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Abstract: The “warm-humid” climate change across the Tibetan Plateau (TP) has promoted grass-
land growth and an overall greening trend has been observed by remote sensing products. Many of 
the current generations of Earth System Models (ESMs) incorporate advanced process-based vege-
tation growth in the land surface module that can simulate vegetation growth, but the evaluation of 
their performance has not received much attention, especially over hot spots where projections of 
the future climate and vegetation growth are greatly needed. In this study, we compare the leaf area 
index (LAI) simulations of 35 ESMs that participated in CMIP6 to a remote-sensing-derived LAI 
product (GLASS LAI). The results show that about 40% of the models overestimated the Tibetan 
Plateau’s greening, 48% of the models underestimated the greening, and 11% of the models showed 
a declining LAI trend. The CMIP6 models generally produced poor simulations of the spatial dis-
tribution of LAI trend, and overestimated the LAI trend of alpine vegetation, grassland, and forest, 
but underestimated meadow and shrub. Compared with other vegetation types, simulations of the 
forest LAI trend were the worst, the declining trend in forest pixels on the TP was generally under-
estimated, and the greening of the meadow was underestimated as well. However, the greening of 
the grassland, was greatly overestimated. For the Tibetan Plateau’s averaged LAI, more than 70% 
of the models overestimated this during the growing seasons of 1981–2014. Similar to the forest LAI 
trend, the performance of the forest LAI simulation was the worst among the different vegetation 
types, and the forest LAI was underestimated as well. 

Keywords: Coupled Model Intercomparison Project Phase 6 (CMIP6); LAI; LAI trend;  
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1. Introduction 
Vegetation is a critical component of terrestrial ecosystems and is very sensitive to 

climate change [1–3]. The global average surface temperature increased by 0.85 °C from 
1880 to 2012 [4], which triggered phenological changes in different vegetation types in 
different regions. The increase in temperature, as one of the causes of variation in vegeta-
tion, has led to a significant overall change in vegetation, manifested by an increase in the 
Normalized Difference Vegetation Index (NDVI) during the vegetation growth season in 
the Northern Hemisphere [5], and the growth rate of NDVI in forests is greater than that 
of other vegetation types [6–8]. The community structure of snow-meadow vegetation has 
changed significantly as a result of climate change in Northern Japan over the last 40 years 
[9]. In the Siberian Mountains, the birch area has increased by 10%, and birch stands and 
the treeline boundary have moved upslope at a rate of 1.4 m yr−1 and 4.0 m yr−1, respec-
tively, since the 1970s with the onset of warming [10]. In China, the zone of tundra vege-
tation of the Changbai Mountains has been invaded by herbaceous plants with the rising 
temperature over the last 30 years [11]. 
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As the third pole of the earth, the Tibetan Plateau (TP) is highly sensitive to climate 
change and has been experiencing a rapid warming of 0.4° 10 yr−1 over the last 30 years 
[12,13] and with precipitation increasing by 1.96 mm 10 yr−1 in 1994–2015 [14]. This 
“warm–humid” trend has led to tremendous changes on the land surface, such as glaciers 
collapsing [15], permafrost thawing [16], and lakes expanding [17], as well as surface veg-
etation growth. Liu et al. [18] found that the vegetation coverage on the TP showed a trend 
of “overall increase and partial degradation” from 1981 to 2005, with the area of improve-
ment much larger than the area of degradation. Wei et al. [19] found that “warm-humid” 
has a significant promoting effect on the improvement of vegetation on the TP, and Zhang 
et al. [20] found that the overall NDVI of grassland in the growing season of the TP also 
shows an increasing trend. Xu et al. [21] used the leaf area index inversion by NOAA–
AVHRR to study the temporal and spatial changes in vegetation cover characteristics in 
the TP, and also found an overall increase in vegetation cover. Zhang et al. [13] found that 
the green-up dates with the alpine vegetation in the Plateau had a continuous advancing 
trend with a rate of ~1.04 d·y−1 from 1982 to 2011. 

Remote sensing, as one of the major tools for studying vegetation’s response to cli-
mate change [22], was used to study the vegetation on the TP, with various long-term 
vegetation leaf area index (LAI) datasets derived through satellite remote sensing, such as 
GLASS LAI [23], GLOBMAP LAI [24], GIMMS LAI [25], and MODIS LAI [5]. Hua et al. 
(2018) [26] used the GIMMS NDVI dataset (NDVI-3g) to study the temporal and spatial 
variations in vegetation dynamics controlled by climate on the Tibetan Plateau during 
1982–2011 and found that the potential cause of the change in vegetation dynamics might 
be controlled by the climate, particularly the increasing precipitation and the significant 
temperature rise in the Central and Southeastern Tibetan Plateau. Although remote sens-
ing products are very useful for understanding historical vegetation variations, satellite 
remote sensing could not directly measure future vegetation dynamics. Another powerful 
tool, the state-of-the-art Earth System Models that incorporate a process-based vegetation 
growth module, can simulate not only historical variations in vegetation but also those in 
future climate. Zhu et al. [27] built the first pedotransfer function to simulate temporal 
variations in vegetation coverage (VC) and found that the pedotransfer function more ac-
curately simulated temporal variation in VC than a multiple linear regression in an alpine 
meadow on the Tibetan Plateau. Lu et al. [28] found that net primary productivity (NPP) 
and LAI decreased from the southeast to the northwest of the Tibetan Plateau by using 
the atmosphere–vegetation interaction model (AVIM) to simulate the distribution of LAI 
and NPP over the Tibetan Plateau. The accuracy of the simulation results varies greatly 
due to the design and use of the model itself, so it is very important to evaluate the accu-
racy of the simulation data before using the simulations. 

The International Coupled Model Comparison Program (CMIP), proposed by the 
World Climate Research Program Group, currently in the sixth generation (CMIP6), has 
been widely used for studying various environmental changes. Tian et al. [29] analyzed 
changes in the annual mean surface air temperature (SAT) and precipitation, and also the 
related uncertainties using historical simulations and future projections under the Repre-
sentative Concentration Pathway scenarios (RCPs) from the CMIP5 models across China 
and in its seven sub-regions. Zhang et al. [30] demonstrated that there may be a basic 
spatial scale limit below which it may not be useful to further refine climate model pre-
dictions based on an integrated analysis of coupled model simulations and projections 
from CMIP3 and CMIP5. Using the established linear relationship and monthly tempera-
ture simulations from CMIP5 models over the Northern Hemisphere during the 2lst cen-
tury, Xia et al. [31] found the start of the vegetation growing season (SOS) will have ad-
vanced by 4.7 days under RCP2.6 (Representative Concentration Pathway) by 2040–2059. 
After CMIP5, more and more models have incorporated a dynamic vegetation growth 
module, and therefore evaluating CMIP vegetation simulations has drawn much atten-
tion. Anav et al. [32] assessed the ability of 18 Earth system models (ESMs) in CMIP5 and 
found that most models overestimated the global average LAI and half of the models also 
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overestimated the LAI trend for 1986–2005. Zhao et al. [33] analyzed the changes in pro-
jected global LAI from 16 CMIP5 ESMs and 17 CMIP6 ESMs, and found that the CMIP6 
models had a better ability to describe the global area-averaged LAI time series. Lawrence 
et al. [34] did not evaluate the performance of the simulated global tree height of the 
CMIPs’ ESMs but gave the biases of tree height for the offline simulations of CLM5BGC. 
Brovkin et al. [35] evaluated the performance of MPI-ESM, and Seller [36] evaluated 
UKESM1-0-LI in terms of vegetation distribution; both found that the two models overes-
timated the fraction of tree coverage. Most evaluations have focused on the global scale; 
few have focused on regional scales such as the Tibetan Plateau. Bao et al. [37] evaluated 
12 CMIP5 ESMs for reproducing vegetation cover and LAI over the Tibetan Plateau in 
1986–2005, and found that INMCM4, BCC-CSM-1.1M, MPI-ESM-LR, IPSL-CM5A-LR, 
HadGEM2-ES, and CCSM4 were the best six models for capturing vegetation among the 
12 models. CMIP6 has had the largest participation since its implementation [38]. How-
ever, how well the CMIP6 models simulate vegetation growth, especially the recent green-
ing of the Tibetan Plateau, is unknown. 

