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Abstract: Plants diseases constitute a substantial threat for farmers given the high economic and
environmental impact of their treatment. Detecting possible pathogen threats in plants based on non-
destructive remote sensing and computer vision methods offers an alternative to existing laboratory
methods and leads to improved crop management. Vine is an important crop that is mainly affected
by fungal diseases. In this study, photos from healthy leaves and leaves infected by a fungal disease of
vine are used to create disease identification classifiers. The transfer learning technique was employed
in this study and was used to train three different deep convolutional neural network (DCNN)
approaches that were compared according to their classification accuracy, namely AlexNet, VGG-19,
and Inception v3. The above-mentioned models were trained on the open-source PlantVillage dataset
using two training approaches: feature extraction, where the weights of the base deep neural network
model were frozen and only the ones on the newly added layers were updated, and fine tuning,
where the weights of the base model were also updated during training. Then, the created models
were validated on the PlantVillage dataset and retrained using a custom field-grown vine photo
dataset. The results showed that the fine-tuning approach showed better validation and testing
accuracy, for all DCNNs, compared to the feature extraction approach. As far as the results of DCNNs
are concerned, the Inception v3 algorithm outperformed VGG-19 and AlexNet in almost all the cases,
demonstrating a validation performance of 100% for the fine-tuned strategy on the PlantVillage
dataset and an accuracy of 83.3% for the respective strategy on a custom vine disease use case dataset,
while AlexNet achieved 87.5% validation and 66.7% accuracy for the respective scenarios. Regarding
VGG-19, the validation performance reached 100%, with an accuracy of 76.7%.

Keywords: deep neural networks; transfer learning; AlexNet; Inception v3; VGG-19; vitis vinifera;
disease detection

1. Introduction

Plant diseases constitute a huge threat for field-grown crops and play a significant role
in global produce loss (around 10% of the total production) [1,2]. There are two different
parameters mainly responsible for plant stress presence depending on whether the infection
is caused by a biotic parameter which corresponds to a living organism. In this case, the
stress is called biotic, or the stress associated with an abiotic parameter is known as abiotic
stress. Among the biotic stress, the most common pathogenic agents are fungi, viruses, and
bacteria [3]. The most common way to deal with biotic plant stress is by applying chemical
compounds to the plants. This, although proven to be very effective, can also negatively
affect the environment and the total agricultural income, as it is a cost-effective method [4].

The above-mentioned fact, among others, has led to the adaptation of several precision
agriculture (PA) techniques, which aim to optimize the use of agricultural inputs (such
as pesticides, irrigation water, and fertilizers), increase agricultural productivity, and
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reduce the production loss caused by a disease [4,5]. For this reason, the use of remote
and proximal sensing techniques, alongside robotics, computer vision, machine learning
(ML) and deep learning (DL) techniques, Big Data technologies, and high-performance
computing (HPC), is widely used in the agricultural sector. Such techniques, apart from
detecting and identifying plant diseases, are also used for weed detection, crop quality
assessment, yield prediction, species recognition, irrigation water, and soil management [4].

In this study, transfer learning and deep learning techniques are used to detect vine
diseases. Vine is a plant with high economic impact and worldwide production [6]. The
production of vines is mainly affected by fungal diseases, such as black rot, esca, powdery
mildew, downy mildew, Botrytis (caused by Botrytis cinerea), and Isariopsis leaf spot. All
of these diseases affect either the plants’ leaves or the crop that can subsequently cause
serious or even severe yield loss or affect crop quality and quantity [7,8]. The diseases that
will be addressed in this study are two fungal diseases that affect grapevine plants (namely
Vitis vinifera), esca complex (caused by Phaeomoniella clamidospora and Phaeoacremonium
aleophilum) [9,10], and powdery mildew (caused by Erysiphe necator).

Transfer learning (TL) is a machine learning technique in which pretrained networks,
mostly with deep architectures, are used to tackle classification problems with a limited
dataset [11]. By applying this technique, the original pretrained weights are stored. When
new data are introduced to the network, they are partly updated. The whole idea behind
this technique is that the knowledge of the deep neural network that was already gained
during the original training of the models can be used to facilitate the training process of a
new similar classification problem that does not belong to the same feature space and the
same distribution [12].

This technique has been proven to be highly successful in plant disease classifica-
tion problems, as validated by many related works on plant diseases conducted by Mo-
hanty et al. [13], Wang et al. [14], Brahimi et al. [15], Ferentinos [16], Liu et al. [17], and
Barbedo [18], amongst others. All of the above-mentioned works showed the very high per-
formance of their proposed techniques for their classification problems, with a classification
accuracy of above 80%.

Additionally, this technique also saves a lot of computational time, allowing it to be
used in order to train a network from scratch with a very deep architecture, as well as
many other classes trained with a huge number of training examples. There is a plethora of
well-known pretrained algorithms in the published literature (e.g., AlexNet, GoogleNet,
ResNet, the VGG family, and others). The difference between these deep learning models
is attributed to the architecture of their layer. When applying the transfer learning (TL)
technique, in most cases, only the parameters of the last (fully connected) layer need to
be inferred from scratch. The rest of their architecture is used for the feature extraction of
training examples.

This work aims to use transfer learning, alongside models trained into either ImageNet
or the open-source PlantVillage dataset, in order to discriminate photos of healthy leaves
from photos of leaves that were infected by a fungal disease, obtained in field conditions.
The pretrained algorithms that were assessed for their performance in the identification of
a plant as healthy or infected (with either esca or powdery mildew) are AlexNet, Inception
v3, and VGG-19. Those deep learning models were chosen since they are regarded very
valuable tools for the detection and classification of plant diseases [6,19–22].

