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Abstract: Deep learning methods have been widely studied for Polarimetric synthetic aperture radar
(PolSAR) land cover classification. The scarcity of PolSAR labeled samples and the small receptive
field of the model limit the performance of deep learning methods for land cover classification. In
this paper, a vision Transformer (ViT)-based classification method is proposed. The ViT structure
can extract features from the global range of images based on a self-attention block. The powerful
feature representation capability of the model is equivalent to a flexible receptive field, which is
suitable for PolSAR image classification at different resolutions. In addition, because of the lack of
labeled data, the Mask Autoencoder method is used to pre-train the proposed model with unlabeled
data. Experiments are carried out on the Flevoland dataset acquired by NASA/JPL AIRSAR and the
Hainan dataset acquired by the Aerial Remote Sensing System of the Chinese Academy of Sciences.
The experimental results on both datasets demonstrate the superiority of the proposed method.
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1. Introduction

Polarimetric synthetic aperture radar (PolSAR) provides fully polarimetric backscat-
tering observations of the earth’s surface under all-weather and day-and-night conditions.
It is widely applicable to land cover classification.

The existing PolSAR land cover classification methods can be divided into conven-
tional methods without deep learning and deep learning methods. As for the conventional
method, as early as the late 1980s, classification methods that utilized the complete polari-
metric information was proposed by Kong [1] and Lim [2], based on the Bayes classifier
and the complex Gaussian distribution. Lee [3] extended their method and proposed an
optimal classifier based on the complex Wishart distribution, namely the Wishart classi-
fier. These kinds of methods are known as the statistical methods for PolSAR land cover
classification. To characterize the heterogeneity of the land cover scattering medium, the
Wishart classifier has been extensively improved by generalizing Wishart distribution to
many other complicated distributions [4–7]. Markov Random Fields [8–10] were also
introduced to describe the association information between pixels. However, the statistical
classification methods cannot describe the characteristics of the spatial structure of the land
covers and perform poorly in the case of high resolution and complex scenarios.

Another conventional approach to PolSAR land cover classification is based on the
feature representation of PolSAR images and the supervised classifiers. The target decom-
position methods [11–13], which have clear physical interpretations, are widely used in
feature representation. As different decomposition methods have their own applicabilities,
they are often used in combination, and many land cover classification methods [14–16]
were derived based on them. However, due to the complexity of land cover scatters,
the classification methods based on hand-crafted features cannot achieve satisfactory per-
formance.
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As deep learning [17] has been widely used in various application fields, deep learning
methods for PolSAR land cover classifications have also been widely studied. As convolu-
tional neural networks (CNN) [18] have been widely applied in computer vision tasks, most
PolSAR land cover classification deep learning methods are based on CNN. Zhou et al. [19]
first used CNN for PolSAR land cover classification. The model consisted of two convolu-
tion layers followed by two fully connected layers with an input size of 8× 8 around the
interested pixels, and achieved convincing classification performance. Subsequently, vari-
ous CNN-based land cover classification methods have been proposed. In terms of network
architecture, Zhang et al. [20] proposed complex-valued CNN (CV-CNN) to adapt to the
arithmetic characteristics of complex data. Dong et al. [21] introduced the 3-D convolution
to extract features from both spatial and channel dimensions. In terms of input features,
Chen et al. [22] studied the input features with roll invariance. Yang et al. [23] developed a
feature selection model based on multiple hand-crafted polarimetric features. In terms of
training strategies, Xie et al. [24] introduced semi-supervised learning. Liu et al. [25] and
Zhao et al. [26] introduced adversarial learning to generate samples. In general, a wide
variety of CNN-based deep learning methods have been proposed, and the classification
performance has gradually improved.

In recent years, in addition to CNN, the Transformer-based method is worthy of atten-
tion. Transformer [27] is a self-attention-based architecture that was first used in natural
language processing (NLP). The network architecture based on the self-attention mecha-
nism has the capability to extract spatial correlation information in a global range, and thus,
has a flexible feature representation capability. Inspired by NLP successes, multiple works
have tried to incorporate self-attention mechanisms into computer vision tasks [28–31].
Carion et al. [30] proposed Detection Transformer (DETR) and applied Transformer to
the field of object detection. DETR maintained the model backbone as CNN and used
Transformer to generate box prediction. Dosovitskiy et al. [31] proposed Vision Trans-
former (ViT), which completely abandoned the convolution structure widely used in image
processing. By dividing the input images into several local patches, ViT applied a standard
transformer directly to the images with the fewest possible modifications, and outper-
formed the classic ResNet-like CNN architectures [32]. These works explored the potential
of transformer structures for computer vision tasks, and subsequently, many improvements
for transformer-based structures have been proposed. Touvron et al. [33] proposed Data-
efficient image Transformers (DeiT), which used a teacher-student strategy to improve
the performance of ViT when trained on insufficient amounts of data. Han et al. [34]
pointed out that the attention inside the local patches is also essential, and a new structure
called Transformer in Transformer (TNT) is proposed. Stude et al. [35] explored image
segmentation methods based on the transformer structure. Liu et al. [36] proposed Swin
Transformer, which can serve as a general-purpose backbone for computer vision.

The performance of deep learning methods is closely related to the amount of training
data, and the same is true for transformer-based methods. To take advantage of large
amounts of unlabeled data, self-supervised pre-training methods for transformer structures
have also been studied. For CNN structures, self-supervised pre-training methods are
mainly based on contrastive learning [37], which is an approach to the pre-train model with
pseudo-labeled data generated from unlabeled data. In contrastive learning, the siamese net-
work architecture and data augmentation were used to construct training samples, and the
CNN model was pre-trained by contrastive loss [38,39]. This idea was generalized to ViT,
and a self-supervised pre-training method was derived for transformer structures, namely
MoCoV3 [40]. However, MoCoV3 requires an empirical training strategy to avoid the
instability problem of the training process. To obtain a simple and effective self-supervised
pre-training method for ViT, He et al. [41] used the idea of mask encoding from BERT [42],
which is a self-supervised pre-training method for NLP. The idea of mask encoding was
implemented by adding random masks on the input image, and reconstructing the masked
part by an encoder-decoder structure. The derived method, namely Masked AutoEncoder
(MAE), can effectively pre-train Vision Transformer on unlabeled data.
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Although Transformer has been widely studied in computer vision, its potential in
PolSAR land cover classification has not been fully exploited. Recently, Dong et al. [43] ex-
plored the application of a shallow ViT (SViT) in PolSAR land cover classification. The good
results of SViT demonstrate the potential and feasibility of the transformer structure in
PolSAR image processing. However, SViT has two drawbacks. The first is that SViT has
only one layer of transformer block, which cannot make full use of the flexible feature rep-
resentation capability of the Transformer structure. Second, the input size is 16× 16, which
limits the receptive field of the model. The receptive of the model is the size of the detail of
the input image that is used for the classification of a pixel. The performance of PolSAR
land cover classification of a model is closely related to the receptive field [44]. A small
receptive field is not sufficient to extract the features of the objects with a large space area,
and the land cover objects usually occupy a large area of pixels in high-resolution PolSAR
images. Moreover, the classification results obtained by a model with a small receptive
field are susceptible to noise and heterogeneity of land cover objects. Therefore, to improve
the performance of PolSAR land cover classification, it is necessary to enlarge the receptive
field of the model.