LAI is usually defined as half of the total leaf surface area per unit of surface area 
[39], and NDVI is defined as the ratio of the difference between the near-infrared band 
(NIR) and the visible red band (R), and the sum of the two bands, NDVI = (NIR-
R)/(NIR+R). NDVI is directly obtained from the satellites’ reflection information and the 
real-time variation of vegetation after a simple calculation, which can quantitatively re-
flect the actual variation of vegetation, including the vegetation structure, the vegetation 
growth, and the vegetation coverage during the observation period, and is widely used 
in the field of vegetation remote sensing [40–42]. LAI and NDVI are both important indi-
ces for quantifying the vegetation variations, but only LAI could be validated because 
NDVI is not an output of the dynamic vegetation growth models in CMIP6. LAI, as a key 
indicator of vegetation growth [43], has been widely used in global climate models, eco-
logical models, hydrological models, and ecosystem productivity models [44]. Therefore, 
we focused on LAI validations in our work rather than NDVI. 

In recent decades, although greening is one of the most important changes in the 
Tibetan Plateau, few works have particularly focused on the performance of the model 
simulations on the greening of the Tibetan Plateau. We developed our own ranking 
method that considered the temporal and spatial simulations’ abilities to give an overall 
assessment of CMIP6 models. We also quantified the growth of different vegetation types. 
Our goals with this work are to evaluate the performance to simulate the LAI trend and 
LAI of the CMIP6 model during the growing season and to provide a reference for the 
selection of simulation data of vegetation changes, aid the research into vegetation in the 
Tibetan Plateau, and analyze the sources of temporal and spatial error in each model, lay-
ing a foundation for model optimization. 

2. Data and Methods 
2.1. Study Area 

The TP [45,46] is located at 26–39°N latitude in Southwest China. Surrounded by high 
mountains on the edge of the area, the internal topography is complex, including plateaus, 
basins, glaciers, lakes, and swamps [47]. Its geographical features, such as the high alti-
tude, and the complex and changeable topography, have created special climatic condi-
tions and water and heat distribution in this area, and have also created its distinctive 
vegetation distribution. As the largest alpine grassland ecosystem in the world, the TP is 
dominated by meadows and grasslands (Figure 1), concentrated across a wide range of 
Central Tibet. The vegetation types in Tibet have spatial distribution characteristics that 
gradually change from southeast to northwest. From southeast to northwest in Tibet, the 
vegetation types are distributed in the order of forests, shrubs, meadows, grassland, and 
desert (Figure 1). The dataset is derived from the 1:1 million vegetation data set collected 
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in China in 2001, and it is provided by the National Cryosphere Desert Data Center 
(http://www.ncdc.ac.cn) (accessed on 9 December 2021). 

 
(a) 

 
(b) 

Figure 1. (a) The location of the Tibetan Plateau [48] in the world map, and the world map from 
ArcGIS. (b) Distribution of vegetation types on the Tibetan Plateau [49]. 
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2.2. Satellite Data 
To evaluate the ability of the 35 models from the CMIP6 to reproduce the LAI over 

the Tibetan Plateau, the 1981–2018 LAI data from the Global Land Surface Satellite 
(GLASS) dataset with an eight-day temporal frequency and a 0.5° × 0.5° spatial resolution 
were used as a benchmark in our study. GLASS LAI uses generalized regression neural 
networks (GRNNs) to invert LAI from Time-Series AVHRR Surface Reflectance data; the 
algorithm trains GRNNs using preprocessed AVHRR Time-Series AVHRR Surface Re-
flectance, and then uses rolling processing to produce time-continuous long-term GLASS 
LAI products from the preprocessed AVHRR Surface Reflectance [23]. Compared with 
other LAI datasets, GLASS LAI data have a long observation period, high quality, and 
good accuracy [50]. They have more complete trajectories than the MODIS LAI product 
and also show lower uncertainty than the MODIS and CYCLOPES LAI products com-
pared with 20 ground-measured LAI reference maps. Many studies use GLASS LAI as a 
reference database for research or validation [51–55]. All these factors make it an ideal 
long-term dynamic LAI observation dataset in this study. The GLASS LAI product (V50) 
used in this study is available from the University of Maryland and the Center for Global 
Change Data Processing and Analysis of Beijing Normal University 
(http://www.glass.umd.edu/Download.html, accessed on 9 March 2021). 

2.3. CMIP6 Model Simulations 
Thirty-five CMIP6 models with no missing data were selected in this study, and the 

LAI from outputs of historical simulations for 1850–2014 was used (https://esgf-
node.llnl.gov/search/cmip6/, accessed on 16 August 2021). 

In order to facilitate the comparison of the simulation and observational data, all sim-
ulations were downloaded and converted to a 0.5° × 0.5° spatial resolution by bilinear 
interpolation from low to high resolution. The overlaps of the GLASS datasets and CMIP6 
were 1981–2014, so our analysis focused on 1981–2014. The model’s information is shown 
in Table 1. 

Table 1. Model description. 

Model Institute Land Surface Model Resolution Reference 
AWI-ESM-1-1-LR AWI (Germany) CABLE2.4 250 km [56] 
ACCESS-ESM1-5 CSIRO (Australia) CABLE2.4 250 km [57] 
BCC-CSM2-MR BCC (China) BCC-AVIM2.0 100 km [58] 

BCC-ESM1 BCC (China) BCC-AVIM2.0 250 km [58] 
CAMS-CSM1-0 China CoLM 100 km [59] 

CanESM5 CCCMA (Canada) CLASS3.6-CTEM1.2 500 km [60] 
CanESM5-CanOE CCCMA (Canada) CLASS3.6-CTEM1.2 500 km [60] 

CESM2 NCAR (USA) CLM5 100 km [61] 
CESM2-FV2 NCAR (USA) CLM5 100 km [61] 

CMCC-CM2-SR5 CMCC (Italy) CLM4.5 100 km [62] 
CMCC-ESM2 CMCC (Italy) CLM4.5 100 km [62] 

E3SM-1-0 E3SM-Project (USA) ELM 100 km [63] 
E3SM-1-1 E3SM-Project (USA) ELM 100 km [63] 

E3SM-1-1-ECA E3SM-Project (USA) ELM 100 km [63] 
EC-Earth3-Veg EC-Earth-Consortium (Europe) HTESSEL 100 km [64] 