The main contribution of this paper is associated with the use of existing pretrained
DCNN models which undergo the fine-tuning process for the last few layers of their
convolutional base architectures, and use the PlantVillage grapevine dataset for training, in
order to create robust classifiers for grapevine disease identification. Fine-tuned models
were compared to make a prediction on the respective models from the feature extraction
approach. For Alexnet, the last 3 layers (out of 5) were fine-tuned; for VGG-19, the last
12 layers (out of 19) were fine-tuned; and for the Inception-v3 model, the last 12 layers (out
of 19) were fine-tuned. The performance of the proposed models from both scenarios were
also validated using custom photos from the Chatzivariti vineyard.
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2. Materials and Methods
2.1. Field Data Acquition

The Chatzivaritis Estate consists of 18 hectares of organic vineyards in the region of
Goumenissa, North Greece (latitude: 40◦53′21.67′′N, longitude: 22◦28′37.66′′E, and altitude:
190 m). The Chatzivaritis Estate focuses on the Greek varieties of Xinomavro, Negkoska,
Roditis, Malagousia, Muscat, and Assyrtico, and also cultivates the Traminer, Sauvignon
blanc, Merlot, Chardonnay, and Cabernet sauvignon in smaller fields. Figure 1 presents the
three infected variety fields (Xinomavro, Negkoska, and Traminer) that are investigated in
the current study. The soil type of these fields is medium-textured sand and clay.
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Figure 1. Chatzivariti’s vineyard showing the vineyards where the images of diseased vine leaf
were obtained.

Photos were obtained from parts of the Chatzivariti’s vineyard using a RGB camera
sensor (Sony IMX686, 64 MP, Sony, Tokyo, Japan) during the time period from the 1st to
the 16th of August 2021. The dataset consisted of Vitis vinifera plants sp. ‘Xinomavro’ and
sp. ‘Negoska’. The selected photos were obtained by both healthy and plants infected
by a fungal disease. Thus, there were three classification labels: healthy, infected with
the Phaeomoniella Chlamydospora fungus (esca), and infected with the Erysiphe necator
fungus that causes powdery mildew fungal disease.

The health status assessment for the Chatzivariti’s case plants was based on the
visual inspection of the disease’s symptoms. Specifically, the foliar symptom of esca is an
interveinal “striping”. These “stripes”, which primarily appear as dark red in red cultivars
and yellow in white cultivars, go gradually dry and finally become necrotic. For the
powdery mildew disease, the visual symptoms appear in the form of white light chlorotic
and white spots on the foliage, as well as the fuzzy or “wooly” patches in both sides of
the leaf.

2.2. Alexnet

AlexNet [23] was born out of the need to improve the results of the ImageNet challenge.
This was one of the first deep convolutional neural networks (DCNNs) employed to achieve
considerable accuracy on the 2012 ImageNet Large-Scale Visual Recognition Challenge
(LSVRC-2012) with an accuracy of 84.7%, as compared to the second best with an accuracy
of 73.8%. A brief architecture of AlexNet is shown in Figure 1. From this figure, it can be
concluded that AlexNet consists of an input space, 5 convolutional layers for the feature
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extraction and a fully connected (FC) layer space (originally consisting of 3 FC layers) for
the classification process. AlexNet uses the rectified linear unit (ReLU) as an alternative
to the tanh function that was traditionally used in machine learning approaches, saving
computational time and increasing the model efficiency.

Figure 2 shows the model’s requirements in terms of input image dimensions. The
green area represents the FC layer space that was chosen to be modified into either a 3-
or 4-layer neural network. A brief summary of the AlexNet architecture requirements is
shown in Table 1.
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Figure 2. AlexNet architecture. FC layers are depicted as a green cube, as they represent the
classification algorithm that will be used.

Table 1. Summary of the AlexNet architecture in terms of input size requirements for every layer of
the network.

Type Input Size

input 227 × 227 × 3
conv 55 × 55 × 96
pool 27 × 27 × 96
conv 27 × 27 × 256
pool 13 × 13 × 256

2 × conv 13 × 13 × 384
conv 13 × 13 × 256
pool 1 × 1 × 256

Fully connected layers 1 × 1 × 4096

2.3. VGG-19

VGG-19 [24] was the second pretrained model used for the health status classification
of grapevine leaves. The VGG family models can be considered as a successor of the
AlexNet but they were created by a different group, the visual geometry group at Oxford,
shortened as VGG. It carries and uses some ideas from its predecessors and improves upon
them, and also uses deep convolutional neural layers to improve accuracy. The number
in the name VGG-19 represents the 19 layers that this model has. Figure 3 shows its archi-
tecture, consisting of 19 convolutions + ReLU layers (depicted in orange), 5 MaxPooling
layers (depicted in red), and the fully connected layers (depicted in green) for the feature
learning and the FC layers for classification. The VGG-19 architecture requirements are
also shown in Table 2.
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Figure 3. VGG-19 architecture.

Table 2. A summary of the VGG-19 architecture in terms of input size requirements for every layer of
the network.