To solve the aforementioned problems, a PolSAR land cover classification method
based on the a Vision Transformer is proposed in this paper. To make full use of the flexible
feature representation capabilities of ViT, the input size of the proposed model is set to
an empirical size of 224× 224. Moreover, the depth of the proposed model is increased
compared to SViT. However, the growth of the model capacity will lead to an increase
in the difficulty of training, and more training data is needed to ensure the performance
of the model. Although the amount of PolSAR data is large, due to its high annotation
cost, the amount of labeled data is scarce, which is not enough for the supervised learning
of the proposed model. To address this issue, the MAE method is employed to pre-train
the ViT backbone structure of the proposed model with the help of abundant PolSAR
unlabeled images. After the backbone is pre-trained, an image-segmentation-based land
cover classification model is fine-tuned on the labeled dataset.

The remainder of this paper is organized as follows. In Section 2, the existed typical
CNN-based land cover classification method and dilated convolution are briefly introduced,
and the proposed method is described in detail along with the MAE pre-training method.
The results of comparison experiments and ablation experiments are given in Section 3.
Some additional discussions of the experimental results are shown in Section 4. Finally,
the research is concluded in Section 5.

2. Methods

In this section, the representation and preprocessing of PolSAR images are presented
first. The typical CNN-based land cover classification method and dilated convolution are
briefly introduced. Then, the proposed classification method is described in detail. The
Vision Transformer [31], which is the backbone of the proposed model, and the detailed
implementation of the classification method are described. Further, the Masked Autoen-
coder pre-training method [41] is introduced. In the pre-training phase, the ViT backbone
is trained by the MAE method with a large number of unlabeled PolSAR images. Then the
proposed model is fine-tuned on the labeled training set to train the classifier.

2.1. Representation and Preprocessing of PolSAR Image

Each pixel of the PolSAR images contains the polarimetric backscattering information
of the corresponding resolution cell, which can be expressed by the Sinclair matrix S [45]
as follows:

S =

[
SHH SHV
SVH SVV

]
, (1)

where Sqp represents the complex backscattering coefficient when the polarization of the
incident field and scattered field is p and q, respectively (p, q ∈ {H, V}). In the monostatic
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backscattering case, the reciprocity of the target restricts the Sinclair matrix to be symmetric,
which is SHV = SVH . Thus, the Sinclair matrix can be represented by a 3-D polarimetric
target vector k called the Pauli vector, which becomes

k =
1√
2
[SHH + SVV , SHH − SVV , 2SHV ]

T , (2)

where (·)T means the transpose.
Then, the polarimetric coherency matrix T can be obtained by

T =
〈

kk∗T
〉
=

T11 T12 T13
T21 T22 T23
T31 T32 T33

, (3)

where (·)∗ represents the complex conjugate, and 〈·〉 indicates temporal or spatial ensemble
averaging, which is also known as the multilook operation. Noting that matrix T is a
Hermitian matrix, the upper triangular elements of matrix T can be taken as the input of
the network model, which can be expressed in a 9-D real vector f as follows:

f = [T11, T22, T33, Re(T12), Im(T12), Re(T13), Im(T13), Re(T23), Im(T23)], (4)

where Re(·) and Im(·) represent the real and imaginary parts of a complex number, respec-
tively.

Usually there are some numerical problematic pixels in PolSAR images, which may
make the model training process unstable. To avoid this issue, each element of f is con-
strained in a dynamic range, which is [Thmin(i), Thmax(i)] for each fi, where i = 1, 2, · · · , 9
and Thmin(i), Thmax(i) are the 2-th and 98-th percentile of f (i) in the whole image, respec-
tively. Then, f is normalized to zero mean and unit variance in each image.

2.2. Typical CNN-Based Method and Dilated Convolution

A typical CNN-based PolSAR land cover classification method [19–21] usually receives
the polarimetric features in a local window of a pixel as input, and outputs the land cover
type of the pixel. The classification of the whole image is achieved based on a sliding
window that traverses all pixels in the image. Limited by the small number of labeled
samples, the network architectures are usually shallow convolutional neural networks,
and the input size of the network usually does not exceed 16× 16. Therefore, the receptive
fields of these CNN-based methods are limited by the small input size.

For high-resolution images, the small receptive field is not enough to capture the
spatial features of land cover objects. Therefore, to obtain fair comparison results with the
proposed method on high-resolution images, dilated convolution [46] is used to increase
the receptive fields of these CNN-based methods. At the same time, the input image size of
the model is also increased.

The principle of dilated convolution can be illustrated by Figure 1. By introducing a
parameter named dilation rate, the dilated convolution obtains a receptive field larger than
that of the conventional convolution with the same kernel size. For a k-dilated convolution
layer with kernel size w× w, the receptive field of the input to this layer is 1 + k(w− 1).
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(a) (b) (c)

Figure 1. Receptive field of a dilated convolution. (a) 1-dilated convolution (conventional convolu-
tion) with kernel size 3× 3 has a 3× 3 receptive field. (b) 2-dilated convolution with kernel size 3× 3
has a 5× 5 receptive field. (c) 3-dilated convolution with kernel size 3× 3 has a 7× 7 receptive field.

2.3. The Proposed Land Cover Classification Method

The convolutional neural network architecture [19] is widely used in PolSAR land
cover classification, but its performance is limited by the receptive field of the model,
especially in the high-resolution case. To address this problem, we introduce the Vision
Transformer (ViT) [31] as the backbone of the model. Compared with the 16× 16 input size
in [43], to fully exploit the flexible receptive field of the transformer block, we choose a larger
input size of 224× 224. The size of 224 is a good empirical choice, which is also the input
size of the original ViT model [31]. An overview of the ViT-based land cover classification
method is shown in Figure 2. The PolSAR image is firstly sliced into several image patches
and embedded to feature vectors by a linear projection. The feature embedding vectors are
then fed to a feature encoder consisting of alternating stacks of multiheaded self-attention
(MSA) and multi-layer perceptron (MLP) blocks further to extract the long-range correlation
features of the image. Finally, each image patch is classified by a linear projection, and the
final classification result is obtained by upsampling.

Figure 2. The scheme of the proposed PolSAR image land cover classification method.