EC-Earth3-Veg-LR EC-Earth-Consortium (Europe) HTESSEL 100 km [64] 
FGOALS-g3 China CAS-LSM 2 × 2° [65] 
FIO-ESM-2-0 FIO (China) CLM4.0 100 km [66] 
GFDL-CM4 GFDL (USA) LM4.0 100 km [67] 
GFDL-ESM4 GFDL (USA) LM4.1 100 km [68] 
GISS-E2-1-G GISS (USA) GISS LSM 250 km [69] 
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HadGEM3-GC31-LL HadGEM (United Kingdom) JULES 250 km [70] 
HadGEM3-GC31-MM HadGEM (United Kingdom) JULES 100 km [70] 

INM-CM4-8 INM (Russia) INM-LND1 100 km [71] 
INM-CM5-0 INM (Russia) INM-LND1 100 km [72] 

IPSL-CM6A-LR IPSL (France) ORCHIDEE v2 250 km [73] 
KIOST-ESM KIOST (Korea) LM3.0 250 km [74] 

MIROC-ES2L MIROC (Japan) MATSIRO6.0 
+VISIT-e v1 500 km [75] 

MPI-ESM-1-2-HAM 
HAMMOZ Consortium 

(Switzerland, Germany, Finland, UK) CABLE2.4 250 km [76] 

MPI-ESM1-2-HR MPI (Germany) CABLE2.4 100 km [76] 
MRI-ESM2-0 MRI (Japan) HAL 1.0 100 km [77] 

NorESM2-LM NCC (Norway) CLM5 250 km [78] 
NorESM2-MM NCC (Norway) CLM5 100 km [78] 

TaiESM1 AS-RCEC (Taiwan, China) CLM4.0 100 km [79] 
UKESM1-0-LI MOHC (UK) JULES-ES-1.0 250 km [36] 

2.4. Evaluation Approach 
A series of evaluation indicators was applied to quantify the agreement between the 

observed and simulated LAI and the trend of the CMIP6 models. In this study, we calcu-
lated the average LAI during the growing season (May–September) for each year as the 
average LAI, a linear regression trend of the average LAI from 1981 to 2014 as the trend, 
and an increasing trend indicated TP greening. We also calculated the monthly average 
LAI for each month of the growing season, and the TP averaged monthly average LAI 
during 1981–2014 as the monthly LAI. Then, we calculated the linear regression trend of 
the monthly average LAI for each month during the growing season from 1981 to 2014, 
and the TP averaged trend of the monthly average LAI as the monthly LAI trend. We 
obtained monthly variations from the monthly LAI and the monthly LAI trend during the 
growing season. In the following, we further describe the metrics used for model evalua-
tion and the method used for ranking the models. 

2.4.1. Evaluation Metrics 
The spatial correlation (pattern correlation) was used to quantify the correlation be-

tween the grid cell trend (or the grid cell average LAI from 1981 to 2014) distribution in 
the models and observations. Through a combination of the definitions of Bao et al. [37] 
and Chang et al. [80], the spatial correlation formula for the simulated and observed 
trends in this study was defined as follows: 

( )( )
( ) ( )2 2

1

 =
1 1

N
i i i i

N N
i i i i i i

W M M O O
NPattern correlation
W M M W O O

N N

− −

− −

∑

∑ ∑
. 

(1) 

where 𝑁𝑁 is the total number of grid cells under evaluation, 𝑀𝑀𝑖𝑖 and 𝑂𝑂𝑖𝑖 are the simulated 
and observed trend (or the average LAI from 1981 to 2014) from the CMIP6 models and 
the GLASS of the grid cell 𝑖𝑖 , and 𝑊𝑊𝑖𝑖 is the area weight of the grid cell i (all grid weights 
add up to 1) [37]. We calculated 𝑊𝑊𝑖𝑖 in the Pearson correlation coefficient equation as the 
area of each grid cell associated with the central geographic latitude of each grid cell [37]. 
In the TP, the variation in 𝑊𝑊𝑖𝑖 is not obvious and the value of 𝑊𝑊𝑖𝑖 can almost be neglected. 

The bias between the simulated and observed grid cell trend (or the grid cell average 
LAI from 1981 to 2014) was calculated to quantify the main bias between the model sim-
ulations and GLASS observations. In our study, we subtracted the observed trend (or the 
average LAI from 1981 to 2014) from the simulated trend (or the average LAI from 1981 
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to 2014) to get trend (or the average LAI from 1981 to 2014) bias at the single grid cell 𝑖𝑖  
by Equation (2). We thus obtained a value of the bias at every grid cell and the distribution 
of the bias across the whole study region. The relative bias of grid cell trend (or the grid cell 
average LAI from 1981 to 2014) was calculated as the ratio of the trend (or the average LAI 
from 1981 to 2014) bias to the observed trend (or the average LAI from 1981 to 2014) at the 
grid cell i in Equation (3). We also calculated the TP averaged bias using Equation (4). 

i iBias M O= −  (2) 

i
Bias

i

BiasR
O

elative =  (3) 

1
N

i i
avg

M O
Bias

N
−

= ∑  (4) 

The root-mean-square error (RMSE) was used to measure the difference between the 
simulations and observations. Similar to bias, we calculated the trend (the average LAI 
from 1981 to 2014) of the two datasets at grid cell 𝑖𝑖 , and then aggregated the results over 
the entire TP. Next, we converted spatial two-dimensional data of trend (or the average 
LAI from 1981 to 2014) in simulations and observations into one dimension and calculated 
the RMSE of the two columns (the simulations and observations) of the one-dimensional 
data by Equation (5). This RMSE was used in the ranking. Moreover, we used RMSE to 
quantify the difference in the average LAI from 1981 to 2014 sequence between the simu-
lation and observation during the growing season in 1981–2014 at single grid cell 𝑖𝑖 , and 
then obtained the distribution of RMSE across the region. 

( ) 2
1 i i
N M O

RMSE
N

−
= ∑  (5) 

The ratio of the standard deviation (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝛿𝛿) was used to quantify the magnitude of 
the difference in variation between the simulation and the observation. Similar to RMSE, 
we first converted the spatial two-dimensional data of the grid cell trend (or the grid cell 
average LAI from 1981 to 2014) in simulations and observations into one dimension, and 
then calculated the standard deviation of the simulations and observations by Equation 
(6), and finally calculated the ratio of the two standard deviations. Furthermore, 𝛿𝛿𝑀𝑀 and 
𝛿𝛿𝑂𝑂 were the standard deviations of the model simulations and the GLASS observations, 
respectively. The ratio of trend (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) was used to quantify the variation of the sim-
ulated trend and the observed trend as either overestimation or underestimation. We cal-
culated the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 by Equation (7); 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀 was the simulated trend, and the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑂𝑂 
was the GLASS trend. A ratio less than 0 indicated that the trend was not captured, con-
trary to the trend in GLASS. A ratio greater than 0 but less than 1 indicated that the green-
ing or declined trend was captured, but was underestimated. A ratio greater than 1 indi-
cated an overestimation of the greening or declined trend. 