Type Input Size

input 224 × 224 × 3
2 × conv 224 × 224 × 64
MaxPool 112 × 112 × 64
2 × conv 112 × 112 × 128
MaxPool 56 × 56 × 128
4 × conv 56 × 56 × 256
MaxPool 28 × 28 × 256
4 × conv 28 × 28 × 512
MaxPool 14 × 14 × 512
4 × conv 14 × 14 × 512
MaxPool 7 × 7 × 512
2 × conv 7 × 7 × 512
1 × conv 7 × 7 × 4096

Fully connected layer 1 × 1 × 4096
Fully connected layer 1 × 1 × 4096

Softmax 1 × 1 × 1000

Although this architecture has been proven to be a very robust choice for image
classification and has shown high prediction accuracy over the time, a disadvantage of the
VGG-19 is that it is a network with high computational requirements, both in GPU and
RAM, and needs the most time for training.

2.4. Inception V3

Finally, in comparison to VGG-19, Inception networks (GoogleNet/Inception v1) have
been proven to be more computationally efficient, both in terms of the number of pa-
rameters generated by the network and the economic cost incurred (memory and other
resources). Inception v3 mainly focuses on burning less computational power by modify-
ing the previous Inception architectures [25]. The model itself is made up of symmetric
and asymmetric building blocks, including convolutions, average pooling, max pooling,
concatenations, dropouts, and fully connected layers. Batchnorm is used extensively
throughout the model and applied to activation inputs. Loss is computed via Softmax. The
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model’s architecture is shown in Figure 4. This is a completely different approach from
most of the well-known DCNNs that only deepen the neural networks by increasing the
convolutional layer to enhance its performance. The Inception model uses different sizes of
filters and maximum pooling to reduce the dimensions of the data, which consequently
significantly reduces the computational time, while using high-quality features.
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Inception v3 needs to resize the original images into 299 × 299 and divide the dataset
into training and testing set (see Section 2.4). The proposed method architecture of Inception
v3 is summarized in Table 3.

Table 3. A summary of the Inception v3 architecture in terms of input size requirements for every
layer of the network.

Type Input Size

conv 299 × 299 × 3
conv 149 × 149 × 32

conv padded 147 × 147 × 32
pool 147 × 147 × 64
conv 73 × 73 × 64
conv 71 × 71 × 80
conv 35 × 35 × 192

3 × Inception 35 × 35 × 288
5 × Inception 17 × 17 × 768

pool 8 × 8 × 2048
linear 1 × 1 × 2048

Softmax 1 × 1 × 1000
Fully connected layer 1 × 1 × 38
Fully connected layer 1 × 1 × 38
Fully connected layer 1 × 1 × 38

2.5. Training Scenarios

The above-mentioned DL models are all pre-trained on the ImageNet, a dataset that
spans 1000 object classes and uses over 1 million images for the training and validation of
the models and 100,000 images for the testing. The training weights that were created from
their previous training with the ImageNet dataset is inherited in this work and is used as a
transfer learning approach. More specifically, there are two main training scenarios that are
evaluated in this study for all of the tested models. These training scenarios are associated
with the choice of the most efficient training scheme (the scheme with the highest accuracy
in the testing phase) that was used as the proposed method for disease identification.

For this reason, there were two training scenarios. The first one considers fine tuning
of the models’ parameters using the data from the open PlantVillage dataset and updates all
the models’ weights in the last few top layers of the base model (not just the classifier). This
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should happen on a very low learning rate to avoid overfitting. The other scenario considers
the use of the models themselves as features extractors using the inherited weights from
ImageNet. The latter scenario implies that, in the feature extraction strategy, only the
weights of the newly added last layers in the last FC layer (the classifier) change during the
training phase. The rest of the base models’ weights remain frozen. The difference between
the two methods is that with the fine-tuning training approach, the weights of the models
are updated using data from plant diseases. Thus, the health status classification process is
expected to be more successful, as the DCNNs will already be experienced to distinguish
between a healthy and an infected plant. A brief model diagram of the feature extraction
and fine-tuning approach is depicted in Figure 5.
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Figure 5. Transfer learning feature extraction (left) and fine-tuning (right) training approaches
diagram. In the feature extraction approach, the base model’s weights remain frozen and only the
classifier is trained, while in the fine-tuning approach, training occurs in both of the last few layers of
the base model (“Fine-Tuned convolutional base model” in the figure) and the classifier.

Another scenario scheme concerns the kind of classifier that can be used as a TL ap-
proach in the last layer of the deep neural architectures that are selected. The proposed ar-
chitectures considered applying either a 3-layer neural network or a 4-layer neural network.

2.6. Hyperparameters Initialization

Another significant issue that is addressed in this work is the choice of the right
hyperparameters that were used to train the models. Hyperparameters can drastically in-
fluence the effectiveness of the DCNN. Thus, there are several different runs with different
hyperparameter values and different optimization algorithms which can be used in order
to find the right approach that can be used in all examined DCNNs. The optimization
algorithms that were tested were RMSprop [26], Adam [27], and the stochastic gradient de-
scent (SGD) [28]. Apart from these, different batch sizes, dropout rates, and epoch number
were tested (Table 4). For the learning rate, some custom values were tested as well as an



Remote Sens. 2022, 14, 4648 8 of 20

automatic reduction method from the PyTorch library, known as the ReduceLRonPlateau.
This automatic method was scheduled with an initial value of 5e-3, with a patience of 3
epochs and a decay of 0.5.

Table 4. Different parameter and hyperparameter value scenarios that were tested during the training
of the selected models.