2.3.1. Feature Embedding

In the ViT model, the subsequent feature encoder receives a sequence of token embed-
dings; thus, an image feature embedding is performed to transform a 3-D PolSAR image
into 2-D token embeddings. As shown in Figure 2, a PolSAR image I ∈ RH×W×C is sliced
into Np patches Ii ∈ RP×P×C, where i ∈ 1, · · · , Np and Np = HW/P2 is the number of
image patches. Each image patch Ii is then embedded into a 1-D vector in R(PPC) and
transformed into a 1-D patch embedding vector E(i)

p ∈ RL by a learnable linear projection
WE ∈ R(PPC)×L.

Moreover, each image patch is given a corresponding position embedding Ei
pos ∈ RL.

The 2-D position embedding is used in this paper, which is obtained by applying a sine
and cosine transform to the location of the corresponding patch [27,31], as expressed in
Equations (5) and (6).
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As the sequence input of the subsequent feature encoder cannot maintain the position
information of the image patch, the final feature embedding vector E(i)

f ∈ RL for an image

patch is obtained by adding the image patch embedding E(i)
p and position embedding Ei

pos,
so as to fuse the image information and position information of the patch. By performing the
above operation on all Np image patches and concatenating these embeddings, the whole
image is transformed into a 2-D feature embedding z(0) ∈ RNp×L. The feature embedding
process described above can be expressed as follows:

w =
[

M−
1

L/4 M−
2

L/4 · · · M−1
]
, (5)

E(i)
pos =

[
sin x(i)w cos x(i)w sin y(i)w cos y(i)w

]
, (6)

E(i)
f = embed

(
I(i)
)

WE + E(i)
pos, (7)

z(0) =
[
E(1)

f E(2)
f · · · E

(Np)

f

]
, (8)

where w ∈ RL/4 is a frequency vector for position embedding, and M is a parameter which
is usually chosen as M = 10, 000 in many implementations [27]. x(i), y(i) are the locations of
the i-th image patch. To be pointed out, the class token is not used in the proposed method.

2.3.2. Feature Encoder

The feature encoder consists of layers of transformer blocks, as is shown in Figure 3,
which is a cascade of multiheaded self-attention (MSA) block and MLP blocks. In each
transformer block, the input features are firstly normalized by LayerNorm [47] and then
fed into an MSA block.

Figure 3. The structure of the transformer block.

The MSA, which plays a similar role as convolution layers in CNN, can extract the
spatial features of the images by capturing the long-range interaction between different
image patches. The interaction information is represented by the weighted sum of the
feature embeddings between patches, and the calculation of the weights is implemented
by the self-attention block. Specifically, the self-attention block (SA) maps the feature
embedding xi ∈ RL of each image patch into query vector qi ∈ RL, key vector ki ∈ RL,
and value vector vi ∈ RL, through learnable linear matrix WQ ∈ RL×L, WK ∈ RL×L,
and WV ∈ RL×L, respectively. Further, the weights between patch i and patch j are
generated using the scaled dot-product function between the query vector qi and the
key vector kj, and the output yi is obtained by the weighted sum of the value vectors
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vj, j = 1, 2, · · · , Np. If the vectors xi, qi, ki, and vi are packed together into the matrix forms
X, Q, K, and V ∈ RNp×L, then SA module can be expressed in matrix form as follows,[

Q K V
]
= X ·

[
WQ WK WV

]
, (9)

Output = SA
(
X; WQ, WK, WV

)
= softmax

(
QKT
√

L

)
V, (10)

where softmax is used to scale the dot product to valid weights, and 1√
L

is a scaling factor
for numerical stability. Since the SA module is based on a global weighted summation,
unlike the convolution operation which has the a limited receptive field, it is able to capture
image spatial correlation features globally.

The multiheaded self-attention block consists of multiple SAs in parallel. Suppose
that the MSA has nhead heads and the input of the l-th MSA in the model is z(l−1) ∈ RNp×L,

then the MSA will cut z(l−1) into nhead slices z(l−1)
i ∈ RNp× L

nhead , i = 1, · · · , nhead. Each slice

z(l−1)
i is processed with a separate SA block. Then the nhead outputs are concatenated and

fused by a linear projection WO ∈ RL×L. The MSA can be expressed as follows,

MSA
(

z(l−1)
)
=
[
SA1

(
z(l−1)

1

)
SA2

(
z(l−1)

2

)
SA3

(
z(l−1)

3

)
SA4

(
z(l−1)

4

)]
·WO. (11)

MSA allows for a better exploitation of the correlations in the embedded data through the
joint representation of separate self-attention at separate views.

In the transformer block, after MSA processing of the embedding vector, it is also layer
normalized and transformed by an MLP block. The MLP block is implemented by a fully
connected layer, followed by a GeLU activation layer [48], and another fully connected
layer. The data dimension of the intermediate layer is L · rMLP, where rMLP is a pre-defined
scale factor. Thus, the processing of a complete transformer block can be described by the
following expression,

z(l) = MLP
(

LN
(

MSA
(

LN
(

z(l−1)
))))

, (12)

where LN(·) represents the LayerNorm layer.

2.3.3. Land Cover Classifier

Instead of using a sliding window to capture the image patch centered on each pixel
and classify all patches [19–24,43,44,49,50], the proposed method uses the segmentation
method to implement pixel-by-pixel classification, i.e., the proposed method will assign
a corresponding category to each pixel of the input image in a single model forward
propagation. As shown in Figure 2, the feature z(D) ∈ RNp×L put out by the feature encoder
with D blocks is a stack of the feature vectors in RL corresponding to each image patch.
A linear classifier is used to assign each feature vector a prediction vector, which consists
of the predicted probabilities for each category, and bilinear upsampling is performed to
obtain the final classification result of each pixel in the image.

In the training phase, the training set is the images with size H ×W obtained by
random cropping around the training sample pixels. In the inference phase, large PolSAR
images are sliced into several blocks with size H ×W. Then, the classification results of the
blocks can be stitched together to obtain the results of the large PolSAR images. An overlap
of 20% is introduced when the images are sliced to prevent inaccurate classification near
the edge part of the image block. For pixels that appear in the overlapping area of multiple
blocks, the classification result is determined by the superposition of the prediction vectors
given by each block.

Under the image-segmentation-based classification scheme, the choice of patch size P
will affect the resolution of the classification map. As the process of bilinear interpolation
does not introduce additional knowledge, the pixel-by-pixel classification result totally
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depends on the classification results of small patches with size P× P. Consequently, objects
much smaller than P× P are difficult to classify correctly, which may result in a loss of
resolution for the classification map. . However, land covers usually have consistent types
within a certain range, so this loss of resolution on the classification map usually does not
cause a degradation in classification performance. Moreover, as the patch size P decreases,
the number of image patches Np increases, leading to a rapid increase in the number of
parameters of the ViT model, which will make the training progress more difficult. With a
combination of the above factors, P = 8 is empirically chosen as the image patch size.