M

O

Ratioδ
δ
δ

=  (6) 

M

O
trendRatio trend

trend
=  (7) 

  



Remote Sens. 2022, 14, 4633 8 of 27 
 

 

2.4.2. Significant Test Method 
We used two methods for significance testing, the Student’s t-test and the Mann–

Kendall trend test. The Student’s t-test was used for the significant difference test between 
simulations and observations. The Mann–Kendall trend test was used to detect whether a 
time series was steadily increasing/decreasing or unchanging. 

2.4.3. Ranking Method 
A ranking scheme was developed by Brunke et al. to score the multi-bulk aerody-

namic algorithm for calculating the turbulence fluxes on the ocean surface [81]. Decker et 
al. [82] ranked the bias and standard deviation of error between reanalysis products and 
flux tower measurements using the same method as Brunke et al. On the basis of Decker 
et al., Wang et al. [83] extended this ranking approach and increased the statistical param-
eters to four, including the correlation coefficient (ρ), the standard deviation ratio (σr/σobs), 
the standard deviation error (σd), and the difference (bias) to rank the ability of six kinds 
of reanalysis data to reproduce climate characteristics over the Tibetan Plateau. Since then, 
this ranking approach, as a good example of model performance evaluation, has been 
used in many studies [32,37]. In this study, we adjusted the ranking method used by Wang 
and Zeng, and the ranking metrics were changed into the spatial correlation (pattern cor-
relation), the bias (Bias), the root mean square error (RMSE), and the ratio of standard 
deviation (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝛿𝛿). 

In the context of this study, the simulation with the highest pattern correlation, the 
lowest bias and RMSE, and the closest ratio was considered to have the best performance 
for reproducing the trend (or the LAI) over the Tibetan Plateau. The models were ranked 
from 1 to 35, with 1 being the model with the lowest value in magnitude of bias, RMSE, 
or |ratio-1| (or the highest pattern correlation) and 35 being the model with the highest 
value in magnitude of bias, RMSE, or |ratio-1| (or the lowest pattern correlation) [82]. We 
then calculated the total score of the four metrics for a single model and defined the total 
score as the “error ranking”. The higher the model’s error ranking, the closer the relation-
ship between the simulations and observations. 

3. Result 
3.1. The Average Growing Season LAI and Trend 

More than 70% of models overestimated and about 28% of models underestimated 
the area-averaged growing season LAI over the Tibetan Plateau (Figure 2). EC-Earth3-
Veg, C-Earth3-Veg-LR, and HadGEM3-GC31-LL showed the smallest average LAI bias 
with slight underestimations of 0.0066–0.018 m2 m−2 in comparison with GLASS LAI. 
CMIP6 models (except FI0-ESM-2-0) incorporating the community land model (hereafter 
referred to as the CLM family) showed a much larger LAI bias of 2–5.5 m2 m−2, especially 
CESM2, CESM2-FV2, NorESM2-LM, and NorESM2-MM (4–5.5 m2 m−2). CanESM5, 
CanESM5-CanOE, E3SM-1-0, GISS-E2-1-G, IPSL-CM6A-LR, and KIOST-ESM underesti-
mated the average LAI (0.1–0.40 m2 m−2), but these underestimations were much smaller 
than the overestimations of other CMIP6 models. 
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Figure 2. The bias of the area-averaged LAI during the growing season in Tibetan Plateau from 1981 
to 2014 between each CMIP6 model and GLASS data. 

In Figure 3, we show the ratio of the area-averaged trend between simulations and 
observations from 1981–2014 in TP. For the Tibetan Plateau LAI trend in 1981–2014, about 
40% of the models overestimated the Tibetan Plateau’s greening, more than 48% of the 
models underestimated the greening, and 11% models showed a declining LAI trend (Fig-
ure 3). E3SM-1-1 and MPI-ESM-1-2-HAM showed the closest trend estimations among the 
35 CMIP6 models. For some CMIP6 models, the overestimation or the underestimation of 
greening and the area-averaged LAI (in Figure 2) occurred at the same time. For example, 
CMIP6 models (except for FI0-ESM-2-0) that incorporated CLM also greatly overesti-
mated the greening of the Tibetan Plateau above the GLASS data (2.5–6.5 times higher), 
while CanESM5 underestimated not only the average LAI but also the greening. However, 
models such as AWI-ESM-1-1-LR and UKESM1-0-LI overestimated the average LAI but 
underestimated the greening. 

 
Figure 3. The ratio of the area-averaged LAI trend of the growing season (1981–2014) between each 
CMIP6 models and the GLASS data. 
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3.2. LAI and Trend Monthly Variations 
3.2.1. Monthly Leaf Area Index 

The maximum underestimation of LAI mainly occurred in July and August, while 
the maximum overestimation of LAI varied greatly across different CMIP6 models, and 
this variation depended greatly on the land surface models incorporated in the different 
CMIP6 models (Figure 4a). The monthly variation in the bias of the LM family (UKESM1-
0-LI, GFDL-CM4, and GFDL-ESM4) was similar for each month of the growing season. 
Unlike the LM family, the overestimation bias of the CLM family (except for FIO-ESM-2-
0) first increased and then remained stable, with the bias in May being the smallest, and 
the largest being in June or September. The bias of the BCC family showed more complex 
monthly variation characteristics, with the overestimation bias increasing and then de-
creasing, and the bias in August being the largest. 
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Figure 4. The bias of the monthly LAI during the growing season of the Tibetan Plateau between 
each CMIP6 model and the GLASS data. The y-axis is from −1 to 6 in (a), and from −1 to 1 in (b). 

Moreover, the good simulations of area-averaged LAI of EC-Earth3-Veg, EC-Earth3-
Veg-LR, and HadGEM3-GC31-LL were due to the positive and negative biases in different 
months cancelling each other out. EC-Earth3-Veg and EC-Earth3-Veg-LR underestimated 
LAI in May (−0.04 to −0.01 m2 m−2), July (−0.06 to –0.03 m2 m−2), and August (−0.1 to −0.05 
m2m−2), while LAI was overestimated in June (0.003–0.022 m2 m−2) and September (0.02–
0.05 m2 m−2), HadGEM3-GC31-LL overestimated LAI in May (0.014 m2 m−2) and June 
(0.024 m2 m−2), but underestimated LAI in July (−0.016 m2 m−2), August (−0.09 m2 m−2), and 
September (−0.021 m2 m−2), and these biases partially canceled each other out, making the 
overall average bias smaller. 

Although the bias of LAI in May was small, the relative LAI bias was quite large in 
May (Figure S1). For example, the relative LAI bias of the CLM family (except for FIO-
ESM-2-0) was highest in May and June (364–1105%) and then decreased from May or June 
to August (265–725%), which suggested that improvements at the beginning of growth 
are key to these models. 

3.2.2. Monthly LAI Trend 
None of the CMIP6 models captured the monthly LAI trend well, even those models 

that showed good agreement for the annual LAI trend (Figure 5). The good overall greening 
simulations of E3SM-1-1, INM-CM5-0, INM-CM4-8, and MPI-ESM1-2-HR were due to the 
overestimations and underestimations in different months cancelling each other out. 
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Figure 5. The ratio of the monthly LAI trend of the growing season between each CMIP6 model and 
the GLASS data. The y-axis is from −2 to 20 in (a), and from −2 to 2 in (b). 
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Models that underestimated the greening of the Tibetan Plateau generally had the 
greatest underestimation in July and August (Figure 5). For example, except for IPSL-
CM6A-LR, the monthly error of other models that underestimated the greening of the 
Tibetan Plateau showed the changes first increasing and then decreasing, and the underes-
timation error was usually the largest in July and August. However, the models that over-
estimated the greening of the Tibetan Plateau showed inconsistent monthly variations. For 
example, the CLM family (except for FIO-ESM-2-0) showed the largest overestimation in 
May (2.93–18.37) and the smallest overestimations in July (1.22–3.24) and August (1.15–
3.04). BCC-CSM2-MR showed the greatest overestimation in September (3.33), while E3SM-
1-1-ECA showed the greatest overestimation in June (2.81). The models that did not simulate 
greening also did not simulate the greening trend for each month of the growing season. 