Hyperparameter/Parameter Values Tested

Epoch number 10, 20, 30
Optimization algorithm RMSprop, Adam, SGD

Learning rate 0.1, 0.001, 0.0005, 0.0001, automatic LR reduction
Batch size 2, 4, 8, 16, 25

Dropout rate 20%, 30%

2.7. Models Training and Testing Data Division

For the training phase of the TL models, the open-source PlantVillage dataset (https:
//plantvillage.psu.edu/ (accessed on 30 November 2021)) was used. This dataset consists
of over 50,000 images of healthy and diseased leaves from different plants. A significant
advantage of this dataset is that it is consists of 58 disease and healthy situations for
25 different plants. The total number of diseases that exist in the PlantVillage dataset is 37,
and thus the models will have 38 outputs (1 healthy status and 37 diseases). In this work,
though, only part of the PlantVillage dataset was used for the training and testing, i.e., the
photos from healthy and infected grapevine leaves. A total of 4253 photos were divided
into four classes: healthy, esca infection, leaf blight spot (Isariopsis leaf spot) infection, and
black rot infection. The only disadvantage of this dataset is that almost all the photos depict
leaves separated by the plant.

Another custom dataset with photos from Chatzivariti’s winery vineyard was used in
order to test the capability of the models that were trained on the PlantVillage dataset to be
used for field conditions. This dataset was constituted by 154 photos, 49 of which depict
plants with visible symptoms of the esca disease, in different intensities, 56 photos of which
depict plants infected with powdery mildew, and 49 of which depict healthy plants.

Before the data analysis, photos that depict infected and healthy grapevine leaves were
selected and isolated from the rest of the PlantVillage grapevine dataset, in order to be used
for the model’s evaluation. The data selection for the testing phase concerned a total of
600 photos that make up the 4 classes (150 from the healthy status, 150 from leaves infected
by black rot, 150 from the leaves infected by leaf blight spot (Isariopsis leaf spot), and 150
from the leaves infected by esca). The rest of the PlantVillage grapevine dataset (from now
on, for brevity reasons, it will be just referred as the PlantVillage dataset) was used for the
training of the models. This testing phase with the PlantVillage data was used in order to
ascertain whether the classification algorithm succeeds to have a good accuracy or not in
the same dataset distribution as the one that the training occurred. The PlantVillage dataset
division in training/validation and test sets is also summarized in Table 5.

Table 5. Data division into training and test set for the four grapevine classes of the
PlantVillage dataset.

Plant Village Data Division

Class # of Training Data # of Test Data

Healthy 463 150
Black rot 1030 150

Leaf blight spot 926 150
Esca 1234 150

As far as the Chatzivariti’s case dataset is concerned, 80% of the data from each class of
the dataset was used for the model training and validation (39 from esca, 45 from powdery

https://plantvillage.psu.edu/
https://plantvillage.psu.edu/
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mildew, and 39 from the healthy status), and the rest was used for the testing phase (model
evaluation), as shown in Table 6.

Table 6. Data division into training and test set for the three classes of the Chatzivariti study case.

Chatzivariti Data Division

Class # of Training Data # of Test Data

Healthy 39 10
Powdery mildew 45 11

Esca 39 10

As shown in Table 5, there was a uniform distribution between the data in the dif-
ferent classes of the PlantVillage dataset. For this reason, we selected a standard number
(150 data from each class) for the testing phase, in order to gain a clearer picture of the
classification process.

2.8. Evaluation Metrics

For the models’ evaluation, the accuracy metric was used, as shown in Equation (1),
which is the ratio of the correct predictions over the sum of all predictions (correct and
wrong). In the following equation, TN, TP, FN, and FP represent the true negative, true
positive, false negative, and false positive values, in the models’ confusion matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Although there is a lot of criticism around accuracy and how it may give misleading
results depending on the training data distribution, in this paper, it was used alone as a
metric as the class data distribution is balanced for all the classes that will be used for the
training and testing of the models in all scenarios that were considered.

2.9. Software and Hardware Settings

The development of TL models was achieved under the PyTorch machine learn-
ing framework, and was written in the Python 3 computer language and run on GPU
(2 × Nvidia RTX 2070 super, connected with a scalable link interface bridge). The first step
was the introduction of the PlantVillage input data in the algorithm and their normalization
and transformation according to the input shape needs of each network that was tested

3. Results and Discussion
3.1. Models Tuning and Initialisation

The first part of the proposed procedure concerns the creation of TL models that aim
to recognize grapevine leaves diseases from the PlantVillage open-source database. There
were two training approaches, namely a feature extraction and a fine-tuning approach. In
the first approach, the pretrained weights were frozen and the whole training process was
limited in updating the weights of the last FC layer (classifier). On the other hand, on the
fine-tuning approach, the model training and weight updates were extended to a number
of layers to the convolutional base model instead of just training the last of the FC layers.

Towards this direction, the first thing that had to be achieved was the hyperparameter
tuning and selection, as described in Table 2. Hyperparameter testing was conducted
in both classifier scenarios. The selection was achieved after testing the different values
of the hyperparameters and considered the search for a “universal” training scheme for
each one of the models. So, it was concluded that the best scheme for the training of the
classifiers was the Adam optimization algorithm, with a batch size of 4, 20 epochs, and a
dropout rate of 30%, combined with a callback for the learning rate in order to reduce itself
during the training process when it reached a plateau, with respect to the training epochs
(ReduceLRonPlateau).
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3.2. Transfer Learning on the PlantVillage Dataset

Table 7 reports the accuracy results on the validation phase for the above-mentioned
training scheme, for a three- and four-layer neural network in the last layer, and for each
one of the three pretrained DCNNs (the last layer of the FC layer) that were selected. The
values refer to the average of the classification process (average from all of the classes).

