote sensing images with missing data. Different from most
recovery methods that rely on multi-temporal information, we aim to develop a method
that allows for reconstructing time series of remote sensing images simultaneously, even
if there are no completely cloud-free images in the time series. The idea for the proposed
deep learning network is to consider content consistency, texture details, and sequential
trend information and apply both spectral loss and structure similarity loss to improve
the accuracy of image reconstruction. Compared to existing methods, we aim to develop
robust methods to process time series of images even with large missing areas and/or
overlapped clouds on multi-temporal images.

2. Study Materials

Moderate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua
satellite platform provides near-daily global coverage of land surface observations. Due to
cloud contamination and weather conditions, daily MODIS data have serious quality issues,
and thus the MODIS science team develops and offers 8-day or 16-day composite MODIS
products, which largely reduce low-quality data. There are still considerable gaps and
missing data in the time series of MODIS products, making it an ideal case for gap-filling
and missing information recovery studies. We used both the 500-m 8-day composite surface
reflectance data of MOD09A1 and the 250-m 16-day composite vegetation index data of
MOD13Q1 for studies. We used surface reflectance data in the red, blue, and near-infrared
bands from both products.

The gap-filling methods were conducted to training, validate, and test at the areas
of Asia, Europe, and North America in the northern hemisphere (Figure 1). Each study
dataset has an image size of 400 × 400 and the images have high-quality observations in
the time series. The data with blue segments were applied to train the model and the data
with green segments were used for model validation. We used the data with red segments
of A–F and a whole tile image with a pink segment for model testing.

Study area A crosses the borders of Russia and Ukraine. It has a temperate continental
climate with distinctive seasonal surface changes. The images used from MOD09A1 were
acquired on 30 September and 8 October in 2020. Study area B is situated in the central
part of Poland. The area contains several land cover types such as buildings, rivers, and
vegetation. The images from MOD09A1 were acquired on 26 February and 29 August in
2019. Study area C is located along the Atlantic coast in the northeastern United States. The
data from MOD09A1 were acquired on 26 February, 22 March, 23 April, and 17 November
in 2016. Study area D crosses the border between China and Myanmar. Most of the study
areas are located in Yunnan in China with a small area that covers the northeastern portion
of Myanmar. The data from MOD13Q1 were acquired on 2 February, 5 March, 31 October, 16
November, and 18 December in 2019. Study area E comes from the entire tile (4800 × 4800)
of H27V06 in MOD13Q1 acquired on 25 June in 2019. The H27V06 tile covers southwestern
China, Hanoi, Laos, Thailand, and northern Myanmar. The remote sensing images in
this area are prone to cloud contamination in summer due to the influence of monsoon
climate. The area with cloud contamination in the study image exceeds two-third of the
entire image, representing a challenging case for gap-filling. Study area F is located near
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the Pearl River estuary. The study images from MOD09A1 were acquired on 18 February,
21 March, 22 April, 15 October, and 24 November in 2020. There are lush vegetation and a
wide variety of species in the study area with a subtropical monsoon climate. The climate
is hot and humid, making it suitable for testing the ability of the models. All the products
we used in this research are listed in Table 1.
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Figure 1. The spatial distribution of the study areas and the study data.

Table 1. MODIS product (MOD09A1 and MOD13Q1) instances in this study.

Data Usage Site Location MODIS Tile ID Product Type Longitude and Latitude Date Ranges

Training data

North America H12V04 MOD09A1 74.315◦W–79.478◦W,
39.927◦N–41.615◦N

1 January 2016–31
December 2016

Europe H19V03 MOD09A1 15.667◦E–19.12◦E
51.068◦N–52.737◦N

Asia

H27V05 MOD09A1 107.888◦E–112.234◦E
32.985◦N–34.674◦N

H27V05 MOD09A1 111.881◦E–116.068◦E
31.808◦N–33.485◦N

H27V06 MOD13Q1 98.310◦E–99.71◦E
21.793◦N–22.476◦N

Validation data

North America H12V04 MOD09A1 80.721◦W–85.922◦W
41.004◦N–42.686◦N 1 January 2017–31

December 2017
Europe H19V03 MOD13Q1 25.503◦E–27.437◦E

54.832◦N–55.658◦N
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Table 1. Cont.

Data Usage Site Location MODIS Tile ID Product Type Longitude and Latitude Date Ranges

Test data

North America H12V04 MOD09A1 71.618◦W–75.790◦W
41.251◦N–42.615◦N

10 June 2017, 18 July 2017,
29 August 2017,

30 September 2017,
16 October 2017

Europe

H19V03 MOD09A1 18.404◦E–20.379◦E
51.252◦N–52.915◦N

16 September 2020–14
October 2020

H20V03 MOD09A1 34.639◦E–36.013◦E
50.002◦N–51.665◦N

12 February 2019–12
March 2019,

29 August 2019

Asia

H27V06 MOD13Q1 99.366◦E–99.986◦E
22.801◦N–22.632◦N

2 February 2020,
5 March 2020,

31 October 2020,
16 November 2020,
18 December 2020

H27V06 MOD13Q1 103.088◦E–106.084◦E
20.002◦N–29.167◦N 11 June 2019–9 July 2019

H28V06 MOD09A1 113.367◦E–113.775◦E
22.152◦N–22.632◦N

18 February 2020,
21 March 2020,
22 April 2020,

15 October 2020,
24 November 2020

We divided the test data into two categories (artificial dataset and observed dataset)
to assess the performance of the developed network. The artificial dataset is the cloud
data derived from original cloud-free images preprocessed by artificial masks and is used
to compare the reconstruction results with the original images quantitatively to assess
the model’s accuracy. The observed dataset is original images contaminated by clouds,
for demonstrating the practical ability of the model. Each category was applied to two
time steps: individual image and time series of images at regional or large-scale missing
area, respectively.