Unlike the large difference between the LAI bias and relative LAI bias, the ratio of 
the monthly LAI trend and the bias of the monthly LAI trend had consistent variations 
(Figure S2). The CLM family (except for FIO-ESM-2-0) showed the largest overestimation 
in May, and the greatest underestimation of LAI trend in July and August. 

3.3. LAI Spatial Comparison 
3.3.1. Averaged Leaf Area Index for 1981–2014 

GLASS LAI gradually decreased from southeast to northwest (Figure 6). The LAI of 
forests in Southeast TP was larger (2.8–4.8 m2 m−2), and the LAI dominated by grasslands 
and shrubs in the central and northwest areas was smaller (0–0.8 m2 m−2). 

 
Figure 6. Spatial distribution of the GLASS LAI during the growing season. 

Before evaluating the spatial distribution simulation capability, we ranked the per-
formance of the CMIP6 models to capture the LAI spatial distribution based on the eval-
uation metrics (Table S1), then we presented the LAI spatial distribution results in Figures 
S3 and 7 by ranking their scores from the best to the worst. 
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Figure 7. Spatial distribution of the bias of simulated and observed LAI during the growing season. 
The white part failed the significant difference test. The number in the top left corner is the ranking 
of each CMIP6 model for simulating the spatial distribution of the average LAI during the growing 
season in 1981–2014. The value in each title is the pattern correlation. 

Almost all the CMIP6 models could reproduce a spatially declining pattern from 
southeast to northwest, but there was still large spatial bias. The pattern correlation of 88% 
of the models was greater than 0.60 and the highest was 0.934 for HadGEM3-GC31-MM 
(Figure S3). We also found that the top five models among the 35 CMIP6 models mainly 
underestimated the LAI, and the underestimation bias mainly came from the alpine forest 
area and alpine meadow areas in southeast Tibet. The main feature of the model ranked in 
the middle (ranked 6–20) among the CMIP6 models is that there were both overestimations 
and underestimations in the region, while the models with lower (after 20) rankings mainly 
overestimated the LAI, and the overestimation bias was more obvious in the southeast. 

Models that underestimated LAI did so mainly over meadows and alpine forest areas 
in southeast TP, while models that obviously overestimated LAI had great differences in 
their spatial bias (Figure 7). The obvious overestimation of BCC-CSM2-MR from the BCC 
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family mainly came from the shrub area, while the overestimation of BCC-ESM1 was 
mainly from shrub areas, meadows, and part of the grassland, and there was high over-
estimation near river basins. The overestimation of GFDL-CM4 in the LM family came 
from the shrub areas, while the overestimation of GFDL-ESM4 was mainly distributed 
across all of Southeast Tibet and was significantly overestimated in the central part. The 
overestimation of the INM family mainly occurred in shrub areas, deserts, and grassland 
area, and the highest value of the overestimation bias was for the shrub areas. In addition, 
the CLM family (except for FIO-ESM-2-0) had abnormally high LAI values throughout 
the Tibetan Plateau region, and the overestimation was distributed throughout the region, 
especially for shrub areas and meadows in the southeast TP, with the bias values being 
4.5–5.0 m2 m−2. 

EC-Earth3-Veg and EC-Earth3-Veg-LR showed the best simulations for the average 
LAI (Figure 2), but none of them showed the exact spatial distribution of LAI (Figure 7). 
EC-Earth3-Veg and EC-Earth3-Veg-LR overestimated the southeastern edge of Tibet but 
underestimated the grassland and meadow regions of the TP; these positive and negative 
errors cancelled each other out. 

Overall, the CMIP6 models had poor performance for the forest LAI simulation with 
the highest RMSE, and the bias of the CMIP6 models varied greatly with large overesti-
mation and underestimation, but with the smallest relative bias (Figure S4). Although 
CMIP6 models had a small overestimation of forest average LAI generally (Figure S4), most 
models underestimated the forest LAI in the small areas where forests are concentrated on 
the southern edge of the TP (Figure 7). Similar to the forest LAI, the simulation of shrub was 
poor with large RMSE and bias, but the relative bias of the shrub was small. The perfor-
mance of the CMIP6 models for simulating the grassland LAI was good among the different 
vegetation types with the smallest RMSE. The reason for the small absolute bias but large 
relative bias with grassland may be that the LAI value of grassland was small. 

3.3.2. The Leaf Area Index Trend during 1981–2014 
The GLASS LAI data showed a clear greening trend from 1981 to 2014 over the TP, 

except for some forest areas on the southern edge of the TP (Figure 8). The entire area had 
significant greening (p < 0.05) of 0.0047 m2 m−2 yr−1 (Figure S4), especially in the river basins 
of the meadow area. 

 
Figure 8. Spatial distributions of the linear trend of GLASS LAI during the growing season. 



Remote Sens. 2022, 14, 4633 16 of 27 
 

 

Similar to the analysis of the spatial distribution of the LAI, we ranked the perfor-
mance in reproducing the LAI trend of the CMIP6 models (Table S2) and show the spatial 
distribution of the LAI trend from best to worst in Figure 9. 

 

 

 
Figure 9. Spatial distributions of the ratio of simulated and observed linear trends in LAI during the 
growing season. The grid cells with colors all showed a statistically significant interannual change 
(p < 0.05). Gray areas mean the grid cells did not capture greening or a declining trend during 1981–
2014 in the Tibetan Plateau, blue areas mean the grid cells captured the greening or the declining 
trend but underestimated them, and red areas indicated overestimations of the greening or the de-
clining trend. Cross-hatched areas indicate that the LAI trend was negative. The number in the up-
per left corner is the ranking of each CMIP6 model for simulating LAI trends. The value in each title 
is the pattern correlation. 

The CMIP6 models showed a poor ability to simulate the spatial distribution of the 
LAI trend across the whole Tibetan Plateau during 1981–2014, while most models could 
simulate the LAI trend in parts of the Tibetan Plateau (Figure 9). The pattern correlation 
of the LAI trend between all models and GLASS was less than 0.65, and a few models 
even had negative pattern correlations (Figure S6). There were five models (MPI-ESM-1-
2-HAM, BCC-ESM1, BCC-CSM2-MR, EC-Earth-Veg, and EC-Earth-Veg-LR) that 
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generally simulated the overall greening trend of the study area, and also captured the 
high value of the greening trend in the southeast region, where the spatial distribution of 
the greening trend was closer to the observation data, and five models (E3SM-1-1, AWI-
ESM-1-1-LR, CESM2, GFDL-ESM4, and TaiESM1) simulated the obvious decline in the 
Southern TP better than other 30 models. E3SM-1-1 and MPI-ESM-1-2-HAM had the best 
performance in simulating the distribution of the LAI trend and could capture the green-
ing and the decline as well. 