The immediate advantage of the image-segmentation-based approach over the method
based on sliding windows is that only several forward propagations are required to classify
a large image, leading to highly time efficiency for the inference of the model. For the sliding
window method, to assign a class to each pixel in the image, one forward propagation
is required for each pixel, resulting in the forward propagation of the model needing to
be computed many times. When processing high-resolution PolSAR images, the model
requires a large receptive field to obtain good classification performance, so each forward
propagation of the model needs to process a large-sized input, which will cause a severe
increase in the inference time consumption of the sliding-window-based method.

A quantitative comparison of inference time efficiency is shown in Table 1. The pro-
posed method is compared with a sliding-window-based CNN method on an image of
2500× 2500 pixels. The sliding-window-based CNN is implemented according to [19].
The hardware device used is a high performance server with a CPU of Intel(R) Core(TM)
i9-10940X @ 3.30 GHz and a GPU of Nvidia RTX 3090 Ti, and the software implementation
is based on Pytorch [51]. As can be seen from the quantitative results, although the sliding-
window-based method is based on a small convolutional network whose computation cost
in a single forward propagation is low, its total computation cost for the whole 2500× 2500
image is similar to the proposed method. For time efficiency, the costs of file I/O should
also be taken into account, so the time efficiency of the proposed method is much higher
than that of the sliding-window-based method. The advantage in inference time efficiency
is the main reason why the proposed method adopts a segmentation-based classification
method instead of the sliding-window-based method, which is more commonly used in
PolSAR land cover classification.

Table 1. The time consumptions and computation costs for inferencing a 2500× 2500 PolSAR image.

Time Consumption (s)
The Required

Numbers of Foward
Propagations

Computation Costs in
a Single Propagation

(FLOP)

Computation Costs
for the Whole Image

(FLOP)

Silding-window-based
CNN 28.55 6.25 M 0.35 M 2.19 T

The proposed method 10.43 196 12.76 G 2.50 T

2.4. Pre-Training Method

ViT-based models usually only perform well with a large number of training samples.
However, the amount of labeled PolSAR images is usually small due to the high labeling
cost of PolSAR images. However, the amount of unlabeled data is relatively large. To ad-
dress this problem, the Masked Autoencoder (MAE) self-supervised training method [41]
is used to pre-train the proposed model on unlabeled data.

The framework of the MAE self-supervised pre-training method is shown in Figure 4.
Similarly to the common autoencoder method, the MAE method reconstructs the original
input based on the encoding features and trains the encoder by minimizing the recon-
struction error. Unlike the common autoencoder, the MAE method is designed specifically
for ViT. In the feature encoding stage, the image patches are randomly sampled and the
remaining patches are masked. Only the unmasked patches are fed into the subsequent
Transformer feature encoder. Assuming that Gmask is a random permutation of the patch
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index [1, · · · , Np], and Nkeep is the number of unmasked patches, then the encoding of the
masked image can be expressed as

Gmask :
[
1, · · · , Np

]
→ RandomPermutation

([
1, · · · , Np

])
, (13)

z(0)enc =
[
z(0)(Gmask(1), :), · · · , z(0)

(
Gmask(Nkeep), :

)]
, (14)

z(i)enc = TransformerBlock(i)
enc

(
z(i−1)

enc

)
, (15)

where z(0) is the feature embedding of the input image in Equation (8), and
TransformerBlock(·) represents the transformer block given in Equation (12).

Figure 4. The pre-training method of the proposed classification model.

The decoder consists of several transformer blocks with lower feature dimensions Ldec.
Suppose the feature dimension of the encoder is L. In the decoding stage, both encoded
unmasked patch embeddings and mask tokens are linear mapped by Wed ∈ RL×Ldec

and together fed into the decoder. The mask tokens are zero vectors that indicate the
presence of the missing patches in the encoding stage. Moreover, the position embedding
is added to both unmask patch embeddings and the mask tokens before being fed into the
decoder. Finally, the output of the decoder is mapped into RNp×(P2) and expanded into a
reconstructed image Î of size H ×W. The processing of the decoder can be expressed as

ẑ(l)enc =
[
z(l)enc, · · · , 0(Np−Nkeep)×L

]
, (16)

z(0)dec =
[
ẑ(l)enc

(
G−1

mask(1), :
)

, · · · , ẑ(l)enc

(
G−1

mask(Np), :
)]
·Wed + Epos, (17)

z(i)dec = TransformerBlock(i)
dec

(
z(i−1)

dec

)
, (18)

Î = expand
(

z(ldec)
dec ·Wdec

)
, (19)

where z(l)enc is the output feature vector of the l-layer encoder.
The reconstruction error is measured by the mean square error. As the diagonal

and non-diagonal elements of the polarimetric coherency matrix have different physical
interpretations, different weights are given to the reconstruction errors of the diagonal and
non-diagonal elements. According to the notation of Equation (4), the reconstruction error
can be expressed as

Lossrec =
3

∑
i=1

(
f̂ (i)− f (i)

)2
+ λ

9

∑
i=4

(
f̂ (i)− f (i)

)2
(20)

where f is the vector representation of the origin coherency matrix, and f̂ is the vector
representation of the reconstructed coherency matrix.

Compared with the autoencoder without random masking, the MAE method uses
the unmasked patches to reconstruct the masked patches, which means the reconstruction
problem cannot be solved by trivial extrapolation from the input. The model will be trained
to pay more attention to the implicit association information between image patches rather
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than the internal local features in the patches. Therefore, the model derived from MAE can
achieve good feature representation with high-level semantics.

3. Results
3.1. Data Description

To evaluate the classification performance, two datasets are used for the experiments.
The first is the PolSAR images with P-, L-, and C-band, acquired in Flevoland, Netherlands
by NASA/JPL AIRSAR. The pixel spacing is 6.66 m in range and 12.16 m in azimuth.
The region of interest (ROI) has a size of 1100× 1024 pixels. The land cover mainly includes
several types of crops as well as buildings and roads, and the ground truth is from [52].
The geographic location of the images, the pseudo Pauli images of the three bands, and the
ground truth are shown in Figure 5.

(a) (b) (c)

(d) (e) (f)

Figure 5. The Flevoland dataset. (a–c) The pseudo Pauli images of P-, L-, and C-band, respec-
tively. (d) The geographic location of the dataset (marked with a red frame), which is centered at
(52◦22′00′′N, 5◦23′16′′E). (e) The ground truth. (f) The colormap of the 16 categories.