Table 7. Validation accuracy results of the three proposed DCNNs, trained with the PlantVillage
dataset images, on the 20th training epoch for a 3-layer and a 4-layer FC DNN.

3-Layer Neural Network Validation Accuracy (%)

AlexNet VGG-19 Inception v3

Feature Extraction 74.0 88.2 94.8
Fine Tuning 87.5 100 100

4-Layer Neural Network Validation Accuracy (%)

AlexNet VGG-19 Inception v3

Feature Extraction 59.6 86.0 82.8
Fine Tuning 88.0 98.9 100

The next thing that needed to be examined and decided was the optimal neural
network layout that took part in the classification process in the last layer of the three
models. It should be noted that in this work only simple multi-layer perceptron (MLP)
layouts were tested. Future research could use different classification networks, such as
random forest or support vector machines (SVMs). The validation results from Table 3
show that, in general, the three-layer neural network classifier gives much better results,
in comparison with the four-layer neural network classifier for almost all the training
scenarios and pretrained DCNNs. The only exception is the validation accuracy of AlexNet
when it is fine-tuned with the four-layer DCNN that performs slightly better. For this
reason, the three-layer FC DCNN was selected as the best classifier architecture.

The performance in the validation phase of each one of the three DCNN that were
used for the training per epoch of training is depicted in Figure 6, for both training using
the fine-tuning scheme or the feature extraction.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 21 
 

 

Towards this direction, the first thing that had to be achieved was the hyperparame-

ter tuning and selection, as described in Table 2. Hyperparameter testing was conducted 

in both classifier scenarios. The selection was achieved after testing the different values of 

the hyperparameters and considered the search for a “universal” training scheme for each 

one of the models. So, it was concluded that the best scheme for the training of the classi-

fiers was the Adam optimization algorithm, with a batch size of 4, 20 epochs, and a drop-

out rate of 30%, combined with a callback for the learning rate in order to reduce itself 

during the training process when it reached a plateau, with respect to the training epochs 

(ReduceLRonPlateau). 

3.2. Transfer Learning on the PlantVillage Dataset 

Table 7 reports the accuracy results on the validation phase for the above-mentioned 

training scheme, for a three- and four-layer neural network in the last layer, and for each 

one of the three pretrained DCNNs (the last layer of the FC layer) that were selected. The 

values refer to the average of the classification process (average from all of the classes). 

Table 7. Validation accuracy results of the three proposed DCNNs, trained with the PlantVillage 

dataset images, on the 20th training epoch for a 3-layer and a 4-layer FC DNN. 

 3-Layer Neural Network Validation Accuracy (%) 

 AlexNet VGG-19 Inception v3 

Feature Extraction 74.0 88.2 94.8 

Fine Tuning 87.5 100 100 

 4-Layer Neural Network Validation Accuracy (%) 

 AlexNet VGG-19 Inception v3 

Feature Extraction 59.6 86.0 82.8 

Fine Tuning 88.0 98.9 100 

The next thing that needed to be examined and decided was the optimal neural net-

work layout that took part in the classification process in the last layer of the three models. 

It should be noted that in this work only simple multi-layer perceptron (MLP) layouts 

were tested. Future research could use different classification networks, such as random 

forest or support vector machines (SVMs). The validation results from Table 3 show that, 

in general, the three-layer neural network classifier gives much better results, in compar-

ison with the four-layer neural network classifier for almost all the training scenarios and 

pretrained DCNNs. The only exception is the validation accuracy of AlexNet when it is 

fine-tuned with the four-layer DCNN that performs slightly better. For this reason, the 

three-layer FC DCNN was selected as the best classifier architecture. 

The performance in the validation phase of each one of the three DCNN that were 

used for the training per epoch of training is depicted in Figure 6, for both training using 

the fine-tuning scheme or the feature extraction. 

 
Figure 6. Validation accuracy in the different training epochs for the three different proposed deep
learning pretrained models. The figure on the left side shows the results for models created using the
feature extraction strategy and the figure on the right shows the results for models created using the
fine-tuning strategy, on the PlantVillage data.

From the results shown in Figure 6, it is apparent that after the fine tuning of the
models with the PlantVillage dataset, the validation accuracy was higher in comparison
with the respective models that were used as feature extractors and were not trained from
scratch with the PlantVillage dataset.

Figure 6 also shows that Inception v3 algorithm outperformed AlexNet in both training
scenarios. In fact, for the feature extraction scenario, AlexNet showed a validation accuracy
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of 74% on the 20th epoch (reached a plateau after the 16th epoch), while Inception v3
showed an accuracy of 94.8%. VGG-19 seems to have an accuracy that verges on the
Inception v3 (88.2%). On the other hand, for the fine-tuning scenario, both Inception v3
and VGG-19 have a validation accuracy of 100% on the 20th training epoch, while AlexNet
falls behind with 87.5%.

3.3. Transfer Learning on the Chatzivariti vineyard dataset

The second part of this work concerns the use the models that were created using the
PlantVillage dataset for both training approaches in order to discriminate the healthy from
infected status for photos obtained by vine plants in field-grown conditions (Chatzivariti’s
winery vineyard). In other words, the models presented in Section 3.2 were validated,
using a custom dataset of photos from the Chatzivariti vineyard. In order to achieve this
purpose, these models were retrained by transfer learning, retaining all the weights from
training approaches, while altering solely the weights in the classification layer (last of the
FC layers). The whole procedure is also described in Figure 7.