Compared with other vegetation types, the simulation of forest LAI trend was poor 
with the highest RMSE, and the CMIP6 models generally overestimated the forest LAI 
trend. The simulation of the forest LAI trend showed great differences. Some models 
showed largely overestimations (NorESM2-MM with a bias of 0.026 m2 m−2 year−1) and 
some models showed large underestimations (GFDL-ESM4 with a bias of –0.017 m2 m−2 
year−1), which resulted in a larger LAI bias range across all CMIP6 models than for other 
vegetation types (Figure S7). The alpine vegetation and grassland were also overestimated 
by CMIP6 models, but the meadow and shrub were underestimated (Figure S7). 

In total, 70% of the models accurately simulated increases and decreases in the LAI 
trend of 80% of the area of the Tibetan Plateau, but the simulation of the value of the LAI 
trends on the grids was poor (Figure 9). Six models (FIO-ESM-2-0, HadGEM3-GC31-LL, 
FGOALS-g3, UKESM1-O-LI, GISS-E2-1-G, and GFDL-ESM4) all had obvious gray areas, 
which mean that the models showed a contrary trend to the GLASS data and had not 
captured the greening or the declining—especially for GISS-E2-1-G, the gray area was dis-
tributed across almost the entire area. Neither FIO-ESM-2-0 nor FGOALS-g3 captured the 
LAI trend in Northern Tibet, and neither UKESM1-O-LI nor GFDL-ESM4 captured the 
LAI trend in the southwestern region. 

The remaining models all captured the greening in 1981–2014, while there were still 
underestimations and overestimations of the value of the LAI trend in grid cells (Figure 
9). The underestimation of the LAI trend mainly came from the shrub, whole meadow 
area or part of the meadow area, and the greening of the shrub and meadows was under-
estimated. While the overestimation of the LAI trend came from the grasslands, the CLM 
family (except for FIO-ESM-2-0) overestimated the LAI trend in almost the whole area, 
especially the greening of the grassland, which was greatly overestimated. Similarly, 13 
models (E3SM-1-1, INM-CM5-0, MIROC-ES2L, INM-CM4-8, MRI-ESM2-0, GFDL-CM4, 
MPI-ESM1-2-HR, E3SM-1-1-ECA, EC-Earth-Veg, EC-Earth-Veg-LR, UKESM1-O-LI, 
KIOST-ESM, and MRI-ESM2-0) all overestimated the greening of grasslands. Although 
the trend of forest LAI was generally overestimated by CMIP6 models (Figure S7), the 
decline trend of forest LAI was underestimated in parts of the southeast where alpine 
forests were concentrated (Figure 9). 

4. Discussion 
Our study chose GLASS LAI as our reference LAI because it is one of the leading data 

sources for studying long-term series vegetation changes with good representations of 
various surface LAI distributions. In an evaluation of the authenticity of GLASS LAI prod-
ucts in the grasslands of Xilinhot [84], it was found that the observational accuracy and 
consistency of GLASS LAI were better than those of MODIS LAI, making it more suitable 
for related research. When GLASS LAI data were used to analyze changes in the Amazon 
rainforest from 1982 to 2012 [53], it was demonstrated that the GLASS LAI data can be 
used for detecting changes in the large-scale surface vegetation status in long sequences. 
As early as 2014, Xiang et al. [85] compared LAI products (MODIS LAI, CYCLOPES LAI, 
and CCRS LAI) with ground measurement LAI data, and found that the accuracy of 
GLASS LAI data products was significantly higher than that of MODIS and CYCLOPES. 
At the same time, through a comparison of LAI products (MODIS LAI, CYCLOPES LAI, 
and CCRS LAI), it was found that, compared with other LAI products, GLASS LAI has 
the best temporal continuity and integrity, and smoother trajectories, and is an ideal data 
product for studying temporal changes in LAI. The spatial distribution of the GLASS LAI 
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data is reasonable, and it also has good consistency with the global spatial distribution of 
MODIS LAI. It thus has great advantages in studies of the spatial distribution of LAI. 

Although many studies using remote sensing products found an overall increasing 
trend of vegetation growth (greening) over the Tibetan Plateau, like the GLASS remote 
sensing products, controversy remains regarding how vegetation on the Tibetan Plateau 
has changed. Xu showed that spring warming advanced spring leaf-out time and in-
creased the biomass [86]. However, Yu (2010) argued that the warm winter may also have 
led to delayed spring phases due to insufficient fulfillment of chilling requirements [87]. 
Zhang et al. [13] argued for the earlier start date of plant phenology and a longer growing 
season, but some still doubt this [88,89]. Regarding the change in the trend, a declined 
trend for the vegetation dynamics of the TP was found in some studies over the last 30 
years (about 1980-2010) according to the Global Inventory of Modeling and Mapping and 
Studies (GIMMS) [90,91], but others found an increasing trend of vegetation growth in 
northeastern TP using other NDVI datasets for 1982–2011 [92]. These different under-
standings indicate that a combination of ground observations, remote sensing datasets, 
and land/vegetation models is necessary to fully understand past and future vegetation 
changes on the Tibetan Plateau. 

In the CMIP6 models, some model groups showed consistency in simulating LAI and 
LAI trends using the same land surface model, but others showed great differences. In 
order to understand the possible reasons for these differences, we briefly summarized the 
differences among the model groups using the same land surface model (Table 2). 

Table 2. Summary of the different models. 

Land Surface Model CMIP6 Models The Difference of Models 

BCC-AVIM2.0 
BCC-CSM2-MR BCC-CSM2-MR uses the carbon emissions provided by CMIP6 as the 

forcing, but BCC-ESM1.0 uses the chemical reaction gas and aerosol 
emission data provided by CMIP6 as the forcing [93] BCC-ESM1 

CLASS3.6-CTEM1.2 
CanESM5 CanESM5-CanOE is exactly the same physical model as CanESM5, 

but it couples it with the CanOE ocean biogeochemical model [60] CanESM5-CanOE 

CLM4.0 

FIO-ESM-2-0 The FIO-ESM-2-0 model adds an ocean surface wave model to the tra-
ditional atmosphere–land–ocean–sea ice coupled model of CPL7; 

TaiESM1 was developed on the basis of the Community Earth System 
Model version 1.2.2 by implementing several improvements to the pa-

rameterization schemes in the atmospheric component [94,95] 

TaiESM1 

CLM4.5 
CMCC-CM2-SR5 CMCC-CM2-SR5 does not include ocean biogeochemistry model in 

the model, but the BFM5.1 ocean biogeochemistry model was added 
to CMCC-ESM2 CMCC-ESM2 

CLM5.0 

CESM2 
CESM2-FV2 

NorESM2-LM 
NorESM2-MM 

CESM2-FV2 reduces the horizontal resolution of the atmosphere and 
land on the basis of CESM2; NorESM2-LM and NorESM2-MM are 

similar to the CESM2 and CESM2-FV2 models in terms of the frame-
work and model composition; the differences are that NorESM2 uses 
completely different oceans and oceano-biogeochemical model and 

uses a different ocean and oceano-biogeochemistry model and the at-
mosphere component of NorESM2-MM and CAM-Nor; the difference 

between NorESM2-LM and NorESM2-MM is the resolution [78,96] 