3. Methodology

To address the limitations associated with methods in previous research, we proposed
a gap-filling and image recovery method for a time series of images based on a network
of content-sequence-texture generation. The overall flowchart of the proposed method
is shown in Figure 2. In the training process, we chose several cloud-free images with
time series information and cut them into patches, which were considered as target data.
We added masks with random positions and sizes into the cloud-free patches and filled
in the mask areas with random spectral noise as the network input. When conducting
model testing, we stacked the time series images for restoration and excluded pixels with
clouds and/or poor qualities in the images based on quality control data. Time series
images were then split into smaller patches. The image patches were put into a content
generation network to fill gaps initially and obtain general content. And a sequence-texture
generation network was used to refine the texture details in order to reduce the texture
and spectral differences. After mosaicking gap-filled patches into the generated maps, the
corresponding pixels in the generated maps were selected to replace the mask areas in the
original images. The high-quality, gap-filled images are generated as follows:

Rh = R� (1−M0) + R0 �M0 (1)

where Rh denotes the final high-quality result, R denotes feature maps generated by CSTG
network and R0 represents the original image after poor-pixel masking. M0 denotes the
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corresponding quality map of R0. In the quality map M0, zero represents poor quality
and one represents high quality. � denotes the point multiplication operation between
two matrices.
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3.1. Data Quality Evaluation and Preprocessing

To fill gaps in remote sensing images, it is necessary to determine the pixels and
areas that are contaminated by clouds or have low quality. There are various methods for
detecting low-quality data in the products derived from different sensors. For instance,
FMask [37] and MSCFF [38] algorithms have been used to extract the masks of clouds
from Landsat and Sentinel data, respectively. The MODIS products provide a layer of
state flags, which consists of binary codes to represent the quality of observations for each
pixel. Although the quality control data in the MODIS products are helpful to extract
pixels with poor qualities, there are often cloudy pixels that are missed in the quality
control data. As the reflectance of clouds in visible bands is much higher than that of other
objects, we conservatively masked out the pixels with reflectance more than 0.25 in the
visible bands. To reduce speckle noise, we expanded the masks using the method of 5-pixel
morphological dilation. Then we filled in masked areas with random noise, which follows
normal distribution with the same mean value and variance as high-quality surrounding
areas. The random noise helps enhance spectral information in the original image and can
be written as:

V ∼ N (µ,σ2 ) (2)

where V denotes a set of random variables for filling in masked areas; µ and σ2 are the mean
value and the variance of the normal distribution, respectively, and can be calculated as:

µ =
∑(x,y)/∈M r(x,y)

w · h−m
(3)

σ2 =
∑(x,y)/∈M (r(x,y)−µ )

2

w · h−m
(4)

where r(x,y) denotes the surface reflectance of the pixel located at the coordinates (x, y);
w and h denote the weight and the height of the image, respectively; M denotes the
aggregation of all masked pixels, and m denotes the total number of masked pixels.
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3.2. The Content Generation Network

The content generation network as shown in Figure 3 is used to initially fill the gaps in
the images based on supplementary information from the other images in the time series.
It consists of three components: multi-scale feature extraction module, feature encoding
module, and decoding module. Typically, the convolution kernel sizes are small. Odd
integer values make them convenient for use as a padding strategy and make it easy to
locate the output pixels. We set the kernel sizes of three, five and seven, respectively,
to perform the multi-scale feature extraction for each image in the time series. After
concatenating extracted features, a network structure that is similar to the auto-encoder
was constructed to fill in the missing area of the images. We encoded multi-scale features
using a MaxPooling layer to compress the input size and increase the receptive field while
retaining as many detailed features as possible. Several convolution blocks, of which each
was composed of a convolution layer, a batch normalization layer (BN), and a rectified
linear unit (ReLU), were designed to extract features. Then we concatenated features from
each time step in the channel dimension. We employed decoding with several convolution
blocks and an UpSampling layer to ensure that the feature maps have the same size as the
input maps. All the features were compressed into a feature group with a series of feature
maps, and the number of feature maps was equal to the summary of the bands in the input
time series. Studies have proved that loss functions with considerations on both global
and local scales may have good performance on cloud removal [35]. The loss function of
the content generation network is defined based on root mean squared errors (RMSEs)
between the output feature maps and the target maps, which refer to the high-quality input
data before masking randomly.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 23 
 

 

