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Abstract: The “warm-humid” climate change across the Tibetan Plateau (TP) has promoted grassland
growth and an overall greening trend has been observed by remote sensing products. Many of the
current generations of Earth System Models (ESMs) incorporate advanced process-based vegetation
growth in the land surface module that can simulate vegetation growth, but the evaluation of their
performance has not received much attention, especially over hot spots where projections of the future
climate and vegetation growth are greatly needed. In this study, we compare the leaf area index (LAI)
simulations of 35 ESMs that participated in CMIP6 to a remote-sensing-derived LAI product (GLASS
LAI). The results show that about 40% of the models overestimated the Tibetan Plateau’s greening,
48% of the models underestimated the greening, and 11% of the models showed a declining LAI trend.
The CMIP6 models generally produced poor simulations of the spatial distribution of LAI trend, and
overestimated the LAI trend of alpine vegetation, grassland, and forest, but underestimated meadow
and shrub. Compared with other vegetation types, simulations of the forest LAI trend were the
worst, the declining trend in forest pixels on the TP was generally underestimated, and the greening
of the meadow was underestimated as well. However, the greening of the grassland, was greatly
overestimated. For the Tibetan Plateau’s averaged LAI, more than 70% of the models overestimated
this during the growing seasons of 1981–2014. Similar to the forest LAI trend, the performance of the
forest LAI simulation was the worst among the different vegetation types, and the forest LAI was
underestimated as well.

Keywords: Coupled Model Intercomparison Project Phase 6 (CMIP6); LAI; LAI trend; Tibetan Plateau

1. Introduction

Vegetation is a critical component of terrestrial ecosystems and is very sensitive to
climate change [1–3]. The global average surface temperature increased by 0.85 ◦C from
1880 to 2012 [4], which triggered phenological changes in different vegetation types in
different regions. The increase in temperature, as one of the causes of variation in vege-
tation, has led to a significant overall change in vegetation, manifested by an increase in
the Normalized Difference Vegetation Index (NDVI) during the vegetation growth season
in the Northern Hemisphere [5], and the growth rate of NDVI in forests is greater than
that of other vegetation types [6–8]. The community structure of snow-meadow vegetation
has changed significantly as a result of climate change in Northern Japan over the last
40 years [9]. In the Siberian Mountains, the birch area has increased by 10%, and birch
stands and the treeline boundary have moved upslope at a rate of 1.4 m yr−1 and
4.0 m yr−1, respectively, since the 1970s with the onset of warming [10]. In China, the zone
of tundra vegetation of the Changbai Mountains has been invaded by herbaceous plants
with the rising temperature over the last 30 years [11].

As the third pole of the earth, the Tibetan Plateau (TP) is highly sensitive to cli-
mate change and has been experiencing a rapid warming of 0.4◦ 10 yr−1 over the last
30 years [12,13] and with precipitation increasing by 1.96 mm 10 yr−1 in 1994–2015 [14].
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This “warm–humid” trend has led to tremendous changes on the land surface, such as
glaciers collapsing [15], permafrost thawing [16], and lakes expanding [17], as well as
surface vegetation growth. Liu et al. [18] found that the vegetation coverage on the TP
showed a trend of “overall increase and partial degradation” from 1981 to 2005, with the
area of improvement much larger than the area of degradation. Wei et al. [19] found that
“warm-humid” has a significant promoting effect on the improvement of vegetation on
the TP, and Zhang et al. [20] found that the overall NDVI of grassland in the growing
season of the TP also shows an increasing trend. Xu et al. [21] used the leaf area index
inversion by NOAA–AVHRR to study the temporal and spatial changes in vegetation
cover characteristics in the TP, and also found an overall increase in vegetation cover.
Zhang et al. [13] found that the green-up dates with the alpine vegetation in the Plateau
had a continuous advancing trend with a rate of ~1.04 d·y−1 from 1982 to 2011.