The second dataset is a series of PolSAR images with P-, L-, S-, C-, X-, and Ka-band,
acquired in Hainan, China by the Aerial Remote Sensing System of the Chinese Academy
of Sciences (ARSSCAS). The images of L-, C-, and Ka-band are used in the experiments.
The resolution in slant range and the azimuth of L-, C-, and Ka-band are (0.44 m, 0.60
m), (0.44 m, 0.20 m), and (0.18 m, 0.12 m), respectively. The ROI includes 3 images with
size 12, 500× 10, 600 pixels, which are registered between different bands, and the pixel
spacing in slant range and azimuth are 0.18 m and 0.12 m, respectively. The ground truth
includes six categories: buildings, crops, moss, trees, roads, and water. The annotations are
obtained by combining the in-site survey and the corresponding optical remote sensing
images. The geographic information, the pseudo Pauli images of the three images in the
ROI with L-, C-, and Ka-band, and their corresponding ground truth are shown in Figure 6.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 6. The Hainan dataset, including three images. (a,e,i) The pseudo Pauli images of L-band.
(b,f,j) The pseudo Pauli images of C-band. (c,g,k) The pseudo Pauli images of the Ka-band. (d,h,l)
The ground truth images. (m) The geographic location of the three images of the dataset (marked
with three frames). The researching area is centered at (18◦43′37′′N, 110◦24′28′′E). (n) The colormap
of the six categories.

3.2. Pre-Training Settings and Results

In the pre-training stage, a huge amount of unlabeled PolSAR images are used, includ-
ing PolSAR images of different bands and resolutions acquired by AIRSAR, Radarsat-2,
GaoFen-3, and the ARSSCAS. The band of the data varies from P-band to Ka-band, and the
resolution varies from 10 m to 0.1 m. The total amount of the original data is about 500 GB.

For the model parameters, the input image size is chosen as H = W = 224 and
the patch size is P = 8. The embedding dimension is L = 576, and the number of
heads of the MSA is nhead = 12. For the decoder, the embedding dimension and heads
number are 224, 16, respectively. The layers of the decoder are set to 2. The depth and
mask ratio of the encoder are compared for several parameters. Moreover, whether to
perform pixel normalization in the reconstruction loss [41] is compared. For the training
parameters, the number of training epochs is 500, including 20 warm-up epochs. The base
learning rate is chosen to be 0.001, and the learning rate decays with a half-cycle cosine
function. The optimizer is the AdamW [53] method, with a weight decay coefficient of 0.05.
Data augmentation including random cropping, random flipping, and adding Gaussian
noise is performed while training. In consideration of the speckle noise in the original
PolSAR image, a Gaussian filter with σ = 1 is performed before the image is used as the
reconstruction target.

The curves of the pre-training loss are shown in Figure 7. Figure 7a shows the loss
curves for the case of different encoder depths (the number of transformer blocks in the
encoder) with a fixed masking rate of 80% and no pixel regularization, which indicates
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that the depth of the encoder has little effect on the pre-training procedure. Figure 7b
shows the loss curves for the case of different mask ratios and different approaches of pixel
normalization, with a fixed encoder depth of 4. It can be seen that at mask ratio below 80%,
the loss curve shows an unexpected inflection point at the end of the warm-up stage but
does not affect the convergence of the final pre-training results. In addition, the loss at the
end of the pre-training stage is smaller at lower mask ratios. Although the classification
performance of the model does not depend on the loss in pre-training, the shape of the loss
curve shows that the pre-training results are steadily convergent. A convergent pre-training
result is the basis for discussing the subsequent classification performance.

(a) (b)

Figure 7. The pre-training loss curves. (a) The loss curves at different model depths, with a fixed
mask ratio 0.8 and no pixel normalization. (b) The loss curves at different mask ratios and different
approaches of pixel normalization, with a fixed depth 4.

Figure 8 shows the pre-training results of the model from the perspective of image
reconstruction. It can be seen that the image reconstruction performance is similar when
the depth of the encoder varies from 1 to 7. When the mask ratio increases from 20% to
80%, although the model cannot reconstruct the details, it can still recover the semantic
information of the image. The results indicate that the model can extract semantic features
from the fragments of the original images and use the correlation information between
image patches to reconstruct the image.

(a) (b) (c)

(d) (e) (f)

Figure 8. The reconstructed images of the pre-training models, with no pixel normalization. The left,
middle, and right columns are the original image, the masked image, and the reconstructed image,
respectively. (a) Mask ratio = 80, Depth = 1. (b) Mask ratio = 80, Depth = 4. (c) Mask ratio = 80, Depth
= 7. (d) Mask ratio = 20, Depth = 4. (e) Mask ratio = 40, Depth = 4. (f) Mask ratio = 60, Depth = 4.
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3.3. Land Cover Classification Experiments
3.3.1. Comparison Experiments

In the comparison experiments, the hyperparameters of the proposed method are set
to Depth = 4 and Mask ratio = 80, without pixel normalization. The compared methods
include WMM [7], SVM [14], CNN [19], CVCNN [20], 3DCNN [21], and SViT [43]. For all
deep learning methods, the optimizer is chosen as AdamW, with a weight decay coefficient
of 0.05. The initial learning rate is 0.001 and decays with a half-cycle cosine function.
The number of training epochs is 100, with 10 warm-up epochs.

In the Flevoland dataset, 1% of the total labeled samples were randomly selected as
training samples, which is 223 training samples for each class. The evaluation metrics
include classification accuracy for each category, the overall accuracy, and the kappa
coefficient. The experiments were carried out on the P-, L-, and C-band separately. Due to
the small training sample size, the experiments were repeated 50 times to avoid randomness.
The comparisons of results are shown in Tables 2–4, and the classification images are shown
in Figure 9.

As seen from the classification results, the performance of the WMM and SVM were
poor for categories with special spatial structures such as roads and buildings. The reason
is that WMM and SVM only use the features of a single pixel. Moreover, for the crop
categories, SVM and WMM can hardly achieve an accuracy of more than 90% due to
the influence of speckle noise. As a result, there is a significant gap between their overall
accuracy and that of the deep learning methods.

Among the four deep learning methods used as comparisons, the SViT has the best
performance. In P- and C-band, the SViT had 4% greater overall accuracy compared
with the other three methods. In the categories of beet, buildings, roads, and maize,
the accuracies of SViT are significantly higher than the other three deep learning methods.
In L-band, CNN, CV-CNN, and SViT all achieve about 95% overall accuracy, and obtain
more than 95% accuracy in all the categories other than beet, grass, building, and roads.

Table 2. Classification results on the P-band Flevoland dataset.