3.2. The Content Generation Network 

The content generation network as shown in Figure 3 is used to initially fill the gaps 

in the images based on supplementary information from the other images in the time se-

ries. It consists of three components: multi-scale feature extraction module, feature encod-

ing module, and decoding module. Typically, the convolution kernel sizes are small. Odd 

integer values make them convenient for use as a padding strategy and make it easy to 

locate the output pixels. We set the kernel sizes of three, five and seven, respectively, to 

perform the multi-scale feature extraction for each image in the time series. After concat-

enating extracted features, a network structure that is similar to the auto-encoder was 

constructed to fill in the missing area of the images. We encoded multi-scale features using 

a MaxPooling layer to compress the input size and increase the receptive field while re-

taining as many detailed features as possible. Several convolution blocks, of which each 

was composed of a convolution layer, a batch normalization layer (BN), and a rectified 

linear unit (ReLU), were designed to extract features. Then we concatenated features from 

each time step in the channel dimension. We employed decoding with several convolution 

blocks and an UpSampling layer to ensure that the feature maps have the same size as the 

input maps. All the features were compressed into a feature group with a series of feature 

maps, and the number of feature maps was equal to the summary of the bands in the input 

time series. Studies have proved that loss functions with considerations on both global 

and local scales may have good performance on cloud removal [35]. The loss function of 

the content generation network is defined based on root mean squared errors (RMSEs) 

between the output feature maps and the target maps, which refer to the high-quality 

input data before masking randomly. 

 

Figure 3. The structure of the content generation network proposed in this study. 

The loss function consists of both global loss and local loss as follows: 

𝐿𝑐 = 𝐿𝑙𝑜𝑐𝑎𝑙 + 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 (5) 

Global loss refers to RMSEs calculated for the entire image patches, and local loss 

refers to RMSEs calculated for the masked areas in the image patches. Global loss helps 

improve global consistency of the generated feature map and local loss helps improve 

local consistency of the recovered area. The equations for global and local losses are as 

follows: 
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The loss function consists of both global loss and local loss as follows:

Lc = Llocal + Lglobal (5)

Global loss refers to RMSEs calculated for the entire image patches, and local loss
refers to RMSEs calculated for the masked areas in the image patches. Global loss helps
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improve global consistency of the generated feature map and local loss helps improve local
consistency of the recovered area. The equations for global and local losses are as follows:

Lglobal =

√√√√∑
(w,h)
(x,y)=(0,0) (p(x,y) − r(x,y) )

2

w · h (6)

Llocal =

√
∑(x,y)∈M (p(x,y) − r(x,y) )

2

m
(7)

where Lc denotes the total loss of the content generation network; Lglobal and Llocal denote
global loss and local loss, respectively; w and h denote the weight and the height of an
image patch, respectively; m denotes the total number of the mask pixels; M denotes the
set of mask pixels; p(x,y) denotes the predicted surface reflectance in the output feature
maps of the pixel located at the coordinates x and y; and r(x,y) denotes the observed surface
reflectance in the target maps of the pixel located at the coordinates x and y.

3.3. The Sequence-Texture Generation Network

The sequence-texture generation network accounts for changes in the time series of
images at the same position and the texture characteristics of neighbor pixels for missing
information recovery. The core idea of the network is to learn spectral change information in
the time series with recurrent neural networks (RNN) and contextual information from the
neighboring cloud-free areas with convolutional neural networks (CNN) and further enrich
the spatiotemporal information in the feature map obtained by content generation. LSTM-
CNN is used as the model structure (Figure 4a). In the model structure, ConvLSTM [39] is
used to extract time series features of the input images. LSTM is a deep learning network
that is suitable for tackling sequential problems with regular time intervals [40]. ConvLSTM
inherits the long-term memory functions and sequence modeling advantages of LSTM
which could catch information from previous time steps. The main difference between
ConvLSTM and LSTM is the dimension of the input data. The input of LSTM is one-
dimension data, which makes it difficult to deal with spatial-temporal images or videos,
while ConvLSTM expands the dimension of the input data into three to solve this problem.
Another improvement is that ConvLSTM uses convolution operation to calculate the cell
output and the hidden layer state, instead of single matrix multiplication used in LSTM.
Figure 4b illustrates the internal structure of a ConvLSTM cell at a given time step. The cell
runs through three self-parameterized controlling gates, i.e., input gate (it), forget gate (ft),
and output gate (ot), and these are calculated as follows:

it = σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci ◦ Ct−1 + bi) (8)

ft = σ
(

Wx f ∗ xt + Wh f ∗ ht−1 + Wc f ◦ Ct−1 + b f

)
(9)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wco ◦ Ct−1 + bo) (10)

The cell output Ct and the hidden state ht can be calculated as:

Ct = ft ◦ Ct−1 + it ◦ tan h(Wxcxt + Whcht−1 + bc) (11)

ht = ot ◦ tan h(Ct) (12)

where xt denotes the input at time step t; Ct−1 denotes the output of the past cell; ht−1
denotes the past hidden states; W and b are the different weights and bias in the input gate,
the forget gate, the output gate, and the cell output; ◦ and ∗ denote the convolution operator
and the Hadamard product, respectively. In general, the unit at time step t receives both cell
status and outputs from the unit at the previous time step, and passes both the cell status
and outputs to the unit at the next time step, thereby forming a time sequence memory.
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ConvLSTM cell.

A CNN with a residual connection structure was used for texture generation. The
residual connection structure breaks the symmetry of CNN and helps pass detailed infor-
mation to the decoding layers such that it improves the representation of the deep network.
The networks described above are able to generate gap-filled maps with continuous spectral
reflectance and detailed texture.