Although this process is a feature extraction approach, the models that were fine-tuned
and feature-extracted with the PlantVillage were used, but this time the feature extraction
was applied to the Chatzivariti dataset.

The results of the validation phase for each of the models and training scenarios are
shown in Table 8. The values refer to the average of the classification process (average from
all of the classes).

The results from the Table 8 show a similar tendency as the one from the models’
validation in the previous case, where the models were trained on the PlantVillage dataset,
with Inception v3 outperforming in both cases AlexNet and VGG-19 (except for the feature
extraction case of Inception v3 and VGG-19 that, once again, showed an equal performance).

Figure 8 shows a graphics representation of the validation accuracy through the
training epochs of the three models as they were trained using feature extraction or fine
tuning for the scenario where the field-grown images were used for the models’ training
and validation phase.

From a visual inspection of Figure 8, it can be concluded that the feature extraction
strategy in this scenario has a significantly lower performance, in comparison with the
fine-tuning training approach for each one of the three DCNNs that were examined.
As far as the training process is concerned, the feature extraction training approach
seems to have a much slower convergence, in comparison with the fine-tuning strategy.
In fact, in the fine-tuning training strategy, the validation accuracy almost converges
after the 12th epoch (with small fluctuations in the case of AlexNet), while in the
feature extraction training approach, the convergence is achieved after the 15th epoch.
An interesting point is that in the case of the feature extraction, the VGG-19 network
demonstrates slightly better performance during the whole training phase, though
after the 20th epoch, the same validation accuracy is achieved. On the other hand, the
Inception v3 shows superior performance after the seventh epoch in the case of the
fine-tuning training approach.

Table 8. Validation accuracy results of the three proposed DCNNs, with custom vine plants images
from Chatzivariti’s winery vineyard.

Validation Accuracy (%)

AlexNet VGG-19 AlexNet

Feature Extraction 40.0 70.0 70
Fine Tuning 66.7 76.7 83.3
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Figure 7. Description of the two phases of the DCNN training. The first phase shows the initial
training using the PlantVillage dataset for the creation of classifiers with the feature extraction and
fine-tuning training approaches. The second phase shows the validation of the first phase using the
data from Chatzivariti’s vineyard for the training of the classifiers.
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Figure 8. Validation accuracy in the different training epochs for the three different proposed deep
learning pretrained models. The figure on the left side shows the results for models created using the
feature extraction training approach and the figure on the right shows the results for models created
using the fine-tuning training approach on the custom data.

3.4. Model Testing

As mentioned in Section 2.5 after the model’s validation, a small part of the data
from both datasets that were employed in this work (PlantVillage and manually taken
photos) was used for the models’ evaluation in totally untrained data. In the following
table (Table 9), the testing performance of the three proposed DCNNs is reported for the
fine-tuning training approach, demonstrating the best performance for both datasets. The
values show the average of the classification process (average from all of the classes).

Table 9. Testing results of AlexNet, VGG-19, and Inception v3, with the PlantVillage and the custom
photo dataset for the fine-tuning approach.

Testing Accuracy (%)

AlexNet VGG-19 Inception v3

PlantVillage 94.1 100 100
Custom Photos 65.2 74.2 83.9

The performance of the three models in the testing phase is also explicitly shown in
Tables 10 and 11 in the form of confusion matrices for both the PlantVillage dataset and the
custom Chatzivariti’s case dataset.

Table 10. Testing phase confusion matrix of the Chatzivariti’s case data for each one of the DCNN
models that were examined. C1 represents the healthy class, C2 represents the powdery mildew
infection, and C3 represents the esca infection.

AlexNet VGG-19 Inception v3
Model Output Model Output Model Output

C1 C2 C3 C1 C2 C3 C1 C2 C3

Tr
ue

La
be

l

C1 6 4 0 C1 8 0 0 C1 9 1 0

C2 4 6 0 C2 3 7 0 C2 2 8 0
C3 1 1 8 C3 2 0 8 C3 1 0 9

As shown in Table 9, and further validated by Tables 10 and 11, Inception v3 shows
a better performance than VGG-19 and AlexNet, with VGG-19 being the second best
model for the Chatzivariti use case dataset. For the PlantVillage dataset, both VGG-19 and
Inception v3 demonstrated optimal accuracy (100%), while AlexNet also shows a great
performance of 94.1%. From the results of Tables 10 and 11, it can also be concluded that
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most of the classification errors for both dataset scenarios concern the classification of
originally infected leaves as healthy.

Table 11. Testing phase confusion matrix of the PlantVillage data for each one of the DCNN models
that were examined. C1 represents the healthy class, C2 represents the black rot infection, C3
represents the leaf blight spot, and C4 represents the esca infection.

AlexNet VGG-19 Inception v3
Model Output Model Output Model Output

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Tr
ue

La
be

l

C1 147 2 1 0 C1 150 0 0 0 C1 150 0 0 0

C2 11 132 6 1 C2 0 150 0 0 C2 0 150 0 0
C3 8 2 140 0 C3 0 0 150 0 C3 0 0 150 0
C4 1 3 0 146 C4 0 0 0 150 C4 0 0 0 150

Some results from the testing phase of the PlantVillage dataset are briefly shown in
Table 12. For every label decided by the DCNNs, the confidence level as a percentage is also
given. The confidence level in this study is generated by the probabilities of each example
to belong to one of the classes, as given by the Softmax activation function, which is a
variant of the sigmoid function, used for multiclass classification. The Softmax activation
function is calculated in Equation (2).