Method CNN [19] CV-CNN
[20] 3D-CNN [21] SViT [43] WMM [7] SVM [14]

The
Proposed
Method

Potato 93.61 93.03 87.37 94.68 80.13 71.01 98.02
Beet 76.77 73.51 53.26 88.84 20.73 20.95 98.45

Wheat 95.89 95.32 91.60 97.44 88.74 88.89 99.40
Barley 94.33 95.00 90.93 98.10 54.73 35.52 99.19
Beans 95.90 96.02 81.23 99.67 67.71 40.30 99.92
Flax 92.98 94.30 88.25 99.23 51.37 33.73 99.93
Peas 94.63 92.71 84.26 98.67 75.50 75.59 100.00

Rapeseed 98.17 98.49 97.98 99.15 95.28 99.33 99.26
Building 87.26 91.73 87.71 95.58 74.85 88.17 99.88

Maize 90.22 87.40 72.67 97.74 52.77 54.36 100.00
Grass 82.33 81.63 61.19 92.77 9.53 32.19 97.93
Fruit 90.40 93.93 90.50 96.94 86.92 87.23 99.33

Lucerne 95.24 95.12 87.63 99.68 78.93 23.79 100.00
Oats 99.63 99.89 98.98 99.95 89.08 77.68 100.00

Onions 96.01 96.83 80.63 99.76 36.65 44.55 100.00
Roads 74.09 76.14 64.09 82.21 32.40 29.95 92.24

Kappa 0.8863 0.8861 0.8022 0.9373 0.5948 0.5455 0.9789
OA 90.00 89.97 82.44 94.52 63.08 58.26 98.16
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Table 3. Classification results on the L-band Flevoland dataset.

Method CNN [19] CV-CNN
[20] 3D-CNN [21] SViT [43] WMM [7] SVM [14]

The
Proposed
Method

Potato 96.60 96.71 93.37 97.28 96.65 97.91 99.19
Beet 91.41 92.37 79.14 95.32 36.32 57.08 97.27

Wheat 96.28 96.68 93.23 97.62 85.13 94.71 99.71
Barley 97.55 97.83 95.39 98.34 84.32 52.90 99.55
Beans 99.51 99.14 92.27 99.79 97.42 97.86 100.00
Flax 99.33 99.74 99.50 99.99 93.63 98.20 100.00
Peas 98.50 98.73 90.78 99.59 75.29 78.07 99.97

Rapeseed 99.54 99.68 99.38 99.70 92.42 99.64 99.94
Building 89.43 92.83 87.32 95.97 31.25 67.63 98.71

Maize 97.78 97.95 91.90 99.50 45.45 75.38 100.00
Grass 92.41 93.17 85.51 95.12 29.64 67.52 97.49
Fruit 96.71 98.38 97.28 99.03 96.54 91.69 99.79

Lucerne 99.76 99.85 98.67 99.93 92.25 94.36 100.00
Oats 100.00 99.97 99.90 99.99 99.90 99.98 100.00

Onions 99.09 98.96 93.78 99.85 77.63 36.86 100.00
Roads 80.37 83.34 70.95 86.93 26.23 24.35 93.29

Kappa 0.9366 0.9451 0.8878 0.9594 0.6969 0.7158 0.9831
OA 94.46 95.20 90.12 96.46 72.76 74.41 98.52

Table 4. Classification results on the C-band Flevoland dataset.

Method CNN [19] CV-CNN
[20] 3D-CNN [21] SViT [43] WMM [7] SVM [14]

The
Proposed
Method

Potato 92.74 95.52 93.16 96.58 83.71 95.24 99.27
Beet 74.92 81.31 69.77 89.94 2.00 30.58 98.41

Wheat 87.34 90.89 88.86 93.19 85.19 32.94 99.64
Barley 86.74 90.91 89.10 95.48 52.19 55.98 99.55
Beans 99.80 99.96 99.70 99.95 99.92 100.00 100.00
Flax 99.62 99.79 99.66 99.90 90.57 99.30 100.00
Peas 95.78 97.58 90.88 99.52 85.85 65.81 100.00

Rapeseed 99.87 99.86 99.62 99.69 100.00 99.70 99.99
Building 83.82 88.04 82.07 95.27 26.78 49.19 97.07

Maize 87.87 90.98 83.86 97.16 44.64 29.53 100.00
Grass 90.76 92.92 89.51 95.91 41.17 56.01 99.04
Fruit 82.71 91.18 87.81 97.60 32.24 47.35 99.81

Lucerne 86.12 94.39 89.91 99.11 53.72 25.24 100.00
Oats 99.46 99.91 99.96 99.99 98.82 96.13 100.00

Onions 99.61 99.58 99.28 99.98 58.62 89.53 100.00
Roads 75.62 80.02 70.60 83.27 20.35 12.56 92.36

Kappa 0.8541 0.8947 0.8514 0.9309 0.5584 0.5053 0.9839
OA 87.08 90.73 86.85 93.94 59.59 53.92 98.60

For the proposed method, the classification performance is much better than the other
four compared deep learning methods. An overall accuracy of about 98% is obtained in all
three bands. Moreover, in the roads category, which is not well classified by the other four
deep learning methods, the accuracy achieved by the proposed method is more than 90%.
Moreover, as seen in Figure 9, in the crop region, the classification results of the proposed
method are smooth, with almost no misclassification , while the other four deep learning
methods have significant misclassifications.



Remote Sens. 2022, 14, 4656 15 of 23

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 9. The classification image of the Flevoland dataset. The first to third rows are the classification
results of P-, L-, and C-band, respectively. The different columns are the results of different methods.
(a,h,o) CNN [19]. (b,i,p) CV-CNN [20]. (c,j,q) 3D-CNN [21]. (d,k,r) SViT [43]. (e,l,s) WMM [7].
(f,m,t) SVM [14]. (g,n,u) The proposed method.

For the Hainan dataset, the training set consists of 2000 pixel samples per category,
and the proposed method is compared with CNN, CV-CNN, 3D-CNN, and SViT. Due
to the high resolution of the Hainan dataset, the small receptive fields of the compared
methods may make them unable to extract spatial features effectively. To achieve fair
comparison results with the proposed method, the four compared methods were modified
to have a larger receptive field. The 4-dilated convolution was used to replace the common
convolution in CNN, CV-CNN, and 3D-CNN. The input size is increased to 64 × 64.
To distinguish from the original compared methods, the modified methods are called
CNN-Dilated, CV-CNN-Dilated, and 3D-CNN-Dilated methods, respectively. For the SViT
method, the patch size is increased from 1 to 4. The input features are simplified so that only
the 9 real numbers of the coherency matrix are fed to the network, and the dimension of
the embedding vector is increased to 144. The modified SViT method, namely SViT-Large,
also has an input size of 64× 64. The four modified methods are also compared with
the proposed method. The comparisons of classification results are shown in Table 5 and
Figure 10.

From the experimental results of the Hainan dataset, it can be seen that none of
the four original compared deep learning methods can obtain a reasonable classification
performance. The water category has the highest accuracy, reaching hardly 80%. As seen
in Figure 9a–d, the four compared methods produce a large number of misclassifications
between the categories of trees, mosses, and crops. There are also misclassifications between
the roads and water category, which hardly produce backscattering.

