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Abstract: An Improved Particle Swarm Optimization Algorithm-Support Vector Regression Machine
(IPSO-SVR) prediction model is developed in this paper to predict the electromagnetic (EM) scattering
coefficients of the three-dimensional (3D) sea surface for large scenes in real-time. At first, the EM
scattering model of the 3D sea surface is established based on the Semi-Deterministic Facet Scattering
Model (SDFSM), and the validity of SDFSM is verified by comparing with the measured data. Using
the SDFSM, the data set of backscattering coefficients from 3D sea surface is generated for different
polarizations as the training samples. Secondly, an improved particle swarm optimization algorithm
is proposed by combining the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The
combined algorithm is utilized to optimize the parameters and train the SVR to build a regression
prediction model. In the end, the extrapolated prediction for backscattering coefficients of the 3D
sea surface is performed. The Root Mean Square Error (RMSE) of the IPSO-SVR-based prediction
model is less than 1.2 dB, and the correlation coefficients are higher than 91%. And the prediction
accuracy of the PSO-SVR-based, GA-SVR-based and IPSO-SVR-based prediction models is compared.
The average RMSE of the PSO-SVR-based and GA-SVR-based prediction models is 1.4241 dB and
1.6289 dB, respectively. While the average RMSE of the IPSO-SVR-based prediction model is reduced
to 1.1006 dB. Besides, the average correlation coefficient of the PSO-SVR-based and GA-SVR-based
prediction models is 94.36% and 93.93%, respectively. While the average correlation coefficient of
the IPSO-SVR-based prediction model reached 95.12%. It demonstrated that the IPSO-SVR-based
prediction model can effectively improve the prediction accuracy compared with the PSO-SVR-based
and GA-SVR-based prediction models. Moreover, the simulation time of IPSO-SVR-based prediction
model is significantly decreased compared with the SDFSM, and the speedup ratio is greater than 15.0.
Therefore, the prediction model in this paper has practical application in the real-time computation
of sea surface scattering coefficients in large scenes.

Keywords: sea electromagnetic scattering; semi-deterministic facet scattering model; hybrid particle
swarm optimization; parameter optimization; support vector regression machine

1. Introduction

The rapid acquisition of electromagnetic (EM) scattering data of the sea surface with
large scenes has received much attention in microwave remote sensing and oceanography.
It is known that the time consumed for EM scattering calculation increases with the size of
the sea surface. The real-time computation of EM scattering from a three-dimensional (3D)
sea surface in a large scene has been a major challenge. It is necessary to deeply study the
EM scattering of the sea surface and build a fast prediction model. Therefore, combing the
EM scattering calculation model of the 3D sea surface with the machine learning method [1],
an Improved Particle Swarm Optimization Algorithm-Support Vector Regression Machine
(IPSO-SVR) based prediction model is developed in this paper, providing rapid calculation
of the EM scattering of the 3D sea surface.

In recent years, extensive endeavors have been devoted to study EM scattering mod-
eling of the 3D sea surface. The EM scattering simulation algorithm of sea surface can
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be divided into two main kinds: the low-frequency rigorous numerical methods and the
high frequency approximate methods. The low-frequency rigorous numerical methods are
based on the numerical solution of various EM field differential and integral equations,
such as the Method of Moments (MoM) [2,3], Finite-Difference Time-Domain (FDTD) [4–6],
Finite Elements Method (FEM) [7], etc. They have high computational accuracy but have
low computational efficiency when dealing with large-scale scattering problems. In the
contrast, the high frequency approximate methods are approximate calculation meth-
ods of EM scattering under high frequency conditions, such as Kirchhoff Approximation
(KA) [8,9], Small Perturbation Method (SPM) [10], Two-Scale Model (TSM) [11,12], Small
Slope Approximation Method (SSA) [13–15] and Semi-Deterministic Facet Scattering Model
(SDFSM) [16,17]. Compared with the low-frequency rigorous numerical methods, the high
frequency approximate methods can significantly reduce the simulation time and storage
capacity. For this reason, they are highly suitable for solving the EM scattering problems of
3D sea surface in large scenes. Among these approximation algorithms, SDFSM has been
widely used in the EM scattering calculation of large 3D sea surfaces. According to SDFSM,
the ocean wave can be regarded as a two-scale profile [18], where the small-scale wave
superimposed on a large-scale wave. This approximation can significantly improve the
computational efficiency and also ensures the computational accuracy. Therefore, SDFSM
is adopted to obtain the EM scattering data set for the 3D sea surface. However, with the
increased sea surface size and the incident wave frequency, it is still difficult to calculate the
EM scattering coefficients of 3D large-scale sea surface in real-time using SDFSM. Therefore,
it is necessary to explore the fast prediction model further.