Remote sensing, as one of the major tools for studying vegetation’s response to climate
change [22], was used to study the vegetation on the TP, with various long-term vegetation
leaf area index (LAI) datasets derived through satellite remote sensing, such as GLASS
LAI [23], GLOBMAP LAI [24], GIMMS LAI [25], and MODIS LAI [5]. Hua et al. (2018) [26]
used the GIMMS NDVI dataset (NDVI-3g) to study the temporal and spatial variations in
vegetation dynamics controlled by climate on the Tibetan Plateau during 1982–2011 and
found that the potential cause of the change in vegetation dynamics might be controlled
by the climate, particularly the increasing precipitation and the significant temperature
rise in the Central and Southeastern Tibetan Plateau. Although remote sensing products
are very useful for understanding historical vegetation variations, satellite remote sensing
could not directly measure future vegetation dynamics. Another powerful tool, the state-of-
the-art Earth System Models that incorporate a process-based vegetation growth module,
can simulate not only historical variations in vegetation but also those in future climate.
Zhu et al. [27] built the first pedotransfer function to simulate temporal variations in
vegetation coverage (VC) and found that the pedotransfer function more accurately sim-
ulated temporal variation in VC than a multiple linear regression in an alpine meadow
on the Tibetan Plateau. Lu et al. [28] found that net primary productivity (NPP) and
LAI decreased from the southeast to the northwest of the Tibetan Plateau by using the
atmosphere–vegetation interaction model (AVIM) to simulate the distribution of LAI and
NPP over the Tibetan Plateau. The accuracy of the simulation results varies greatly due to
the design and use of the model itself, so it is very important to evaluate the accuracy of
the simulation data before using the simulations.

The International Coupled Model Comparison Program (CMIP), proposed by the
World Climate Research Program Group, currently in the sixth generation (CMIP6), has
been widely used for studying various environmental changes. Tian et al. [29] analyzed
changes in the annual mean surface air temperature (SAT) and precipitation, and also
the related uncertainties using historical simulations and future projections under the
Representative Concentration Pathway scenarios (RCPs) from the CMIP5 models across
China and in its seven sub-regions. Zhang et al. [30] demonstrated that there may be a
basic spatial scale limit below which it may not be useful to further refine climate model
predictions based on an integrated analysis of coupled model simulations and projections
from CMIP3 and CMIP5. Using the established linear relationship and monthly temper-
ature simulations from CMIP5 models over the Northern Hemisphere during the 21st
century, Xia et al. [31] found the start of the vegetation growing season (SOS) will have
advanced by 4.7 days under RCP2.6 (Representative Concentration Pathway) by 2040–2059.
After CMIP5, more and more models have incorporated a dynamic vegetation growth
module, and therefore evaluating CMIP vegetation simulations has drawn much atten-
tion. Anav et al. [32] assessed the ability of 18 Earth system models (ESMs) in CMIP5
and found that most models overestimated the global average LAI and half of the models
also overestimated the LAI trend for 1986–2005. Zhao et al. [33] analyzed the changes
in projected global LAI from 16 CMIP5 ESMs and 17 CMIP6 ESMs, and found that the
CMIP6 models had a better ability to describe the global area-averaged LAI time series.
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Lawrence et al. [34] did not evaluate the performance of the simulated global tree height of
the CMIPs’ ESMs but gave the biases of tree height for the offline simulations of CLM5BGC.
Brovkin et al. [35] evaluated the performance of MPI-ESM, and Seller [36] evaluated
UKESM1-0-LI in terms of vegetation distribution; both found that the two models overes-
timated the fraction of tree coverage. Most evaluations have focused on the global scale;
few have focused on regional scales such as the Tibetan Plateau. Bao et al. [37] evalu-
ated 12 CMIP5 ESMs for reproducing vegetation cover and LAI over the Tibetan Plateau
in 1986–2005, and found that INMCM4, BCC-CSM-1.1M, MPI-ESM-LR, IPSL-CM5A-LR,
HadGEM2-ES, and CCSM4 were the best six models for capturing vegetation among the
12 models. CMIP6 has had the largest participation since its implementation [38]. However,
how well the CMIP6 models simulate vegetation growth, especially the recent greening of
the Tibetan Plateau, is unknown.