As seen in Table 5, the four modified methods all received substantial performance
improvements, indicating that the expansion of receptive fields can significantly improve
the classification results in the case of high-resolution PolSAR images. However, the overall
accuracies of the modified methods are still below 90% in all three bands. For most
categories, the classification accuracy is between 70% and 80%. As can be seen in Figure 10,
there are still obvious misclassifications between the trees, crops, and moss categories.

For the proposed method, it can be seen that superior classification performance is
achieved in all six categories of the Hainan dataset. For the categories of roads and moss,
which are not well classified by the comparison method, the proposed method gets an
improvement of about 10% to 20% in accuracy. In terms of overall accuracy, the proposed
method achieves about 10% performance improvement compared with the comparison
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method in all three bands. From Figure 10, it can be seen that the proposed method is
able to perform the land cover classification accurately, and the improvement is significant,
especially in the pond area in the second image and the urban area in the third image
(marked with a red ellipse). The results show the superiority of the proposed method in
high-resolution image land cover classification.

Table 5. Classification results on the Hainan dataset.

Method CNN
[19]

CV-
CNN
[20]

3D-
CNN
[21]

SViT
[43]

CNN-
Dilated

CV-
CNN-

Dilated

3D-
CNN-

Dilated

SViT-
Larger

The Pro-
posed

Method

L

Buildings 42.73 46.58 45.37 54.58 84.90 81.02 75.02 83.84 95.25
Crops 47.55 56.17 58.31 61.30 78.55 78.45 80.55 78.23 95.39
Moss 20.81 20.70 17.06 26.12 60.83 60.59 45.24 60.55 87.70
Roads 49.09 53.23 53.51 56.67 73.47 70.18 68.18 71.26 91.29
Trees 64.20 73.64 76.30 76.54 89.37 90.99 89.91 87.59 96.85
Water 76.41 79.63 79.09 79.68 87.15 85.56 83.05 83.98 95.50

Kappa 0.5017 0.5619 0.5673 0.5932 0.7698 0.7670 0.7321 0.7492 0.9296
OA 58.44 64.13 64.65 66.93 82.05 81.81 78.94 80.31 94.71

C

Buildings 52.72 57.49 51.84 69.94 89.96 86.90 80.21 90.53 97.44
Crops 38.68 43.59 43.90 54.36 84.03 85.46 82.13 84.61 96.86
Moss 36.63 39.32 37.77 44.52 73.44 70.59 55.57 71.43 94.12
Roads 49.81 54.39 59.61 61.56 81.50 77.43 75.77 82.78 94.72
Trees 44.55 58.25 62.92 60.91 85.26 85.65 79.40 82.18 97.30
Water 75.06 77.26 78.06 80.53 94.34 93.09 84.10 91.29 97.99

Kappa 0.4463 0.5089 0.5241 0.5639 0.8241 0.8179 0.7254 0.7993 0.9592
OA 52.83 58.94 60.43 64.07 86.47 85.97 78.30 84.44 96.96

Ka

Buildings 57.95 66.84 65.04 74.00 91.31 88.75 84.14 92.19 97.89
Crops 42.48 49.47 45.42 63.75 87.47 86.28 74.53 84.40 97.14
Moss 43.73 53.76 57.66 61.41 78.22 76.52 63.67 77.88 94.60
Roads 44.76 52.81 47.91 60.12 86.34 83.71 72.70 84.63 95.71
Trees 53.46 59.59 58.44 66.55 87.47 83.41 75.05 86.83 97.24
Water 74.76 77.50 76.22 79.59 93.59 92.56 84.10 89.89 98.70

Kappa 0.4888 0.5499 0.5373 0.6268 0.8475 0.8221 0.7049 0.8205 0.9642
OA 56.94 62.68 61.47 69.65 88.32 86.27 76.52 86.13 97.34

(a) (b) (c)

(d) (e) (f)

Figure 10. Cont.
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(g) (h) (i)

Figure 10. The classification images of the Hainan dataset. In each subfigure, the different columns are
the results of the 3 images in the ROI, and the first to third rows are the results of Ka-, C-, and L-band,
respectively. (a) CNN. (b) CV-CNN. (c) 3D-CNN. (d) SViT. (e) CNN-Dilated. (f) CV-CNN-Dilated.
(g) 3D-CNN-Dilated. (h) SViT-Larger. (i) The proposed method. The areas with significant improve-
ment are marked with the red ellipses.

3.3.2. Ablation Experiments

To verify the effects of hyperparameters in the proposed method, ablation experiments
were carried out on the Hainan dataset. The training settings are the same as for the
aforementioned comparison experiments. The hyperparameters compared in the ablation
experiments include whether pre-training is used, the depths of the model, the masking
ratio in the pre-training stage, and whether pixel normalization is used in pre-training.
Figure 11 shows the results of the ablation experiments.

(a) (b)

Figure 11. The results of ablation experiments. (a) The overall accuracy at different model depths
and whether pre-training is used, with a fixed mask ratio 0.8 and no pixel normalization. (b) The
overall accuracy at different mask ratios and different approaches of pixel normalization, with a fixed
model depth 4.

In Figure 11a, the models are compared based on overall accuracy at varying model
depth and also whether or not pre-training was applied. It can be seen that pre-training
improves the model classification performance significantly in almost all cases. Moreover,
the effectiveness of pre-training increases as the depth of the model increases. The pre-
training provides an improvement on the overall accuracy of about 1% to 2% at model
depths below 3, while the improvement is more than 2% at model depths more than 4.

For model depth, it can be seen that in the absence of pre-training, the classifica-
tion performance does not improve significantly as the model depth increases beyond 2,
and sometimes decreases slightly. However, in the pre-trained case, the overall accuracy
is almost saturated only after the model depth reaches 4. It indicates that the main factor
limiting the performance is not the complexity of the model, but the amount of training
samples. When pre-training is not used, the size of the training set is so small that all
information in the training set can be totally exploited by a 2-layer transformer model and
this results in a saturated performance. When a proper unsupervised pre-training method
is introduced, because of the contribution of the image information in a large amount of
unlabeled data, better classification performance can be achieved by increasing the model
depth to 4.
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The ablation results for the mask ratio and the choice of whether to use pixel normaliza-
tion or not during pre-training are shown in Figure 11b. The optimal mask ratio is around
80%. When the mask ratio is increased from 20% to 80%, the classification performance
has a trend to improve, and the increase in overall accuracy is about 1%. For the pixel
normalization, the effect on the overall accuracy is negligible.