With the rapid development of artificial intelligence, SVR [19–21] is widely used
in regression prediction problems. It effectively solves the problems of small samples,
nonlinear as well as high dimensions and has high prediction accuracy [22–24]. Parameter
selection in Support Vector Machine (SVM) is crucial in building predictive models. In
order to improve SVR’s prediction accuracy, this paper proposed an IPSO algorithm for
optimizing the SVR parameters by combing the Particle Swarm Optimization (PSO) [25–27]
with the Genetic Algorithm (GA) [28,29]. On the one hand, IPSO algorithm involves the
Logistic chaotic sequence to improve the initial population’s particle distribution and
increasing the population’s diversity. On the other hand, the degree of aggregation is
introduced to determine the diversity of particles during iteration. When the aggregation
degree is lower than the set threshold, the particles are corrected by using the crossover
mutation strategy in the GA, which can avoid premature convergence of the population.
Then, based on EM scattering modeling of the 3D sea surface, a fast prediction model
based on IPSO-SVR is established. Here, the backscattering coefficients of the 3D sea
surface for different polarization conditions are calculated by the SDFSM to build a data
set. Furthermore, different incident angles and frequencies are selected as the training
sample input to build a prediction model of EM scattering from the 3D sea surface. And
the extrapolated prediction of the sea surface backscattering coefficient is performed.
Compared with the PSO-SVR-based and GA-SVR-based prediction models, the IPSO-SVR-
based prediction model can effectively improve the prediction accuracy of backscattering
coefficients from 3D sea surface. Additionally, compared with the SDFSM, the simulation
time of the EM scattering from 3D sea surface is greatly decreased with the used of IPSO-
SVR-based prediction model. Therefore, the proposed IPSO-SVR-based prediction model
can rapidly predict the EM scattering from the 3D sea surface in large scenes, which has
practical engineering applications in microwave remote sensing.

The remainder of this paper is structured as follows. Section 2 introduces the principles
of SDFSM. Based on SDFSM, the EM scattering model of the 3D sea surface is established,
whose effectiveness is proved by comparing it with the measured value. At the same
time, the principle of SVR and the IPSO algorithm is described, and the detailed steps for
the IPSO-SVR-based fast prediction model are presented. In Section 3, the extrapolated
prediction for backscattering scattering coefficients of the 3D sea surface is performed.
Meanwhile, RMSE and correlation coefficients corresponding to the PSO-SVR-based, GA-
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SVR-based and IPSO-SVR-based models are compared to demonstrate the validity and
improvement of the proposed prediction model. Section 4 ends with a summary of the
main work of this paper.

2. Materials and Methods
2.1. EM Scattering Modeling of the 3D Sea Surface Based on SDFSM

SDFSM is established based on the TSM, which is considered to have much broader
application aspects compared with KA and SPM. According to the TSM, ocean waves are
regarded as two-scale profiles, where the small-scale capillary wave is superimposed on the
large-scale gravity wave. In the SDFSM, the facet-based model is further introduced and
combined with the TSM. Based on this idea, the 3D sea surface is meshed into a series of
tilted facets at first, representing the large-scale wave, and each tilted sea facet is considered
a rough surface covered with the small-scale capillary wave.

Assuming that the profile of the micro-undulating small-scale rough surface is ξ(
→
r ),

according to the perturbation solution given by Fuks [30,31], the scattering amplitude of
any sea surface element can be expressed as

Spq

(
k̂i, k̂s

)
=

k2(1− εr)

8π2 Fpq

∫ ∫
ξ(
→
r ) exp(−i

→
q ·→r )d→r (1)

where εr is the relative permittivity of sea water, k is the wave number of incident EM wave,
k̂i and k̂s represent the unit vector of the incident and scattering directions, respectively.
→
q = k(k̂s − k̂i), Fpq represents the scattering polarization factors, and the subscript p and q
represent the polarization of the incident wave and the scattered wave respectively, both of
them can be expressed as h or v (h represents the horizontal polarization and v represents
the vertical polarization).

Thus, the scattered field from a single facet can be derived as

→
E

f acet

pq (k̂i, k̂s) = 2π
exp(ikR)

iR
Spq(k̂i, k̂s) (2)

where R represents the distance from the radar to the center of the sea surface facet.
According to [32], the scattering coefficient of an individual sea surface facet can be

obtained by the following:

σo
pq(k̂i, k̂S) = πk4|εr − 1|2

∣∣Fpq
∣∣2Sζ(ql) (3)

where Sζ(ql) denotes the spatial power spectrum of the micro-rough surface, where ql is

the projection of
→
q on the mean surface z = 0.