So f tmax(zi) =
exp(zi)

∑j exp
(
zj
) (2)

where z is the neuron output in the last layer of the classifier, i is the number of neurons,
and j is the number of the classes.

The confidence level is a metric, usually compared with some threshold to determine
whether the predicted class label is accepted [29]. The confidence level is a performance
evaluation metric, chosen to filter out false positives and ensure that a predicted class has
a certain minimum score. Penalizing false positives may increase the level of robustness
of the created models [30]. In other words, a confidence score with a threshold gives the
minimum confidence score, above which the label is considered to be successfully classified.

Table 12 also demonstrates that all the DCNNs that were examined for the fine-tuning
approach in the testing phase showed an almost excellent performance, with the exception
of AlexNet, which still showed a very good performance. In most cases, for Inception v3
and VGG-19 models, the confidence level for the classification was over 90%. This did not
occur in the occasion of the AlexNet.For the two best models (Inception v3 and VGG-19),
there was no misclassified photo in the test dataset of PlantVillage.

The last part of this work involved testing the predictive ability of the trained networks
via the fine-tuning strategy with the custom dataset from Chatzivariti’s winery vineyard.
As previously noted, these photos refer to vine plants either healthy or infected with esca
or powdery mildew fungus. Some results from the testing phase of the field-grown photo
dataset are briefly shown in the following Table 13. For every label estimated by the
DCNNs, the confidence level is also given as a percentage.
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Table 12. AlexNet, Inception v3, and VGG-19 trained with fine tuning and a 3-layer neural network
in the last FC layer. Model evaluation (testing phase) gives an example of untrained images from the
training distribution (PlantVillage data).

Ex. # AlexNet Inception v3 VGG-19 True Label Original Image

1 Black Rot
(100) *

Black Rot
(100)

Black Rot
(100) Black Rot
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Table 13. AlexNet, Inception v3, and VGG-19 trained with fine-tuning and a three-layer neural
network in the last FC layer. Model evaluation (testing phase) gives examples of untrained images
from Chatzivariti’s vineyard dataset.

Ex. # AlexNet Inception v3 VGG-19 True Label Original Image

1 Esca
(98.1) *

Esca
(100)

Esca
(100) Esca
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At this point, it should be noted that in the classification process, for both testing
scenarios, regarding an example that was primarily classified as infected with any of the
examined diseases, a threshold of 75% confidence level was set in order to classify infection.
Any confidence level below 75% is considered to belong to the healthy class. This was
decided because there is the possibility of a false disease detection in regions of the image
with infected weeds in the background, or yellow spots caused by the solar irradiation or
other disruptive reasons from the background. Accordingly, a confidence level of above
50% was accepted for an image that was primarily classified as healthy because of the
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much higher area that the leaves occupy and because of the lower possibility of green color
occurrence, other than the one from the vine leaves, which are present in the background
of the image.

From the results of Table 13, it is apparent that there is a high chance that the algorithm
will successfully detect the infected parts of the plant’s leaves, even when it is tested on a
whole plant and not just a leaf segment. In the whole dataset, there were very few instances
that present a misclassification between healthy and infected plants. Two of them are
reported in Table 13 (Examples #2 and #6).

3.5. General Discussion

The first part of this study focused on defining the optimal hyperparameters and the
best multilayer perceptron (MLP) network layers architecture that was used as a classifier.
The classifier with the four layers demonstrated a much lower performance in comparison
with the three-layer one. The reason why this is happening is either because of some
kind of overfitting which happens when the network has four layers or the fact that the
Chatzivariti’s dataset did not have enough data for training and validation.

Besides the fact that the training time is much higher in the fine-tuning training
approach, in both of our TL scenarios (for the PlantVillage-based dataset and for the
Chatzivariti use case dataset), this training strategy seemed to offer significantly higher
accuracy, in comparison with the feature extraction approach for all of the DCNN models
that were examined. This is comparable with the findings of Espejo-Garcia et al. [31,32].
In their works, they trained two and three different DCNN architectures, respectively,
on an open-source dataset: the plant seedling dataset (https://vision.eng.au.dk/plant-
seedlings-dataset/ (accessed on 30 November 2021)) and the early crop weed dataset
(https://github.com/AUAgroup/early-crop-weed (accessed on 30 November 2021)) for
weed identification using a similar fine-tuning and feature extraction scheme that is used
in this work. They found that the fine-tuned models exhibit a better performance in terms
of accuracy and convergence time compared to the feature extraction ones.

Apart from the fact that the validation accuracy is higher in the fine-tuning approach,
it also converges faster to the final validation value. Regarding the models that were trained
using the fine-tuning approach, in both datasets, especially for the cases of Inception v3 and
VGG-19, convergence was achieved even before the 10th epoch, as shown in Figure 8. It is
important to be noted that the learning process starts from a much lower validation value in
the case of the training scenario with the Chatzivaryti dataset. Indeed, a closer look shows
that when the training was being performed with the PlantVillage dataset, the validation
accuracy started at over 35% at the first epoch, while in the Chatzivaryti dataset, the
respective values were under 20%, especially when using the feature extraction approach.