The loss function for the sequence-texture generation network consists of both spec-
trum (SPE) loss and structural similarity (SSIM) loss, which is calculated as:

Lt = LSPE + λLSSIM (13)

where Lt, LSPE, and LSSIM denote the overall loss, spectrum loss, and structural similarity
loss, respectively. λ is a balanced parameter that is empirically set to 0.01. The SPE loss is
defined based on RMSE as the sum of global loss and local loss:

LSPE = Lglobal + Llocal (14)

SSIM accounts for the similarity of brightness, contrast, and structure of two images,
whereas the loss function is defined as follows:

LSSIM = 1−
(2p · r + c1)

(
2σpr + c2

)(
p2 + r2 + c1

)(
σp2 + σr2 + c2

) (15)

where p and r denote the mean values of the output feature maps and the target maps,
respectively; σp, σr, and σpr denote the variance of the output, the variance of the target, and
their covariance, respectively; and c1 and c2 denote two different equilibrium parameters.

4. Experiment Design
4.1. Model Training and Setup

We normalized each group of training datasets and cut them into small patches with a
window size of 32× 32. The cropping stride was set to 20, such that the patches overlapped.
The generated patches were augmented in five directions, i.e., the patches were rotated
90◦, 180◦, and 270◦, respectively and flipped both vertically and horizontally. We obtained
24,000 groups of training patches and 4800 validation patches for the content generation
network training. Holdout validation was used to evaluate the model performance during
the training process. Different from cross validation, hold out procedure means the training
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set and the validation set are independent and have no intersection with each other. In
our study, we chose seven different study areas, five for making a training set and two
for a validation set. In each epoch, we added masks with random positions and sizes to
multi-temporal patches and filled with spectral noise. When we finished each training
epoch and obtained the model, the validation data is fed into the model to evaluate the
model performance on the data set that is completely different from the training data.

We generated 20 sets of cloud masks with random positions and radiuses and added
the masks to sequential patches. After filling gaps using the content generation network,
we obtained 20 sets of data for sequence-texture generation, of which 16 were used as the
training datasets, and the remaining four were used as the validation sets. We cut the
training datasets into 32 × 32 patches and augmented the data by rotating and flipping.
Finally, 38,400 groups of training patches and 9600 groups of validation patches were
generated for the sequence-texture generation network.

The networks were implemented based on the Tensorflow framework using the
Adam [41] adaptive optimization method for training, which were conducted on the
Ubuntu 18.04.2 system (published by Canonical in 26 April 2018 in London, England)
equipped with NVIDIA RTX 2080Ti GPUs. The initial learning rate for the content gen-
eration network and the sequence-texture generation network were set as 0.0005 and
0.001, respectively, and the attenuation coefficients were both set as 0.8 at the intervals of
500 epochs. We trained each network with 1000 epochs and eventually selected the model
with the lowest validation loss as the final model for testing.

4.2. Model Comparisons

We also introduced several existing methods designed for other remote sensing prod-
ucts to compare the results, including weighted linear regression (WLR) proposed by
Zeng et al. [30], spatial-temporal-spectral (STS) joint CNN developed by Zhang et al. [42],
Chen’s method [34], and Zhang’s method [35]. Among these methods, WLR is designed
for Landsat ETM+ SLC-off imagery; STS and Zhang’s method are generally applied in
Landsat and Sentinel-2 data; and Chen’s method is for ZY-3 image reconstruction. All of
them were applied in this research to restore artificial missing areas and conduct gap-filling
for individual images.

The WLR used a linear relationship to derive missing values from locally similar
pixels. It selected similar pixels according to a searching window and accounted for both
spatial and spectral differences to calculate the weights of each similar pixel. The WLR
also used a regularization method to deal with the situation when available reference
images were not sufficient. The method has been packaged into executable software (http:
//sendimage.whu.edu.cn/send-resource-download/ (accessed on 3 November 2016)) and
has proven its performance on artificial and observed Landsat SLC-off ETM+ images.

The STS combines spatial-temporal-spectral joint information to construct a deep
CNN and applies multi-scale feature extraction units to obtain context information. Dilated
convolutional layers were used to enlarge the receptive field, and skip connections were
used to transfer the information from the previous layer. Studies have found the method
could perform well on reconstructing both SLC-off ETM+ and Terra MODIS band 6 data.

The method developed by Chen et al. used one CNN to detect and mask cloudy areas
and another CNN to fill gaps based on content, texture, and spectral generation. The idea
was successfully used to recover ZY-3 multispectral and panchromatic images.

Zhang et al. took four steps to recover missing information in images, including multi-
temporal cloud detection, patch group stacking and sorting, deep learning recovering
model, and weighted aggregation and progressive iteration. The method developed by
Zhang et al. that combines both deep learning models and mathematical models performed
well on reconstructing the Landsat-8 and Sentinel-2 data.

As among above-mentioned methods, the WLR method focuses on recovering images
on the basis of statistics, and the other three comparison methods are mainly based on
deep learning. We retrained and predicted reconstruction results from three deep-learning-

http://sendimage.whu.edu.cn/send-resource-download/
http://sendimage.whu.edu.cn/send-resource-download/
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based models using the MODIS data. As WLR, STS and Chen’s method are designed for
individual image reconstruction, we chose a high-quality image as a reference to recover
cloudy images. As only Zhang’s method and the CSTG method can reconstruct multi-
temporal images simultaneously, we further compared them in reconstruction time series
of images.