The sea surface facets will be inclined in all directions due to the large-scale gravity
wave’s action, taking into account the modulation effect of the wave on the scattering field.

As the modulation effect of gravity wave on the scattered field is mainly reflected
in the scattering polarization factors Fpq, the scattering polarization factors of each sea
surface facet should have a conversion between the local coordinate system and the global
coordinate system.

The diagram of the global coordinate system
{

xg, yg, zg
}

and local coordinate system
{xl , yl , zl} is presented in Figure 1. As illustrated in Figure 1, the local coordinate system
{xl , yl , zl} of a sea facet is given by

ẑl = n̂
ŷl = n̂× k̂i/

∣∣∣n̂× k̂i

∣∣∣
x̂l = ŷl × ẑl

(4)

where n̂ is the normal vector of a sea facet.
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Let θi_loc, θs_loc represent the incident and scattered angle, and φs_loc represents the
scattered azimuth angle in the local coordinate system. The scattering polarization factors
of each sea surface facet in the global coordinate system can be written as [33][

Γvv Γvh
Γhv Γhh

]
=

[
V̂s · v̂s Ĥs · v̂s
V̂s · ĥs Ĥs · ĥs

][
Fvv Fvh
Fhv Fhh

][
V̂i · v̂i V̂i · ĥi
Ĥi · v̂i Ĥi · ĥi

]
(5)

where Ĥi , V̂i , Ĥs , V̂s represent the global horizontal and vertical polarization vectors,
and ĥi , v̂i , ĥs , v̂s represent the horizontal and vertical polarization vectors in the local
coordinate system. Fvv, Fvh, Fhv, Fhh represent the scattering polarization factors in the local
coordinate system, which can be expressed as

Fvv = 1
ε [1 + Rv(θi_loc)][1 + Rv(θs_loc)] sin θi_loc sin θs_loc
−[1− Rv(θi_loc)][1− Rv(θs_loc)] cos θi_loc cos θs_loc cos φs_loc

(6)

Fvh = [1− Rv(θi_loc)][1 + Rh(θs_loc)] cos θi_loc sin φs_loc (7)

Fhv = [1 + Rh(θi_loc)][1− Rv(θs_loc)] cos θs_loc sin φs_loc (8)

Fhh = [1 + Rh(θi_loc)][1 + Rh(θs_loc)] cos φs_loc (9)

where Rh and Rv represent the reflection coefficient for horizontal and vertical polariza-
tion respectively.

Correspondingly, Fpq in Equation (1) will be replaced by ΓPQ, and then it is substituted
into the Equation (3) to get the scattered coefficient of a single sea surface facet in the global
coordinate system. Contrasting with Equation (3), the scattering coefficient of any inclined
micro-rough facet can be written as

σ
f acet
PQ (k̂i, k̂s) = πk4|εr − 1|2

∣∣ΓPQ
∣∣2Sζ(ql) (10)

where the subscripts P and Q represent the polarization of the scattered and incident waves
in the global coordinate system.

Then, the total scattering coefficient of the 3D sea surface is the superposition of
scattering power from all title sea facets, which can be expressed as

σtotal
PQ (k̂i, k̂s) =

1
A

M

∑
m=1

N

∑
n=1

[σ
f acet
PQ,mn(k̂i, k̂s)∆x∆y] (11)

where ∆x, ∆y represent the sampling interval of sea surface in x and y directions, re-
spectively, σ

f acet
PQ,mn is the scattering coefficient of the mnth facet, which is calculated by

Equation (10).
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In order to demonstrate the validity of SDFSM for EM scattering calculation of 3D sea
surface, the simulation results are compared with the measured data. Firstly, the linear
filtering method is used to generate the geometric model of the 3D sea surface, as shown in
Figure 2. The Elfouhaily spectrum is utilized. The size of the sea surface is 256 m × 256
m, and the discrete interval is set as 1 m × 1 m. The wind speed upon the sea surface is 5
m/s and 7 m/s. The wind direction is 0◦ and 90◦. According to Figure 1, it can be seen that
the height of sea waves increased with the wind speed. At the same time, the sea wave
direction changes significantly with the change of wind direction.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 18 
 

 

224 1 ζσ π ε= − Γˆ ˆ( , ) ( )facet
PQ i s r PQ lk k k S q  (10) 

where the subscripts P and Q represent the polarization of the scattered and incident 
waves in the global coordinate system. 