LAI is usually defined as half of the total leaf surface area per unit of surface area [39],
and NDVI is defined as the ratio of the difference between the near-infrared band (NIR) and
the visible red band (R), and the sum of the two bands, NDVI = (NIR− R)/(NIR + R). NDVI
is directly obtained from the satellites’ reflection information and the real-time variation of
vegetation after a simple calculation, which can quantitatively reflect the actual variation of
vegetation, including the vegetation structure, the vegetation growth, and the vegetation
coverage during the observation period, and is widely used in the field of vegetation remote
sensing [40–42]. LAI and NDVI are both important indices for quantifying the vegetation
variations, but only LAI could be validated because NDVI is not an output of the dynamic
vegetation growth models in CMIP6. LAI, as a key indicator of vegetation growth [43], has
been widely used in global climate models, ecological models, hydrological models, and
ecosystem productivity models [44]. Therefore, we focused on LAI validations in our work
rather than NDVI.

In recent decades, although greening is one of the most important changes in the
Tibetan Plateau, few works have particularly focused on the performance of the model
simulations on the greening of the Tibetan Plateau. We developed our own ranking method
that considered the temporal and spatial simulations’ abilities to give an overall assessment
of CMIP6 models. We also quantified the growth of different vegetation types. Our goals
with this work are to evaluate the performance to simulate the LAI trend and LAI of the
CMIP6 model during the growing season and to provide a reference for the selection
of simulation data of vegetation changes, aid the research into vegetation in the Tibetan
Plateau, and analyze the sources of temporal and spatial error in each model, laying a
foundation for model optimization.

2. Data and Methods
2.1. Study Area

The TP [45,46] is located at 26–39◦N latitude in Southwest China. Surrounded by high
mountains on the edge of the area, the internal topography is complex, including plateaus,
basins, glaciers, lakes, and swamps [47]. Its geographical features, such as the high altitude,
and the complex and changeable topography, have created special climatic conditions and
water and heat distribution in this area, and have also created its distinctive vegetation
distribution. As the largest alpine grassland ecosystem in the world, the TP is dominated
by meadows and grasslands (Figure 1), concentrated across a wide range of Central Tibet.
The vegetation types in Tibet have spatial distribution characteristics that gradually change
from southeast to northwest. From southeast to northwest in Tibet, the vegetation types are
distributed in the order of forests, shrubs, meadows, grassland, and desert (Figure 1). The
dataset is derived from the 1:1 million vegetation data set collected in China in 2001, and
it is provided by the National Cryosphere Desert Data Center (http://www.ncdc.ac.cn)
(accessed on 9 December 2021).

http://www.ncdc.ac.cn
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Figure 1. (a) The location of the Tibetan Plateau [48] in the world map, and the world map from
ArcGIS. (b) Distribution of vegetation types on the Tibetan Plateau [49].

2.2. Satellite Data

To evaluate the ability of the 35 models from the CMIP6 to reproduce the LAI over the
Tibetan Plateau, the 1981–2018 LAI data from the Global Land Surface Satellite (GLASS)
dataset with an eight-day temporal frequency and a 0.5◦ × 0.5◦ spatial resolution were
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used as a benchmark in our study. GLASS LAI uses generalized regression neural networks
(GRNNs) to invert LAI from Time-Series AVHRR Surface Reflectance data; the algorithm
trains GRNNs using preprocessed AVHRR Time-Series AVHRR Surface Reflectance, and
then uses rolling processing to produce time-continuous long-term GLASS LAI products
from the preprocessed AVHRR Surface Reflectance [23]. Compared with other LAI datasets,
GLASS LAI data have a long observation period, high quality, and good accuracy [50]. They
have more complete trajectories than the MODIS LAI product and also show lower uncer-
tainty than the MODIS and CYCLOPES LAI products compared with 20 ground-measured
LAI reference maps. Many studies use GLASS LAI as a reference database for research or
validation [51–55]. All these factors make it an ideal long-term dynamic LAI observation
dataset in this study. The GLASS LAI product (V50) used in this study is available from the
University of Maryland and the Center for Global Change Data Processing and Analysis
of Beijing Normal University (http://www.glass.umd.edu/Download.html, accessed on
9 March 2021).