As far as the DCNNs models are concerned, the findings of this work show that there
is a clear winner when it comes to models’ performance, both in terms of computational
time and model accuracy. Indeed, Inception v3 was found to outperform both VGG-19 and
AlexNet in most cases. The only times that Inception v3 had the same outcome as VGG-19
was at the end of fine-tuning training for the PlantVillage dataset and at the end of the
feature extraction training approach for the Chatzivariti dataset. Inception v3 outperforms
the rest of the DCNNs because of the inception module itself and the nature of the photos
from the Chatzivariti dataset. VGG19 and AlexNet are models of a linear architecture,
where the convolutions stack one over another, covering just one filter in each layer. In the
Inception v3 network, the inception module can cover filters of multiple sizes (1 × 1, 3 × 3,
5 × 5) in parallel, in the same level of the network. This allows more information (bigger
features or smaller ones) to be captured in the same layer.

Our VGG and AlexNet comparison contradicts the findings of the work that was
conducted by Yuan et al. [33], who used a VGG network and AlexNet for crop disease
identification and found validation performance with no significant difference between
the two models that they used and in all of their training scenarios. Additionally, in a
comparison between AlexNet and Inception v3, Verma and Singh [34] found that AlexNet

https://vision.eng.au.dk/plant-seedlings-dataset/
https://vision.eng.au.dk/plant-seedlings-dataset/
https://github.com/AUAgroup/early-crop-weed
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(used as a feature extractor) outperformed tomato plants in the disease severity evaluation.
On the other hand, in a different problem for handwriting digits, Aneja and Aneja [35]
found that Inception v3 outperformed both AlexNet and VGG-19 networks, but AlexNet
gave satisfactory results in the fastest time.

A comparison between the two main classification scenarios, namely the classification
of the black rot, esca, and leaf blight spot disease from the PlantVillage dataset and the
respective classification of esca and powdery mildew in the Chatzivariti dataset, showed
that the validation accuracy of DCNNs for PlantVillage dataset classification is much higher
(reaching 100%) than that for the Chatzivariti dataset. This occurred for two reasons. Firstly,
it was much easier for the classification to be more precise in a scenario where all the photos
come from the same distribution as the one that the models were trained on. The second
reason is that the Chatzivariti dataset refers to pictures that were obtained in field-grown
conditions; therefore, there is loud noise from the background environment and many
photos were disturbed by the sunlight.

After their training, the models that were trained on the different datasets underwent
the test phase with photos that were not included in the training process. The results of this
phase follow the same pattern as in the training phase. Once again, the training scenario
with the PlantVillage data outperformed the Chatzivariti data on the testing phase. More
specifically, there was no misclassified photo from Inception v3 and VGG-19 models, while
there were a few misclassified photos in case of AlexNet (such as the example #3 that was
indicated in Table 12). This did not apply for the data from the Chatzivariti vineyard.

A closer look at the selected pictures of Table 13 that were misclassified as healthy
while they were infected with the powdery mildew fungal disease show plants that are in
the first stage of the infection (few scattered white spots on the leaf area). The algorithm
may have found this classification task harder because the visual powdery mildew fungus
symptoms at the early stages of infection appear in the form of several very small white
spots that spread in the leaf area. Moreover, the infection at its early stage and has not
caused intense yellowing and browning in the leaves; therefore, it is more difficult to be
detected by the models. Indeed, it seems that most of the classification errors occurred
between one of the infected classes and the healthy class, as shown in Tables 10 and 11.
Moreover, there is a photo that was misclassified as infected with powdery mildew, while
it actually belongs to the healthy class (Table 13, example #6). This happened because
other disturbing factors, such as the application of pesticides and fertilizers, interfered in
some photos. In the specific photo, the scattered mild yellowing and white spots on the
leaves caused after the application of a pesticide appeared to be similar to the symptoms of
powdery mildew on the plant leaves.

4. Conclusions

In the present study, different photos showing the health status of vine leaves and
plants are introduced to three deep convolutional neural networks to detect possible health
issues on the leaves or plants. A non-destructive and timely disease detection approach
is of high value for the prevention of the disease spread and the production loss that it
implies. The selected networks were AlexNet, VGG-19, and Inception v3.

All of the DCNNs were demonstrated to be greatly efficient in detecting the diseases
in the scenario that concerned the training with the PlantVillage dataset, scoring an average
accuracy of over 95%. Inception v3 and VGG-19 seem to outperform AlexNet in this
scenario. On the other hand, in the scenario where the custom dataset was used for the
training of the classifier in the last layer of the FC layer, the validation results were also
quite satisfactory, for the Inception v3 and VGG-19 networks, scoring an average validation
accuracy of 80%. In this scenario, AlexNet also had a decent validation accuracy of 66.7%.

As was expected, testing the networks with a Chatzivariti dataset was proven to have
a significantly lower performance, in comparison with the results from the PlantVillage
dataset. Generally, the disturbing factors of the photos from the field-grown plants, such as
intensive sunlight, the application of pesticides and fertilizers, weeds in the background,
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etc., cause the lower performance of the Chatzivariti photo dataset, in relation to the
PlantVillage dataset. Finally, in both datasets, fine tuning seemed to outperform feature
extraction as a training strategy, although it requires much more computational time.

The concluding remark on the best deep learning approach that would be selected
is the Inception v3 network, under the fine-tuning training approach, using a three-layer
neural network as a classifier in the last of the fully connected layers. Inception v3 was
superior to VGG-19, as its accuracy reaches 100% faster than VGG-19 and it is also a much
more efficient architecture (both in terms of time and GPU requirements) than VGG-19.
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