4. Discussion
4.1. Influence of Receptive Field

Based on the experimental results, it can be seen that the receptive field of the model
has a great influence on the classification performance. In the experimental results of the
Flevoland dataset (Figure 9), it can be seen that there are significant small misclassification
regions in the results of the compared method, and this phenomenon almost does not exist
in the proposed method. The reason is that the proposed method uses inputs with size 224
and the transformer structure can extract features in the global range of the input image,
which is equivalent to having a large receptive field. Compared with the other four deep
learning methods, whose receptive fields only have sizes of 8× 8 or 16× 16, the proposed
method is less sensitive to the speckle noise and the heterogeneity of the land covers.

Despite the shortcoming of the small receptive field of the compared methods, their
overall accuracies in the Flevoland dataset are still above 90%. However, on the Hainan
dataset, the overall accuracies of the four original compared methods all dropped signifi-
cantly. When dilated convolution was introduced to CNN-based methods to enlarge the
receptive fields, the size of the convolution kernel do not increase, but the overall accuracy
rose to between 80% and 90%. Similarly, increasing the input size of SViT also resulted in a
significant performance improvement. This indicates that when processing high-resolution
images, a large receptive field is necessary for the network model to extract the spatial
features effectively.

Figure 12 intuitively illustrates the relationship between the receptive field and the
spatial features of the PolSAR image at different resolutions. The red frames in Figure 12
are patches of 32× 32 pixels. In the Flevoland dataset (with a pixel spacing of 6.66 m in
range and 12.16 m in azimuth) , it can be seen that the patch in the red frame contains the
local spatial structure information of the image (Figure 12a) . However, in the Hainan
dataset (with pixel spacings of 0.18 m in range and 0.12 m in azimuth) , it is difficult
to distinguish three patches obtained from roads, ponds, and buildings only by spatial
structure information. Therefore, enlarging the receptive field is an intuitive approach to
make use of spatial information in high-resolution images efficiently.

(a) (b)

Figure 12. The image patches of two datasets. The sizes of image patches in the red frame are 32× 32.
(a) The Flevoland dataset, with pixel spacings of 6.66 m in range and 12.16 m in azimuth. (b) The
Hainan dataset, with pixel spacings of 0.18 m in range and 0.12 m in azimuth.

To further study the effect of receptive field size on spatial feature extraction, the
Grad-CAM method [54] is used to visualize the class activation map in the model. The class
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activation map can display the area that the model focuses on for a certain category, and in
turn, it is possible to know whether the model learns effective features by analyzing
the regions that the model focuses on. Visualizations of CNN, CNN-Dilated, and the
proposed method are performed, as is shown in Figure 13. To adapt the Grad-Cam method,
the proposed model is adjusted to output the average classification results for a specific
region. It can be seen that for the CNN method with a small input size of 8× 8, the activation
map is almost irregular, which indicates that the model can hardly extract effective spatial
features. As the dilated convolution is used and the receptive field is expanded, some
spatial structure can be observed on its activation map, demonstrating that increasing the
receptive field helps the model learn effective spatial features. For the proposed method,
owing to the large input size and the Transformer structure that can extract features globally,
the activation map has an apparent correspondence with the land cover, indicating that the
proposed method can make full use of the spatial features in the image.

(a) (b) (c)

Figure 13. The visualization of the activation maps. (a) The 8× 8 input images (left) and activation
maps (right) of the corresponding category of CNN. (b) The 64× 64 input images (left) and activation
maps (right) of the corresponding category of CNN-Dilated. (c) The 224× 224 input images (upper
left), the corresponding classification map (upper right), and the activation maps (bottom) when the
model output is an average of the classification results in the red/blue frames.

4.2. Potential Overfitting Problem

The classification performance of deep learning models can be affected by potential
overfitting problems. In the experiments, the AdamW method with weight decay is adopted
to prevent overfitting. Considering the huge performance difference between the compared
methods on the Flevoland dataset and Hainan dataset, it is necessary to confirm further
whether the model is overfitting.

Figure 14 shows the curves of training loss and overall accuracy on C-band data. It
can be seen from the curves that, with the increase in the training epoch, the training loss
gradually decreases, and the overall accuracy is always in an increasing trend. In the
compared methods and the proposed method, no obvious overfitting was observed.

Comparing the training curves of the same method on the Flevoland dataset and
the Hainan dataset in Figure 14, it can be seen that the four original compared methods
converged to a large loss value on the Hainan dataset. It indicates that the poor performance
of the original compared methods on the Hainan dataset is not caused by overfitting, but by
the poor fitting results limited by the model receptive fields.
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(a) (b)

Figure 14. The curves of training loss and overall accuracy. (a) The curves of the four compared
methods on the C-band of the Flevoland dataset and Hainan Dataset. (b) The curves of the four
modified compared methods and the proposed method on the C-band of Hainan Dataset.

4.3. Expected Performance on Complicated Classification Tasks

Although the proposed model is specific to the PolSAR land cover classification
task, the feature encoder of the proposed method is pre-trained on unlabeled data in a
task-agnostic way. Therefore, the derived feature encoder can be used for a variety of
downstream tasks theoretically, including more complex land cover classification tasks,
such as classification with noisy labels, multi-label classification, and the domain adaption
problem between different sensors. It also has the potential to be used in other classification
tasks, such as the classification and recognition of ships and vehicles.

From the perspective of data characteristics, most PolSAR images contain different
types of land cover objects. Therefore, unlabeled land cover PolSAR data is sufficient,
and it is not difficult for the feature encoder to learn to describe the feature of land covers.
If a method is specifically designed for a more complex land cover classification task,
the performance can be expected to be improved after integrating the proposed feature
encoder. For other classification tasks, such as recognition of ships and vehicles, the pre-
trained feature encoder may not be suitable for describing the features of these targets
because such objects usually occupy very few pixels in an image. Therefore, the application
of the derived feature encoders to these tasks requires further discussion and validation.

5. Conclusions

In this paper, a Vision Transformer-based PolSAR image land cover classification
method has been proposed. The multi-layer transformer structure, which has the capability
to extract spatial associative information in the global range, is able to characterize the land
cover objects of different sizes at various resolutions. Moreover, to address the issue of the
scarcity of labeled data, the MAE pre-training method was introduced for pre-training the
model with unlabeled data. The comparison experiments and ablation experiments were
conducted on the Flevoland dataset and the Hainan dataset. The results of the comparison
experiments demonstrated the superiority of the proposed method compared with other
deep learning PolSAR land cover classification methods, especially in the high-resolution
dataset of Hainan. The ablation experiments investigated the effect of hyperparameter
settings of the proposed method on classification performance, which validated the ef-
fectiveness of pre-training, and provide a basis for the setting of hyperparameters. The
performance difference between the proposed method and the compared methods is an-
alyzed in the discussion on the receptive field and overfitting problems. The expected
performance of the proposed feature encoder in other more complex classification tasks is
also discussed, which will be the future work to verify and study further.
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