2.3. CMIP6 Model Simulations

Thirty-five CMIP6 models with no missing data were selected in this study, and the
LAI from outputs of historical simulations for 1850–2014 was used (https://esgf-node.llnl.
gov/search/cmip6/, accessed on 16 August 2021).

In order to facilitate the comparison of the simulation and observational data, all
simulations were downloaded and converted to a 0.5◦ × 0.5◦ spatial resolution by bilinear
interpolation from low to high resolution. The overlaps of the GLASS datasets and CMIP6
were 1981–2014, so our analysis focused on 1981–2014. The model’s information is shown
in Table 1.

2.4. Evaluation Approach

A series of evaluation indicators was applied to quantify the agreement between
the observed and simulated LAI and the trend of the CMIP6 models. In this study, we
calculated the average LAI during the growing season (May–September) for each year as
the average LAI, a linear regression trend of the average LAI from 1981 to 2014 as the trend,
and an increasing trend indicated TP greening. We also calculated the monthly average
LAI for each month of the growing season, and the TP averaged monthly average LAI
during 1981–2014 as the monthly LAI. Then, we calculated the linear regression trend of
the monthly average LAI for each month during the growing season from 1981 to 2014, and
the TP averaged trend of the monthly average LAI as the monthly LAI trend. We obtained
monthly variations from the monthly LAI and the monthly LAI trend during the growing
season. In the following, we further describe the metrics used for model evaluation and the
method used for ranking the models.

2.4.1. Evaluation Metrics

The spatial correlation (pattern correlation) was used to quantify the correlation
between the grid cell trend (or the grid cell average LAI from 1981 to 2014) distribution in
the models and observations. Through a combination of the definitions of Bao et al. [37]
and Chang et al. [80], the spatial correlation formula for the simulated and observed trends
in this study was defined as follows:

Pattern correlation =
1
N ∑ N

i Wi
(

Mi −M
)(

Oi −O
)√

1
N ∑ N

i Wi
(

Mi −M
)2
√

1
N ∑ N

i Wi
(
Oi −O

)2
. (1)

where N is the total number of grid cells under evaluation, Mi and Oi are the simulated
and observed trend (or the average LAI from 1981 to 2014) from the CMIP6 models and the
GLASS of the grid cell i , and Wi is the area weight of the grid cell i (all grid weights add
up to 1) [37]. We calculated Wi in the Pearson correlation coefficient equation as the area of

http://www.glass.umd.edu/Download.html
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
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each grid cell associated with the central geographic latitude of each grid cell [37]. In the
TP, the variation in Wi is not obvious and the value of Wi can almost be neglected.

Table 1. Model description.

Model Institute Land Surface Model Resolution Reference

AWI-ESM-1-1-LR AWI (Germany) CABLE2.4 250 km [56]
ACCESS-ESM1-5 CSIRO (Australia) CABLE2.4 250 km [57]
BCC-CSM2-MR BCC (China) BCC-AVIM2.0 100 km [58]

BCC-ESM1 BCC (China) BCC-AVIM2.0 250 km [58]
CAMS-CSM1-0 China CoLM 100 km [59]

CanESM5 CCCMA (Canada) CLASS3.6-CTEM1.2 500 km [60]
CanESM5-CanOE CCCMA (Canada) CLASS3.6-CTEM1.2 500 km [60]

CESM2 NCAR (USA) CLM5 100 km [61]
CESM2-FV2 NCAR (USA) CLM5 100 km [61]

CMCC-CM2-SR5 CMCC (Italy) CLM4.5 100 km [62]
CMCC-ESM2 CMCC (Italy) CLM4.5 100 km [62]