Then, the total scattering coefficient of the 3D sea surface is the superposition of scat-
tering power from all title sea facets, which can be expressed as 

,
1 1

1ˆ ˆ ˆ ˆ( , ) [ ( , ) ]
M N

total facet
PQ i s PQ mn i s

m n
k k k k x y

A
σ σ

= =

= Δ Δ  (11) 

where Δ Δx y,  represent the sampling interval of sea surface in x and y directions, respec-

tively,σ ,
facet
PQ mn  is the scattering coefficient of the mnth facet, which is calculated by Equation 

(10). 
In order to demonstrate the validity of SDFSM for EM scattering calculation of 3D 

sea surface, the simulation results are compared with the measured data. Firstly, the linear 
filtering method is used to generate the geometric model of the 3D sea surface, as shown 
in Figure 2. The Elfouhaily spectrum is utilized. The size of the sea surface is 256 m × 256 
m, and the discrete interval is set as 1 m × 1 m. The wind speed upon the sea surface is 5 
m/s and 7 m/s. The wind direction is 0° and 90°. According to Figure 1, it can be seen that 
the height of sea waves increased with the wind speed. At the same time, the sea wave 
direction changes significantly with the change of wind direction. 

  
(a) (b) 

  
(c) (d) 

Figure 2. Geometric model of 3D sea surface: (a) 
      ϕ= =5 / , 0o

wU m s ; (b)       ϕ= =5 / , 90o
wU m s ; 

(c) 
      ϕ= =7 / , 0o

wU m s ; (d)       ϕ= =7 / , 90o
wU m s . 

Figure 2. Geometric model of 3D sea surface: (a) U = 5 m/s, ϕw = 0o; (b) U = 5 m/s, ϕw = 90o;
(c) U = 7 m/s, ϕw = 0o; (d) U = 7 m/s, ϕw = 90o.

In the next step, the comparison results of the backscattering coefficient from the 3D
sea surface between the SDFSM and measurements in [34] are illustrated in Figure 3. The
frequency of the incident wave is set as f = 14 GHz. The incident angle is θi = 0◦ ∼ 80◦,
and the incident azimuth angle is ϕi = 180◦. The wind speed is U= 5 m/s and 10 m/s.
Both HH and VV polarizations are considered. Figure 3 shows that as the incident angle
increases, the backscattering coefficient gradually decreases. Meanwhile, the trend of
simulation results by SDFSM is consistent with that of measured data, where the RMSE is
smaller than 3.0 dB, and the correlation coefficient R is higher than 99%. As a result, it is
demonstrated that SDFSM is valid for use in 3D sea surface EM scattering calculations.
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Figure 3. Comparison of backscattering coefficient from 3D sea surface between the SDFSM and
measurements. (a) U = 5 m/s, HH polarization. (b) U = 5 m/s, VV polarization. (c) U = 10 m/s,
HH polarization. (d) U = 10 m/s, VV polarization.

2.2. Support Vector Regression Machine Optimized by IPSO Algorithm

SVM is a concrete realization of statistical learning theory in practical problems. Its
basic idea is to transform the solution of the original problem into a convex programming
problem, and this quadratic programming problem is solved by an optimization method.
SVM is mainly used for classification and regression problems. In this article, SVM is used
for regression prediction.

2.2.1. Basic Principles of SVR

The basic idea of SVR is to find an optimal classification surface to minimize the error
of all training samples from this classification surface, as shown in Figure 4.

For training sample T = {(x1, y1), . . . , (xl , yl)}, under the linear conditions, a linear
function f (x) = (w · ϕ(x)) + b is utilized to fit the sample points in SVR. While under
the non-linear conditions, through a non-linear mapping φ, the data x is mapped to the
high-dimensional feature space F, and the linear regression is performed in this space.
The corresponding regression prediction problem is converted to solve an optimization
problem. In the feature space, the regression function is defined as:

f (x) = (w · φ(x)) + b
φ : Rn → F, w ∈ F

(12)

where w is the weight vector and b is the threshold.
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The most common used loss function is the insensitive loss function, which is defined
as [35]:

L[ f (x), y, ε] = |y− f (x)| = max(0, |y− f (x)| − ε) (13)

where f (x) is the predicted value obtained by the regression function; y is the corresponding
true value; ε is the insensitive loss coefficient. When the difference between the predicted
value f (x) and the true value y is less than or equal to ε, the loss is 0.