ELM 
E3SM-1-0 
E3SM-1-1 

E3SM-1-1-ECA 

On the basis of E3SM-1-0, E3SM-1-1 has corrected several vulnerabili-
ties and made improvements; on the basis of E3SM-1-1, E3SM-1-1-
ECA uses the ECA plant and soil carbon and nutrient mechanisms, 

soil carbon and the effects of nutrients representing carbon, nitrogen 
and phosphorus, and it excludes the effect of coupled ocean and sea 

ice biogeochemistry [97] 
HTESSEL EC-Earth3-Veg EC-Earth3-Veg-LR has a lower resolution than EC-Earth3-Veg 
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EC-Earth3-Veg-LR 

INM-LND1 
INM-CM4-8 
INM-CM5-0 

On the basis of INM-CM4-8, the key improvements in INM-CM5-0 in-
clude an increase in the vertical resolution in the atmospheric module, 
a revision of the large-scale condensation and cloud formation param-
eterizations, the newly developed aerosol block, the horizontal resolu-
tion of the oceanic model, and a reworking of the INMCM5 program 

code for better performance on parallel computers [71] 

JSBACH 3.2 
AWI-ESM-1-1-LR 

MPI-ESM-1-2-HAM 
MPI-ESM1-2-HR 

AWI-ESM-1-1-LR is based on AWI-ESM and adds a dynamic land 
change model to it; MPI-ESM1-2-HR and MPI-ESM-1-2-HAM both 

are based on MPIESM1.2, and the difference between the two is that 
MPI-ESM-1-2-HAM adds the Hamburg aerosol mode and MPI-ESM1-
2-HR improves the resolution of MPIESM1.2, which has a higher reso-

lution than MPI- ESM-1-2-HAM [76,96] 

JULES 
HadGEM3-GC31-LL 

HadGEM3-GC31-MM 
UKESM1-0-LI 

HadGEM3-GC31 is a coupled atmosphere–land–ocean–sea ice model. 
Compared with HadGEM3-GC31-LL, HadGEM3-GC31-MM has a 

higher resolution. UKESM1 takes HadGEM3-GC31 as the core of the 
physical model and adds the carbon and nitrogen cycle and atmos-

pheric chemical composition to it [98,99]  
LM3.0 KIOST-ESM Atmosphere–land–ocean–sea ice coupled model [68,96] 
LM4.0 GFDL-CM4 A coupled ocean–atmosphere model [68,96] 
LM4.1 GFDL-ESM4 A fully coupled chemistry–climate model [68,96]  

By combining the simulation results of the model for the average LAI and LAI trends 
in Figures 2 and 3 and the different characteristics of the models in Table 2, we found that 
the simulation results of the models using different land surface models were quite dif-
ferent on the whole; the simulation results of models using the same land surface model 
had overall consistency, whereas the simulation results of models using different versions 
of the same land surface model were different. There are many possible reasons for the 
large difference in the simulations of vegetation growth, such as the simplified parame-
terization, uncalibrated parameters, and the atmospheric forcing data that drive the 
model. The vegetation growth in the land surface model also subject to the simulations of 
other processes directly affecting vegetation growth, such as the simulation of soil tem-
perature and moisture, surface radiation transfer, etc. Using the Community Land Model 
(CLM) as an example, Luo et al. [100] used the simulated data of Weather Research and 
Forecasting Model (WRF) to apply to the forcing data sets of the CLM model in the Tibetan 
Plateau, and found that there are deviations between simulated and observed surface tem-
peratures with RMSE in the range of 2.0–4.2 °C. CLM4.0 simulated [101] lower soil tem-
perature by −0.83 °C and higher sensible heat flux up to 60 W.m−2, except in winter at 
Maqu Alpine Grassland. Xie et al. [102] found that the simulation of the winter radiation 
balance component and the surface energy balance component of CLM4.5 was poor, es-
pecially the simulation of the surface reflected radiation with the highest RMSE of 165.16 
W.m−2 in January, and sensible heat flux in winter had a serious deviation with the highest 
RMSE of 145.15 W.m−2 in February. Song et al. [103] used CLM4.5, which underestimated 
soil temperature and latent heat flux in winter at the Naqu site, which indicated that the 
parameterization schemes of snow processes and surface albedos in CLM4.5 need to be 
improved. All these discrepancies in land surface simulations may lead to poor simula-
tions of vegetation growth. Mao et al. [104] found that the GPP and LAI both had a posi-
tive correlation with precipitation and a strong negative correlation with incident 
shortwave radiation globally. Due to the special geography of the TP, especially the com-
plex lower cushion surface characteristics, there is a particularity and complexity of the 
land–air interaction in the area, which has caused difficulties for CLM land surface simu-
lation. How to improve and perfect the simulation performance of the CLM model on the 
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vegetation of the TP requires more in-depth research in the future. However, there are 
factors that can be improved, such as continuing to optimize the parameter schemes of 
simulating the temperature, precipitation, radiation flux, and the coverage of snow on the 
TP in CLM. Although almost all CLM models overestimated LAI and the LAI trend, there 
were differences in the degree of overestimation. An obvious difference is that the FIO-
ESM-2-0 model with the ocean wave model added to the coupling had better performance 
in simulating the area-averaged LAI of the Tibetan Plateau from 1981 to 2014 (Figure 2) 
than other CLM models. Other modules such as the ocean wave model in the coupled 
model might also have had a large impact on the CLM model. 

Most models had a worse performance in simulating the forest LAI and LAI trend 
compared with other vegetation types. The reasons for this difference may be that, com-
pared with grasslands and meadows, the vegetation growth mechanism in forest ecosys-
tems is more complex, the species of forest ecosystems are more abundant, and it is more 
difficult to establish mathematical structures for simulations with different species. 
Changes in the long-term processes of different species within the forest system are more 
complex, and it is more difficult to establish mathematical structures with simulations. 

From CMIP5 to CMIP6, the average LAI over the Tibetan Plateau still showed over-
estimation but of an even higher magnitude. Bao et al. [37] found that 10 out of 12 CMIP5 
models overestimated LAI with bias of between 0.44 and 3.6 m2 m−2 from 1986 to 2005. We 
found that 25 out of 35 CMIP6 overestimated LAI of TP, with bias ranging from 0.07 to 
5.38 from 1981 to 2014. For the same model from CMIP5 to CMIP6, we found that some 
models had better performance: for example, HadGEM3-GC31 had the smallest bias of 
the CMIP6 models. Some models showed poor performance in CMIP6—for example, 
CESM2 in CMIP6 showed much a higher average LAI than its previous version, CCSM4 
in CMIP5; additionally, INMCM4, with the lowest bias of 12 CMIP5 models [37], ranked 
23rd in area-averaged bias among the 35 CMIP6 models. Both CanESM2 from CMIP5 and 
CanESM5 from CMIP6 maintained a better simulation of the average LAI on the TP with 
the smaller bias, the same as the MPI-ESM1-2-HR and the old version MPI-ESM-LR. There 
were also models, whether in the CMIP5 or in the CMIP6, where the simulation perfor-
mance was relatively poor, such as bcc-csm1.1-m and the new version, BCC-CSM2-MR, 
in CMIP6, and NorESM1-ME and NorESM2-MM/LM from CMIP5 to CMIP6. 