E3SM-1-0 E3SM-Project (USA) ELM 100 km [63]
E3SM-1-1 E3SM-Project (USA) ELM 100 km [63]

E3SM-1-1-ECA E3SM-Project (USA) ELM 100 km [63]
EC-Earth3-Veg EC-Earth-Consortium (Europe) HTESSEL 100 km [64]

EC-Earth3-Veg-LR EC-Earth-Consortium (Europe) HTESSEL 100 km [64]
FGOALS-g3 China CAS-LSM 2 × 2◦ [65]
FIO-ESM-2-0 FIO (China) CLM4.0 100 km [66]
GFDL-CM4 GFDL (USA) LM4.0 100 km [67]
GFDL-ESM4 GFDL (USA) LM4.1 100 km [68]
GISS-E2-1-G GISS (USA) GISS LSM 250 km [69]

HadGEM3-GC31-LL HadGEM (United Kingdom) JULES 250 km [70]
HadGEM3-GC31-MM HadGEM (United Kingdom) JULES 100 km [70]

INM-CM4-8 INM (Russia) INM-LND1 100 km [71]
INM-CM5-0 INM (Russia) INM-LND1 100 km [72]

IPSL-CM6A-LR IPSL (France) ORCHIDEE v2 250 km [73]
KIOST-ESM KIOST (Korea) LM3.0 250 km [74]

MIROC-ES2L MIROC (Japan) MATSIRO6.0
+VISIT-e v1 500 km [75]

MPI-ESM-1-2-HAM
HAMMOZ Consortium
(Switzerland, Germany,

Finland, UK)
CABLE2.4 250 km [76]

MPI-ESM1-2-HR MPI (Germany) CABLE2.4 100 km [76]
MRI-ESM2-0 MRI (Japan) HAL 1.0 100 km [77]

NorESM2-LM NCC (Norway) CLM5 250 km [78]
NorESM2-MM NCC (Norway) CLM5 100 km [78]

TaiESM1 AS-RCEC (Taiwan, China) CLM4.0 100 km [79]
UKESM1-0-LI MOHC (UK) JULES-ES-1.0 250 km [36]

The bias between the simulated and observed grid cell trend (or the grid cell average
LAI from 1981 to 2014) was calculated to quantify the main bias between the model
simulations and GLASS observations. In our study, we subtracted the observed trend (or
the average LAI from 1981 to 2014) from the simulated trend (or the average LAI from 1981
to 2014) to get trend (or the average LAI from 1981 to 2014) bias at the single grid cell i by
Equation (2). We thus obtained a value of the bias at every grid cell and the distribution of
the bias across the whole study region. The relative bias of grid cell trend (or the grid cell
average LAI from 1981 to 2014) was calculated as the ratio of the trend (or the average LAI
from 1981 to 2014) bias to the observed trend (or the average LAI from 1981 to 2014) at the
grid cell i in Equation (3). We also calculated the TP averaged bias using Equation (4).

Bias = Mi −Oi (2)
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RelativeBias =
Biasi

Oi
(3)

Biasavg =
∑ N

1 |Mi −Oi|
N

(4)

The root-mean-square error (RMSE) was used to measure the difference between the
simulations and observations. Similar to bias, we calculated the trend (the average LAI
from 1981 to 2014) of the two datasets at grid cell i , and then aggregated the results over
the entire TP. Next, we converted spatial two-dimensional data of trend (or the average LAI
from 1981 to 2014) in simulations and observations into one dimension and calculated the
RMSE of the two columns (the simulations and observations) of the one-dimensional data
by Equation (5). This RMSE was used in the ranking. Moreover, we used RMSE to quantify
the difference in the average LAI from 1981 to 2014 sequence between the simulation and
observation during the growing season in 1981–2014 at single grid cell i , and then obtained
the distribution of RMSE across the region.