Then the optimization objective function is:

minR(w) =
1
2
‖w‖2 + C

m

∑
i=1

L( f (xi), yi) (14)

The constant C in Equation (14) is called the penalty coefficient. R(w) is minimized

to get w =
m
∑

i=1
(αi − α∗i )ϕ(xi), where αi, α∗i is the solution of minimizing the dual problem

R(w). Substituting w into Equation (12), the final regression function is:

f (x) =
m

∑
i=1

(αi − α∗i )〈φ(xi), φ(x)〉+ b =
m

∑
i=1

(αi − α∗i )k(xi, x) + b (15)

where k(xi, xj) =
〈

ϕ(xi), ϕ(xj)
〉

is called the kernel function, which is a symmetrical
positive real number function that satisfies the Mercer condition. The kernel function
selected in this paper is the radial basis kernel function k(xi, x) = exp

{
−|x− xi|2/(2σ2)

}
.

2.2.2. IPSO Algorithm

In establishing the SVR, the type of kernel function, parameters of the kernel function,
and the penalty coefficient play an important role in the promotion ability and accuracy of
the model. PSO algorithm is an evolutionary calculation method based on the flock bird
foraging model, which has fast convergence speed and high efficiency in low-dimensional
space. However, when the dimension of the problem increases, its optimization perfor-
mance will rapidly decrease, and it is easy to fall into the optimal solution. A GA is based on
the principle of biological evolution, and it has a good global search performance. However,
in the iterative process, a GA is easy to be controlled by individual special particles, result-
ing in premature convergence. In order to solve the above problems, this paper developed
an IPSO algorithm based on these two algorithms. Firstly, the position and velocity of the
population are initialized by using the Logistic chaotic sequence, thereby improving the
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initial population’s particle distribution and increasing the population’s diversity. Secondly,
to avoid premature convergence of the population, the degree of aggregation δ is intro-
duced to determine the diversity of particles during iteration. When δ is lower than the set
threshold, the particles are corrected by using the crossover mutation strategy in the GA.
Otherwise, the particles are updated by traditional optimization algorithms.

(1) Population initialization

In the initial stage of the algorithm, the population’s setting greatly influences the
reconciliation effect of the convergence rate. Chaos is a nonlinear dynamic system with
the characteristics of non-periodicity, non-convergence, sensitivity to the initial value, and
good ergodicity. Therefore, a large number of primitive groups are generated through
the ergodicity of chaos. Then, the optimal initial group is screened out, and the existing
particles are chaotically interfered with to improve the diversity of the original group.
Logistic mapping is a simple but widely used chaotic system, and its iterative equation is
as follows [36,37]:

zi+1 = µzi(1− zi), i = 0, 1, 2 . . . , µ ∈ (2, 4] (16)

where µ is the control parameter. When µ is between 3.571488 and 4, the chaotic map
is in a chaotic state; we call it the chaotic region. When µ = 4, 0 ≤ z0 ≤1, the map is
completely chaotic.

The steps for chaotic initialization using Logistic mapping are as follows: for an n-
dimensional optimization problem: f (x1, x2, . . . , xn), ai ≤ xi ≤ bi. In the n-dimensional
space, a 0-1 vector arbitrarily is generated: z1= (z11, z12, . . . , z1n). According to equation
zi+1,j = µzij(1− zij), j = 1, 2, . . . n; i = 1, 2, . . . N − 1, vectors: z1, z2, . . . zN are obtained. If
we bring each component carrier of zi to the numerical interval of the optimization variable
xij = aj + (bj − aj)zij, then j = 1, 2, . . . n and i = 1, 2, . . . N. By calculating the objective
function, among the N initial populations, the optimal m solutions are selected as the initial
values to obtain the initial population.

(2) Judgment of aggregation degree δ

During the basic PSO iteration, each particle uses the individual optimal value and
the optimal global value to search for the optimal solution. However, as the number of
iterations continues to increase, the individuals get closer, and the difference between
them is gradually reduced, which is easy to cause premature convergence. Therefore, δ is
introduced in this paper to judge the convergence state of the population. When δ is less
than the given threshold, it means that the diversity of particles is reduced, and the particle
update method needs to be adjusted to avoid premature convergence. The calculation
equation for δ is as follows:

δ =
N

∑
i=1

∣∣∣∣ fi − favg

fmax − fmin

∣∣∣∣ (17)

where fi is the fitness value of particle i, f avg is the average fitness value of all N particles in
the population during the mth iteration, f max is the maximum fitness value, and f min is the
minimum fitness value.