Song et al. [105] found that CMIP6 generally overestimated the global multiyear av-
erage LAI, and the overestimation of growing season length (GSL) contributed to the over-
estimated LAI in boreal and some temperate areas. We found that CLM family also over-
estimated the average LAI during the growing season in 1981–2014 on the TP. We ana-
lyzed the monthly average LAI of 35 models from 1981 to 2014 and found that most of the 
models had a longer growing season (Figure S8). CMIP6 LAI in April, October, and No-
vember were still large. Part of the reason for the global multi-year average LAI and the 
TP LAI overestimation was the same. Moreover, we found that LAI increased greatly dur-
ing the leaf emerge stage in most CLM family models, which suggested too much carbon 
was being allocated to leaves. Improving the phenology and carbon allocation is crucial 
for improving LAI simulations over the Tibetan Plateau. 

Climate change has led to changes in vegetation on the TP in recent decades. From 
the 1980s to the beginning of the 21st century, the vegetation coverage rate of the TP 
showed an overall increasing trend [21], with large seasonal and spatial variations. The 
spring vegetation coverage of the Tibet Plateau showed the larger increasing rate [106] 
than other seasons. The humid areas in the Southeast TP showed increasing vegetation 
coverage while the Central and Northwest TP showed declined vegetation coverage 
[21,107]. The upper limit of the vertical natural zone of vegetation over the TP has changed 
significantly. The forest lines migrated to high altitudes [107]. The glacier retreat and per-
mafrost ablation will aggravate the degradation of regional alpine grassland [108] on the 
TP. Due to changes in the permafrost environment, the soil moisture and nutrients in the 
root layer of vegetation are decreased, resulting in the drying out of swamp wetlands and 
the transformation into meadows in Zoige, according to the measured data on 
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temperature precipitation [109], and shrub invasion of alpine meadows [107]. Species di-
versity in the native Kobresia humilis meadow community decreased in a simulation of a 
five-year temperature increase run a greenhouse in TP [110]. The degradation of perma-
frost, the drying out of some swamps, and the aggravation of surface salinization all ex-
acerbated the desertification of permafrost area in the TP [111]. Meanwhile, many of the 
variables that cause changes in vegetation growth in the context of global change have 
also changed. Temperature and precipitation, which have a positive correlation with LAI 
[112], showed an overall increasing trend on the TP, with warming of 0.4 °C. 10 yr−1 over 
the last 30 years [12,13] and precipitation increasing by 1.96 mm.10 yr−1 in 1994–2015 [14]. 
Zhu et al. [113] found that in the past 50 years, the highest value of Photosynthetically 
Active Radiation (PAR) in China appeared in the southwest of the Tibetan Plateau (with 
an annual PAR of 35 mol.m−2d−1), while the PAR in the northwest of the Tibetan Plateau 
showed an upward trend in different seasons. By analyzing the daily temperature data 
provided by the National Meteorological Information Center, China Meteorological Ad-
ministration, for the Tibetan Plateau stations from 1961 to 2007, Fan et al. [114] found that 
spring and summer are starting earlier while autumn and winter are starting later. 

Some of these changes can be monitored by remote sensing, e.g., glacier retreat [115], 
widespread grassland variation [116] with grassland biomass dynamics [117], rising forest 
lines, shrub intrusion into alpine meadows, etc. However, it is difficult for vegetation 
growth models to simulate these complex processes. The phenology and allocation 
schemes were not designed to capture tree line migration or grassland transformation. 
Moreover, the land surface model also could not simulate the well permafrost thawing or 
the glacier retreat processes over the Tibetan Plateau. 

Some researchers also found that the model had large errors in other simulation var-
iables on the TP. Xiao et al. [118] evaluated the performance of the state-of-the-art global 
high-resolution models in simulating hourly precipitation and extreme precipitation in 
summer over the TP in 1950–2050 with eight CMIP6 high-resolution models 
(HighResMIP) and found that the CMIP6 HighResMIP overestimated the precipitation 
amount and frequency. Chen et al. [119] found that, although the CMIP6 models could 
simulate the spatial distribution characteristics of the average annual precipitation on the 
Tibetan Plateau, this was generally overestimated, with an average of more than 397.8 
mm.a−1. The simulations of temperature and precipitation, which have a greater impact 
on the LAI simulation of vegetation, showed a large error in the TP. The inaccuracy of the 
temperature and precipitation simulation may also be one of the reasons for the large error 
in vegetation simulations on the TP. 

The acquisition of field data in TP was limited due to geographical, topographical, 
and environmental factors. However, continuous actual observation data from the plateau 
site are also very important for the accurate description of land–atmosphere interactions 
and the improvement of the parameterization of different physical processes [120–122]. 

Therefore, there are three pathways that may improve the performance of models in 
simulating LAI over the TP. The first is to incorporate missing physical mechanisms that 
directly or indirectly impact on vegetation growth, such as aerosol effects [123], elevated 
CO2 concentration, and the impact of volcanic eruptions on the climate [124]. Moreover, 
incorporating land surface processes such as permafrost thawing processes and the winter 
surface parameterization scheme [102] may be particularly important over the TP. The 
second is to calibrate and optimize the internal parameters [104] to better represent vege-
tation growth over the TP. Some of the parameters were not calibrated or validated over 
the TP, so using artificial intelligence to train models could improve the model simula-
tions. The third is to further improve the observation system and obtain continuous and 
complete atmospheric observations, as site-observed vegetation growth is also very im-
portant for improving simulations of the vegetation on the TP. 

As the temperature continues to rise, the impact of the climate on plant phenology 
becomes more complex [125] and the acquisition of the forcing data becomes harder due 
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to the extreme weather problems caused by global warming, which will make simulation 
of the vegetation growth in the Tibetan Plateau more challenging in the future. 

5. Conclusions 
In this study, we evaluated the performance of CMIP6 models in simulating LAI and 

the LAI trend during the growing season of the Tibetan Plateau over the period 1981–
2014, compared with the GLASS LAI. We found the following: 
1. In total, 40% of the models overestimated the greening, 48% of the models underes-

timated the greening, and 11% of the models showed a declining LAI trend for 1981–
2014 over the Tibetan Plateau. For the LAI, 70% of the models overestimated this, 
while about 17% of the models underestimated it. 

2. Both the models underestimating greening, and the models underestimating LAI, 
showed the greatest underestimation bias in July and August. The biases and ratio of 
LAI (with the exception of the CLM family) and trend between the simulations and 
observations had the same change during the growing season. 

3. CMIP6 models overestimated the LAI trend of alpine vegetation, forest, and grass-
land, but underestimated the meadow and shrub. The greening of grasslands was 
overestimated, and the greening of meadows was underestimated in CMIP6. Com-
pared with other vegetation types, the performance of simulating the forest LAI trend 
was poor with the highest RMSE, and the declining trend in forest pixels showing a 
declining trend on the TP, was generally underestimated. 

4. The performance in simulating the spatial distribution of LAI was better than the LAI 
trend. The underestimation of LAI was mainly in meadows and alpine forest areas 
in southeast TP. Similar to the forest LAI trend, the simulation performance of forest 
LAI was also poor, with the highest RMSE, and the forest LAI in parts of the south-
east where alpine forests were concentrated on the TP was underestimated by 20 of 
35 CMIP6 models. 
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