4.3. Evaluation Metrics

To evaluate the method’s performance, we compared the surface reflectance in both
visible and near-infrared bands. Three evaluation metrics were used, i.e., the coefficient of
determination (R2), mean absolute error (MAE), and structural similarity index method
(SSIM). MAE is one of the most evaluative indexes that can explain the difference between
model simulation and ground truth value. SSIM is widely used to measure the similarity
between two images and can be regarded as an index to measure the quality of distorted
images. The metrics mentioned above are calculated as follows:

R2 = 1−
∑
(w,h)
(x,y)=(0,0) (p(x,y) − r(x,y))

2

∑
(w,h)
(x,y)=(0,0) (r(x,y) − r)2

(16)

MAE = 1
m (∑(x,y)∈M |p(x,y) − r(x,y) |) (17)

SSIM =
(2p · r + c1)

(
2σpr + c2

)(
p2 + r2 + c1

)(
σp2 + σr2 + c2

) (18)

where w and h denote the weight and the height of the image patch for testing, respectively;
M denotes the set of mask pixels and m denotes the total number of the mask pixels; p(x,y)
and r(x,y) denote predicted and observed surface reflectance for pixels located at the coordi-
nates x and y, respectively; p and r denote the mean values of the predicted data and the
observed data, respectively; σp, σr, and σpr denote the variance of prediction, the variance
of observation, and their covariance, respectively; c1 and c2 are equilibrium parameters.

5. Results
5.1. Experiments Based on Artificial Datasets

Figure 5 presents the recovery results of individual images using five different methods
when applying local and dispersive masks. Visually, the images recovered based on
WLR, Zhang’s method and our proposed CSTG method captured spectral and spatial
characteristics of the original image well (Figure 5d,g,h). There are no obvious boundaries
between the masked areas and their surroundings in the recovered images, and their results
are closer to the original image than the results derived from the other methods. STS has
the problem of texture blurring (e.g., the areas marked using yellow boxes in Figure 5e) and
Chen’s method suffers from the problem of spectrum inconsistency (e.g., the areas marked
by the yellow box in Figure 5f).

Figure 6 exhibits the recovery results of individual temporal images using five different
methods when applying a large and intensive mask. The images recovered by Zhang’s
method and CSTG (Figure 6g,h) are more consistent with original images than other
methods. Although WLR performs well at a small scale, it has the problems of over-
smoothing and missing texture details at a large scale (e.g., the yellow box in Figure 6d).
Both STS and Chen’s method appear to have the same problems as those in Figure 5.
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Figure 5. Comparisons of the observed images and the gap-filled images when applying small
and dispersive masks are shown for (a) the original image acquired on 30 September 2020, (b) the
image with artificial masks, (c) the supplementary image acquired on 8 October 2020, and the images
recovered by (d) WLR, (e) STS, (f) Chen’s method, (g) Zhang’s method, and (h) CSTG.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 23 
 

 

 

Figure 5. Comparisons of the observed images and the gap-filled images when applying small and 

dispersive masks are shown for (a) the original image acquired on 30 September 2020, (b) the image 

with artificial masks, (c) the supplementary image acquired on 8 October 2020, and the images re-

covered by (d) WLR, (e) STS, (f) Chen’s method, (g) Zhang’s method, and (h) CSTG. 

Figure 6 exhibits the recovery results of individual temporal images using five dif-

ferent methods when applying a large and intensive mask. The images recovered by 

Zhang’s method and CSTG (Figure 6g,h) are more consistent with original images than 

other methods. Although WLR performs well at a small scale, it has the problems of over-

smoothing and missing texture details at a large scale (e.g., the yellow box in Figure 6d). 

Both STS and Chen’s method appear to have the same problems as those in Figure 5. 

 

Figure 6. Comparisons of the observed images and the gap-filled images when applying a large and 

intensive mask are shown for (a) the original image acquired on 26 February 2019, (b) the image 
Figure 6. Comparisons of the observed images and the gap-filled images when applying a large and
intensive mask are shown for (a) the original image acquired on 26 February 2019, (b) the image with
artificial masks, (c) the supplementary image acquired on 29 August 2019, and the images recovered
by (d) WLR, (e) STS, (f) Chen’s method, (g) Zhang’s method, and (h) CSTG.
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Figure 7a shows the pixel-level error maps, which can reflect the mean reflectance
difference of each pixel between the reconstructed maps and the original images of each
band. According to the error maps, different methods tend to show miscalculation in similar
locations. In addition, there are less areas whose mean errors are over 0.02 (red spots in
Figure 7a) in WLR, Zhang’s method and CTSG compared with the other two methods.
Scatter plots related to both surface reflectance and normalized difference vegetation index
(NDVI) were also derived for the masked areas between the recovered images and the
original images. For the surface reflectance in four bands (Figure 7b), WLR, Zhang’s
method, and CSTG generated results that are consistent with the original images, where
the R2 values range from 0.944 to 0.954, the MAE values range from 0.012 to 0.025, and the
SSIM values range from 0.966 to 0.971, respectively. When comparing the NDVI values
between the original images and the images recovered using WLR, Zhang’s method, and
CSTG (Figure 7c), the R2 values range from 0.960 to 0.969, the MAE values range from
0.014 to 0.016, and the SSIM values range from 0.951 to 0.955, respectively. Both STS and
Chen’s method produce images that have slightly lower R2 and higher MAE with the
original images than the other three methods. When evaluating individual bands as shown
in Table 2, CSTG shows the best performance among the tested methods in Band 1, 2 and
4, where R2 ranges from 0.930 to 0.943, SSIM ranges from 0.950 to 0.958, and MAE ranges
from 0.008 to 0.024. Chen’s method shows higher SSIM at most bands and has higher
accuracy in Band 3 (R2 = 0.934, MAE = 0.005, and SSIM = 0.953). According to the metrics
of MAE, we found that all the methods show lower values in the visible bands (i.e., Band 1,
3, and 4) than in the near-infrared band (Band 2).
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Figure 7. Visualization maps of quantitative analysis between recovered and original values using
different methods at small and dispersive missing areas: (a) pixel-level error maps; (b) the regression
analysis of the normalized reflectance; (c) the regression analysis of the NDVI. In (b,c), the solid red
lines denote the regression lines and the dashed black lines denote the 1:1 lines.
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Table 2. The evaluation metrics for four individual bands in the masked areas between the original
images obtained from MOD09A1 and the images recovered using different methods. Small and
dispersive masks were applied to the original images. The values in bold are the best values for
each metric.