(3) Particle update

When δ is greater than the given threshold, the particle update is still performed
according to the conventional method of PSO. In each iteration, the particle updates itself
by tracking two “extreme values”. The first extreme value is the optimal solution found
by the particle itself. This solution is called the individual extreme value pBest. The other
extreme value is the optimal solution currently found in the entire population, and this
extreme value is called the global extreme gBest. The update equation for particles is
given by:

v = w · v + c1r1(pBest − p) + c2r2(gBest − p)
p = p + β · v (18)
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where v is the speed of the particle which decides the direction and distance of the flight. β
is called the constraint factor which controls the weight of the speed, and it is usually taken
as 1. c1 and c2 are the learning factors. r1 and r2 are the random number between (0,1). w is
a non-negative number called the inertia factor.

If δ is less than the given threshold, it is necessary to improve the diversity of the
particles. In the GA, the update of chromosomes is realized by three gene operations:
Selection, crossover, and mutation. Crossover operation randomly selects two chromo-
somes for exchange and combination in a population and transfers the excellent traits of
the previous generation to new individuals, thereby obtaining a new excellent population.
The mutation operation is based on the mutated chromosomes’ genes to maintain the
population’s diversity. Based on this idea, the cross equation in [38] is used to update the
particles. In this literature, three chromosomes (θ1, θ2, θ3) are randomly generated from
the mating pool and crossed randomly. If θi(i ∈ [1, 2, 3]) is the smallest, it will be chosen
as the primary parent. The new chromosome θ′ i = θi + rand(2θ1 − θ2 − θ3) is obtained,
where rand is a random number between 0 and 1. The update equation for particles is
expressed as:

vd
i (t + 1) = rand(2xd

gbest − xd
i (t)− xd

pbesti
)

x(t+1)
ij = x(t)ij + v(t+1)

ij , j = 1, 2
(19)

In this article, the RMSE is selected as the fitness function f (zk):

f (zk) =

√
1
n

n

∑
i=1

(yi − yi)
2 (20)

where n is the number of training samples, yi represents the predicted value of the kth test
sample corresponding to the zk particle, and yi represents the true value of the kth sample.

Figure 5 shows the framework of IPSO-SVR-based model for the parameter optimiza-
tion algorithm. The main process is as follows:

(1) Initialization settings: The population is initialized by using the logistic map;
(2) Fitness evaluation: According to the fitness function, the fitness value of the particles

is calculated;
(3) Judgment of δ: In the iterative process, δ is calculated. If the δ is less than the given

threshold, the particles are updated according to Equation (19), otherwise, the particles
are updated according to Equation (18);

(4) Termination condition judgment: The number of iteration steps is increased by 1,
and the above steps are looped until there is a solution that meets the termination
condition in the new population.

2.3. Establish the IPSO-SVR-Based Prediction Model

A flowchart of the IPSO-SVR-based model for 3D sea surface backscattering coefficient
prediction is shown in Figure 6. In Figure 6, the first step is to generate the sea surface model
via the linear filtering method. The second step is to construct the EM scattering model of
the 3D sea surface using SDFSM, and the backscattering coefficients of the 3D sea surface
under different polarization conditions are calculated to build a data set. Here, the incident
angle [θi] and [f ] is selected as the input of the model, and the backscattering coefficient [σ]
is selected as the output of the model. In the next step, the data is preprocessed, and all the
data are normalized to the range of [0, 1] to avoid impacting the prediction performance
due to different data dimensions. Meanwhile, the data set is divided into two parts, where
the first half is used as the training data set, and the second half set is used as the test
data set. Then, the IPSO algorithm is employed for the SVR parameter optimization, and
training data set to train the model and predict the backward data, whose detailed process
is introduced in Section 2.2. Finally, an IPSO-SVR-based prediction model is established,
and the test data set is utilized to verify the extrapolated prediction effect.
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3. Results and Discussion

Our experiments are conducted on a desktop based on an Intel(R) Core(TM) i7-8700K
@3.7 GHz CPU with 6 cores. Programs are built and run under the Windows 7 32-bit
operating system. The CPU implementation is performed on the Visual Studio 2017
platform. In this article, the Root Mean Square Error (RMSE) and correlation coefficients
are employed to evaluate the fitting effect. Smaller RMS and larger correlation coefficient
indicate better fitting effect.

3.1. Prediction Results of the Backscattering Coefficient Changing with the Incident Angle

In this section, the extrapolated prediction for the backscattering coefficients changing
with the incident angle are performed. Here, the prediction results as well as the prediction
accuracy of the PSO-SVR-based, GA-SVR-based and IPSO-SVR-based prediction models
are presented.

Based on the SDFSM in Section 2.1, the data set of the backscattering coefficient from
3D sea surface is established, including 81 samples, as shown in Table 1. The incident
angle [θi] is selected as the input of the model, which varies from 0◦ to 80◦, and the angle
sampling interval is set as 1◦. The backscattering coefficient [σ] is selected as the output of
the model. The wind speed above the sea surface is 5 m/s. The frequency of the incident
wave is set as f = 14 GHz. The incident azimuth angle is φi = 50◦. As mentioned above,
the data set is divided into the training data set and test data set. Here, the training data set
contains 51 samples, corresponding to the incident angle θi = 0

◦ ∼ 50
◦
, while the test data

set contains 30 samples, corresponding to the incident angle θi = 51
◦ ∼ 80

◦
.

Table 1. Data set of the 3D sea surface backscattering coefficients changing with the incident angle.

Data Set Output Y Input X

Training data set [σHH ], [σVV ] [θi]: 0◦~50◦; 51 samples

Test data set [σHH ], [σVV ] [θi]: 51◦~80◦; 30 samples

The extrapolated prediction results of the 3D sea surface backscattering coefficient
changing with the incident angle PSO-SVR-based and GA-SVR-based prediction models for
are compared with the simulation results of SDFSM, which are presented in Figures 7 and 8
respectively. In the PSO-SVR-based and GA-SVR-based prediction models, the range of
setting the regularization parameter C is (0.1, 100). The range of setting the parameter
g of the radial basis kernel function is (0, 10). Besides, the population number is 50,
and the maximum number of iterations is 100 in the PSO-SVR-based prediction model.
And the population number is 20, and the maximum number of iterations is 200 in the
GA-SVR-based prediction model.

As shown in Figures 7 and 8, the training set prediction data can well reflect the
training sample value change trend, and a good fitting effect is achieved. Although the
test set prediction result is not comparable to the training sample set, its change trend and
overall distribution are close to the test sample data. The overall RMSE is less than 1.7 dB
and the correlation coefficient is higher than 90%.

The comparison between the extrapolated prediction results of the IPSO-SVR-based
prediction model and the simulation results of SDFSM for 3D sea surface backscattering
coefficient is shown in Figure 9. In the IPSO-SVR-based prediction model, the range of
setting the regularization parameter c is (0.1, 100). The range of setting the parameter g of the
radial basis kernel function is (0, 10). The population number is 50. The maximum number
of iterations is 100, the cross-validation fold is 5, and δ is 50. As shown in Figure 9, the
prediction data can well reflect the training sample value change trend, and a good fitting
effect is achieved. The overall RMSE is less than 1.2 dB, and the correlation coefficient is
higher than 91%, which indicates that the model is effective and has a good generalization
ability. Therefore, the IPSO-SVR-based prediction model established in this paper is
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useful for the extrapolated prediction of backscattering coefficient of the 3D sea surface in
practical applications.
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(b) Bestc = 43.8788, bestg = 0.9330, VV polarization.

3.2. Comparison of the Prediction Accuracy

In order to demonstrate the validity of IPSO-SVR-based prediction model, the cal-
culation error and correlation coefficient corresponding to the PSO-SVR-based, the GA-
SVR-based, and the IPSO-SVR-based prediction model are computed, where the statistical
results are shown in Table 2.

Table 2. Statistical results of calculation error and correlation coefficient.

Model Polarization RMSE (dB)
(Test Data Set)

Correlation
Coefficient R

Average RMSE (dB)
(Test Data Set)

Average Correlation
Coefficient R

PSO-SVR
HH 1.6577 97.51%

1.4241 94.36%VV 1.1904 91.21%

GA-SVR
HH 1.6277 97.75%

1.6289 93.93%VV 1.6301 90.10%

IPSO-SVR
HH 1.0958 98.74%

1.1006 95.12%VV 1.1054 91.50%

As shown in Table 2, when the calculation error and correlation coefficient from the
three prediction models are compared, it is clear that the IPSO-SVR-based prediction model
has the lowest RMSE and the highest correlation coefficient for HH and VV polarizations.
Meanwhile, we determine the statistical average of the RMSEs and correlation coefficients
of the three prediction models. It can be seen that the average RMSE of the PSO-SVR-based
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and GA-SVR-based prediction models is 1.4241 dB and 1.6289 dB, respectively. While the
average RMSE of the IPSO-SVR-based prediction model is reduced to 1.1006 dB. Besides,
the average correlation coefficient of the PSO-SVR-based and GA-SVR-based prediction
models is 94.36% and 93.93%, respectively. While the average correlation coefficient of the
IPSO-SVR-based prediction model reached 95.12%. Generally speaking, the IPSO-SVR-
based prediction model established in this article can significantly increases the prediction
accuracy compared with the PSO-SVR-based and GA-SVR-based prediction models. There-
fore, it is proved that the IPSO-SVR-based prediction model established in this paper
is superior.
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In addition, the simulation time of the SDFSM and IPSO-SVR-based prediction model
is further compared. At the same time, the speedup ratio of the IPSO-SVR-based prediction
model is calculated. The statistical results of simulation time and speedup ratio is exhibited
in Table 3.