Methods
Band 1 Band 2 Band 3 Band 4

R2 MAE SSIM R2 MAE SSIM R2 MAE SSIM R2 MAE SSIM

WLR 0.925 0.011 0.948 0.933 0.024 0.950 0.925 0.006 0.938 0.915 0.008 0.943
STS 0.894 0.014 0.924 0.890 0.032 0.913 0.907 0.006 0.919 0.894 0.009 0.922

Chen’s 0.930 0.011 0.960 0.914 0.027 0.949 0.934 0.005 0.953 0.928 0.008 0.958
Zhang’s 0.915 0.012 0.946 0.928 0.025 0.949 0.919 0.006 0.938 0.908 0.008 0.941
CSTG 0.943 0.010 0.958 0.938 0.024 0.951 0.932 0.006 0.950 0.930 0.008 0.952

When applying a large and intensive mask, all methods show high similarity in surface
reflectance and NDVI between the original images and the recovered images (Figure 8 and
Table 3). In addition, it suggests in Figure 8a that Zhang’s method and CSTG provide error
maps with lower values in average. In particular, the map derived by CSTG has fewer
pixels with values over 0.02 than the other maps, showing a higher accuracy in prediction.
For surface reflectance in all bands, Zhang’s method and CSTG exhibit high similarity
between the original images and the recovered images, where R2 values are 0.979 and 0.982,
MAE values are 0.010 and 0.009, and SSIMs are 0.909 and 0.926, respectively. All models
show higher R2 values but lower SSIM values in surface reflectance when applying a large
and intensive mask than when applying small and dispersive masks. For individual bands,
nearly all models have higher recovery accuracy in the visible bands (Band 1, 3, and 4)
than in the near-infrared band (Band 2) as shown in Table 3. The bias in Band 2 reduce the
restored accuracy at the large scale. Among all methods, CSTG is able to restore images
with consistently high accuracies when applying both large and small masks.
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Figure 8. Visualization maps of quantitative analysis between recovered and original values using
different methods with a large and intensive mask area: (a) pixel-level error maps; (b) regression
analysis of the normalized reflectance; (c) regression analysis of the NDVI. In (b,c), the solid red lines
denote the regression lines and the dashed black lines denote the 1:1 lines.
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Table 3. The evaluate metrics between recovered reflectance values using different methods and
original reflectance values derived from MOD09A1 for single band at large missing areas. A large
and intensive mask was applied to the original images. The values in bold are the best values for
each metric.

Methods
B1 B2 B3 B4

R2 MAE SSIM R2 MAE SSIM R2 MAE SSIM R2 MAE SSIM

WLR 0.861 0.009 0.871 0.681 0.025 0.740 0.855 0.005 0.917 0.889 0.006 0.912
STS 0.813 0.012 0.863 0.794 0.020 0.848 0.765 0.007 0.831 0.787 0.008 0.874

Chen’s 0.783 0.012 0.897 0.813 0.023 0.783 0.875 0.004 0.930 0.868 0.007 0.921
Zhang’s 0.849 0.010 0.886 0.821 0.018 0.821 0.856 0.005 0.923 0.886 0.006 0.920
CSTG 0.877 0.009 0.905 0.860 0.016 0.870 0.860 0.005 0.928 0.868 0.007 0.924