Table 3. Statistical results of simulation time and speedup ratio.

Method Polarization Time (s) Speedup Ratio

SDFSM
HH 69.2609 /
VV 69.7452 /

IPSO-SVR-based
Prediction Model

HH 4.2315 16.3679
VV 4.6147 15.1137
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As presented in Table 3, compared with the SDFSM, the simulation time of the IPSO-
SVR-based prediction model is significantly decreased, and the speedup ratio exceeds
15.0 for both HH and VV polarizations. Therefore, a good speedup ratio is achieved. It
indicates that the IPSO-SVR-based prediction model established in this paper can provide
rapid calculation of the EM scattering coefficient of the 3D sea surface.

Although the prediction accuracy of the IPSO-SVR-based prediction model is im-
proved compared with the traditional PSO-SVR-based and GA-SVR-based models, its
prediction accuracy still needs to be further improved when there is an obvious inflection
point in the prediction data. Accurate extrapolation prediction with obvious inflection point
data is a very difficult task, because the data to be predicted has uncertainty, and the model
may not extract the features of these data at the training process (the features of the training
data cannot well cover the features of the data to be predicted). Therefore, our further work
will focus on the investigation of the better algorithm for parameter optimization.

3.3. Prediction Results of the Backscattering Coefficient Varying with the Frequency

Furthermore, the backscattering coefficient changing with the frequency is forecasted
by the IPSO-based prediction model. Similarly, the data set is established using the SDFSM,
as shown in Table 4. The frequency of the incident wave [ f ] is selected as the input of the
model, and the backscattering coefficient [σ] is selected as the output of the model. The
wind speed u = 5 m/s, and the incident angle is θi = 30◦. The frequency f varies from
1 GHz to 15 GHz, and the sampling interval is set as 0.2 GHz. The data set is divided
into the training data set and test data set. The training data set contains 60 samples,
corresponding to the frequency f = 1 GHz~12.8 GHz, while the test data set contains
11 samples, corresponding to the frequency f = 13 GHz~15 GHz.
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Table 4. Data set of the 3D sea surface backscattering coefficients varying with the frequency.

Data Set Output Y Input X

Training data set [σHH ], [σVV ] [ f ]: 1 GHz~12.8 GHz; 60 samples
Test data set [σHH ], [σVV ] [ f ]: 13 GHz~15 GHz; 11 samples

The comparison between the extrapolated prediction results of the IPSO-SVR-based
prediction model and the simulation results of SDFSM for the sea surface backscattering
coefficient varying with the frequency of the incident wave is shown in Figure 10. As
depicted in Figure 10, the extrapolated prediction results of the IPSO-SVR-based prediction
model agree well with the simulation results of SDFSM. The overall RMSE is less than
0.1 dB, and the correlation coefficient is higher than 98%, which indicates that the IPSO-SVR-
based prediction model still has good prediction effect for the backscattering coefficients
varying with the frequency. Therefore, the IPSO-SVR-based prediction model established
in this article is effective and has a good generalization ability.
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4. Conclusions

In this study, an IPSO-SVR-based prediction model is developed to predict the backscat-
tering coefficient of the 3D sea surface quickly. Firstly, the sea surface backscattering co-
efficients for different polarization conditions are calculated by the SDFSM to construct a
data set. And the data set is divided into the training data set and the test data set. The
IPSO algorithm is proposed to optimize the parameters of SVR. Furthermore, the model
is trained with the use of training data set, establishing the IPSO-SVR-based prediction
model. On this basis, the test data set is used to evaluate the performance of the prediction
model. According to the simulation results of the IPSO-SVR-based prediction model, the
overall RMSE is less than 1.2 dB, and the correlation coefficient is higher than 91%. When
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compared to the PSO-SVR-based and GA-SVR-based prediction models, the IPSO-SVR-
based prediction model can significantly improve the computational accuracy, where its
average RMSE is reduced to 1.1006 dB and average correlation coefficient reached 95.12%.
At the same time, compared with the SDFSM, the simulation time of the IPSO-SVR-based
prediction model is significantly decreased, and the speedup ratio is larger than 15.0. There-
fore, the IPSO-SVR-based prediction model established in this paper is appropriate for
fast prediction of the EM scattering of 3D sea surface, which has substantial engineering
application value.
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