Taking two scenes as examples, Figure 9 displays the recovery results of time series
of images with irregularly distributed masks. For images that have few repetitive and
overlapped masks in the time series (Figure 9A), both Zhang’s method and CSTG produce
reasonably recovered images as compared to the original images in terms of image texture
and spectrum in the modestly cloudy areas (Figure 9A, 18 July and 30 September), and
Zhang’s method fails to recover some dark shadows in the largely masked areas (Figure 9A,
29 August and 16 October). For images that have considerably repetitive and overlapped
masks in time series (Figure 9B), images recovered using Zhang’s method have partial
grid-like shades and black shadows after reconstruction, no matter if the masked areas
are small (Figure 9B, 5 March and 18 December) or large (Figure 9B, 26 February and
23 April). One possible reason is that Zhang’s method sorts the reference patches according
to their integrity. Patches with higher integrity are considered as reliable patches, which
are assigned higher weights in calculation. When there are repetitively masked areas in
patches that are erroneously considered as reliable, the model will use the masked value as
the pixel data for subsequent analysis and generate unsatisfactory results. CSTG improves
the performance of image recovery when there are repetitive and overlapped masks in the
time series of images and is able to provide reconstructed images reasonably.
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Figure 9. The time series of images are shown for (a) the original data, (b) the simulated masks,
(c) the recovery results using Zhang’s method, and (d) the recovery results using CSTG. (A,B) are
two different scenes to simulate large missing areas and overlapped missing areas respectively. The
original images were acquired in 2017 and 2020, respectively.
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Table 4 illustrates the evaluation metrics derived by comparing the surface reflectance
in all bands between the original images and the images recovered using different methods.
As the R2 and SSIM are designed to evaluate the similarity of the whole images, they are
largely affected by the area of the missing regions. Therefore, a decrease in R2 and SSIM
shows in both methods when the missing areas extend. Considering the images with small
missing areas (scenario A, Image 2 and Image 4), Zhang’s method and CSTG have similar
performance according to different metrics. While in larger missing areas (scenario A,
Image 1, Image 3 and Image 5), CSTG shows obvious lower MAE, higher R2 and SSIM.
According to scenario B, although both Zhang’s method and CSTG have low MAE values
when comparing the original images with the recovered images, Zhang’s method has
lower R2 (decreased from 0.974 to 0.805) and SSIM values (decreased from 0.965 to 0.911)
as the overlap of the masks increases. CSTG still has R2 over 0.94 and SSIM over 0.93
when comparing the recovered images with the original images. The mean values for the
evaluation metrics indicate that CSTG generally performs better than Zhang’s method in
the two simulated circumstances, and it demonstrates that CSTG is robust for restoring
time series of images.

Table 4. The evaluate metrics derived by comparing the surface reflectance in all bands between the
original images and the images recovered using different methods. The original images come from
MOD09A1 and MOD13Q1, respectively.

Methods

Zhang’s CSTG

Scenario A Scenario B Scenario A Scenario B

R2 MAE SSIM R2 MAE SSIM R2 MAE SSIM R2 MAE SSIM

Image 1 0.967 0.018 0.913 0.947 0.016 0.944 0.971 0.017 0.900 0.986 0.011 0.958
Image 2 0.982 0.013 0.986 0.974 0.015 0.965 0.987 0.013 0.986 0.978 0.014 0.970
Image 3 0.948 0.017 0.898 0.946 0.013 0.929 0.965 0.015 0.930 0.959 0.010 0.931
Image 4 0.979 0.010 0.990 0.805 0.043 0.911 0.985 0.009 0.993 0.962 0.024 0.934
Image 5 0.937 0.013 0.934 0.959 0.020 0.968 0.968 0.010 0.950 0.947 0.023 0.970
Mean 0.963 0.014 0.944 0.926 0.021 0.943 0.975 0.013 0.952 0.966 0.016 0.953

5.2. Experiments Based on Observed Datasets

Figure 10 illustrates the images recovered from individual MOD13Q1 images using
different methods. Both Zhang’s method and CSTG could remove clouds and restore
cloud-free images as compared to the original images. For two zoomed areas as shown in
Figure 10b,c, CSTG effectively reduced the spectral noise of the cloudy image and captured
the texture details well; however, images recovered using Zhang’s method have jagged
grids and missed some texture details.

Figure 11 shows the recovery results for time series of images acquired in 2020. Both
methods could remove most clouds and restore the contents of the land surface in the
time series of images. In areas with little cloud noise, two methods produce relatively
consistent recovery results (e.g., 22 April and 24 November). In areas with considerable
cloud contamination, CSTG largely reduced the speckle noise in the repetitively cloudy
areas and the image fragmentation due to spectral differences (18 February, 21 March, and
15 October) as compared to Zhang’s method. Overall, CSTG performs well on removing
clouds and filling image gaps and provides high-quality images in a time series.
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Figure 10. Recovery results for an individual image using different methods are shown for (a) the
entire images, (b) the zoomed-in images as marked by the yellow rectangle in (a), and (c) the zoomed-
in images as marked by the blue rectangle in (a). The black parts masks are cloudy areas and the
white parts are cloud-free areas.
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Figure 11. Recovery results of time series images based on different methods. (a) Original images.
(b) Quality detection (The black parts are cloudy areas and the white parts are cloud-free areas).
(c) Results of Zhang’s method. (d) Results of the CSTG method. The original images were acquired
in 2020.

5.3. Ablation Study of Sequence-Texture Generation Network

To understand the role of sequence-texture network as proposed in this research, we
took the first image in Figure 9B as an example and compared the feature maps generated
with and without the sequence-texture generation network. Table 5 shows quantitative
metrics evaluated by the model with and without a sequence-generation network. Without
a sequence-texture generation network, R2 reduced from 0.959 and 0.962 to 0.870 and 0.896
in image 3 and image 4, respectively, and MAE raised to 0.033 in image 4. This suggests
a significant improvement in each image with the sequence-texture generation network
according to quantitative metrics, especially in image 1, image 3, and image 4, where
missing areas are large and overlapping.

Table 5. Quantitative results of ablation study of sequence-texture generation network.

Method Image 1
R2/MAE/SSIM

Image 2
R2/MAE/SSIM

Image 3
R2/MAE/SSIM

Image 4
R2/MAE/SSIM

Image 5
R2/MAE/SSIM

Without sequence-texture
generation 0.957/0.016/0.951 0.979/0.014/0.968 0.870/0.027/0.929 0.896/0.033/0.914 0.900/0.028/0.967

With sequence-texture
generation 0.986/0.011/0.958 0.978/0.014/0.970 0.959/0.010/0.931 0.962/0.024/0.934 0.947/0.023/0.970

6. Discussion

To demonstrate the spatial transferability of CSTG, Figure 12 shows the results of
different land surface characteristics with thick clouds recovered by CSTG. It is notable that
although the surface characteristics that we did not include in our training data (such as
barren areas in Figure 12a) are generated with slight flaws, the results are still acceptable.
It also shows that our method could finish gap filling tasks both in vegetation regions
(Figure 12b,d) and non-vegetation regions (Figure 12a,c). Even when the cloud cover in the
patch window extends to a large area (Figure 12c,d), our method could also reconstruct
them and help to get clear textures.
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Figure 12. Reconstruction results of CSTG with different surface characteristics.

The method proposed in this study can obtain higher accuracy in recovery of both
individual images and time series of images, which is predominantly due to abundant
temporal information extracted in the networks. Compared to comparison models for
individual image reconstruction that can only obtain one temporal image from another
time, such as WLR, STS and Chen’s method, our method may obtain more temporal
information and the change tendency in time series. WLR considers local similar pixels
in spectra and could always obtain recovery results with high spectral similarity with the
original images. Some non-local information, such as textures and structures are ignored,
so the texture details may be blurred when recovering large missing areas of images. In
CSTG, sequence-texture generation network and the structural similarity loss are designed
to improve this problem. Additionally, prior spectral noise added in CSTG make sense
as it helps the network to obtain more global spectral information than the other deep
learning methods. Moreover, compared with the multi-temporal image recovery method,
our model can deal with overlapped clouds, as we included this type of situation when
we generate random masks in model training. Sequence-texture generation network can
also reduce spectral discrepancy caused by overlapping masks. It avoids the situation that
mask pixels are also calculated as supplementary data, thus reducing grid-like shades and
black shadows.

When we perform model prediction, we need to clip large images into smaller patches
for recovery and mosaic the recovered patches. As shown in Figure 13, if we splice patches
directly without overlap, it may lead to inaccurate predictions in the edge areas (Figure 13a)
due to the padding strategy in convolution. To solve this problem, we might clip a patch
of size l with stride s (s < l) to make sure there is overlap between adjacent images. By
abandoning the edge areas with a size of (l − s)/2 in each patch, we are able to reconstruct
a large image without block effects as shown in Figure 13b.
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image patches directly, and (b) mosaic image patches with overlapping areas in the edges.

As the proposed framework includes two parts of networks, our experiments take a
slightly longer time to train and test the model than Zhang’s method. It took 25 h to train
the model and 117.9 s to predict the final results of Figure 9A. In comparison, for Zhang’s
method, it only took 21 h for fitting the model and 72.2 s for prediction. It is also notable
that the prediction time efficiency of the proposed method only depends on the size of the
testing images and the performance of GPU. The prediction time of Zhang’s method is
also influenced by the mask areas of each image. This suggests that the proposed model is
more applicable for the situation where the missing areas are large and a higher accuracy
is needed. We will learn further about the existing reconstruction models with high time
efficiency and try to shorten the running time of our model in the future.

The method proposed in this study aims to restore long time series of MODIS data
that often have repetitive and overlapping clouds. The method needs high-quality images
for the training sets and it is difficult to find an area that has completely cloud-free MODIS
data throughout the entire time series, thus it is still challenging to restore long time series
images. To overcome the above-mentioned problem, we might first train a model with a
relatively short time sequence and use the model repetitively to recover the cloudy areas
for a given year, and further use the recovered yearly data as a training set to recover the
cloudy data in the long time series. In this way, the method proposed in this study has
the potential to reconstruct long time series of remote sensing data. The experiments for a
broad application of the developed method are beyond the scope of this study and we will
conduct them in further studies. Additionally, we screened out poor-quality pixels in the
images based on the quality of data provided in the MODIS product, which includes some
high-quality pixels and we may miss some useful information. If each image in the time
series has a very large proportion of areas with poor-quality observations, the developed
method might not perform well as the network does not receive correct information. In
addition, the current network structure consists of both the content generation network and
the sequence-texture generation network, and we aim to develop an end-to-end network in
our future research.

7. Conclusions

As existing studies have difficulty processing time series of remote sensing images
with missing data, we proposed a content-sequence-texture generation (CSTG) network to
gap-fill time series of satellite images. The method combines a content generation network
and a sequence-texture generation network for recovering time series of remote sensing
images with missing data. We evaluated the performance of CSTG using time series of
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MODIS data and compared it with four existing methods. The results indicate that CSTG
has higher accuracy when restoring images with large and overlapping masks. Comparing
the surface reflectance between the original images and the images recovered using CSTG,
R2, MAE, and SSIM are 0.954, 0.012, and 0.971, respectively, when applying small and
dispersive masks, and R2, MAE, and SSIM are 0.982, 0.009, and 0.926, respectively, when
applying a large and intensive mask. The model is robust to time series of images that
have overlapping cloudy areas. The method highlights the potential of the deep learning
methods on reconstructing remote sensing images to provide high-quality time series data
for downstream applications.
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