RMSE =

√
∑ N

1 (Mi −Oi)

N

2

(5)

The ratio of the standard deviation (Ratioδ) was used to quantify the magnitude of
the difference in variation between the simulation and the observation. Similar to RMSE,
we first converted the spatial two-dimensional data of the grid cell trend (or the grid cell
average LAI from 1981 to 2014) in simulations and observations into one dimension, and
then calculated the standard deviation of the simulations and observations by Equation (6),
and finally calculated the ratio of the two standard deviations. Furthermore, δM and δO were
the standard deviations of the model simulations and the GLASS observations, respectively.
The ratio of trend (Ratiotrend) was used to quantify the variation of the simulated trend
and the observed trend as either overestimation or underestimation. We calculated the
Ratiotrend by Equation (7); trendM was the simulated trend, and the trendO was the GLASS
trend. A ratio less than 0 indicated that the trend was not captured, contrary to the trend in
GLASS. A ratio greater than 0 but less than 1 indicated that the greening or declined trend
was captured, but was underestimated. A ratio greater than 1 indicated an overestimation
of the greening or declined trend.

Ratioδ =
δM
δO

(6)

Ratiotrend =
trendM
trendO

(7)

2.4.2. Significant Test Method

We used two methods for significance testing, the Student’s t-test and the Mann–
Kendall trend test. The Student’s t-test was used for the significant difference test between
simulations and observations. The Mann–Kendall trend test was used to detect whether a
time series was steadily increasing/decreasing or unchanging.

2.4.3. Ranking Method

A ranking scheme was developed by Brunke et al. to score the multi-bulk aerodynamic
algorithm for calculating the turbulence fluxes on the ocean surface [81]. Decker et al. [82]
ranked the bias and standard deviation of error between reanalysis products and flux
tower measurements using the same method as Brunke et al. On the basis of Decker et al.,
Wang et al. [83] extended this ranking approach and increased the statistical parameters
to four, including the correlation coefficient (ρ), the standard deviation ratio (σr/σobs), the
standard deviation error (σd), and the difference (bias) to rank the ability of six kinds of
reanalysis data to reproduce climate characteristics over the Tibetan Plateau. Since then,
this ranking approach, as a good example of model performance evaluation, has been
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used in many studies [32,37]. In this study, we adjusted the ranking method used by
Wang and Zeng, and the ranking metrics were changed into the spatial correlation (pattern
correlation), the bias (Bias), the root mean square error (RMSE), and the ratio of standard
deviation (Ratioδ).

In the context of this study, the simulation with the highest pattern correlation, the
lowest bias and RMSE, and the closest ratio was considered to have the best performance
for reproducing the trend (or the LAI) over the Tibetan Plateau. The models were ranked
from 1 to 35, with 1 being the model with the lowest value in magnitude of bias, RMSE, or
|ratio-1| (or the highest pattern correlation) and 35 being the model with the highest value
in magnitude of bias, RMSE, or |ratio-1| (or the lowest pattern correlation) [82]. We then
calculated the total score of the four metrics for a single model and defined the total score
as the “error ranking”. The higher the model’s error ranking, the closer the relationship
between the simulations and observations.

3. Result
3.1. The Average Growing Season LAI and Trend

More than 70% of models overestimated and about 28% of models underestimated
the area-averaged growing season LAI over the Tibetan Plateau (Figure 2). EC-Earth3-Veg,
C-Earth3-Veg-LR, and HadGEM3-GC31-LL showed the smallest average LAI bias with
slight underestimations of 0.0066–0.018 m2 m−2 in comparison with GLASS LAI. CMIP6
models (except FI0-ESM-2-0) incorporating the community land model (hereafter referred
to as the CLM family) showed a much larger LAI bias of 2–5.5 m2 m−2, especially CESM2,
CESM2-FV2, NorESM2-LM, and NorESM2-MM (4–5.5 m2 m−2). CanESM5, CanESM5-
CanOE, E3SM-1-0, GISS-E2-1-G, IPSL-CM6A-LR, and KIOST-ESM underestimated the
average LAI (0.1–0.40 m2 m−2), but these underestimations were much smaller than the
overestimations of other CMIP6 models.
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Figure 2. The bias of the area-averaged LAI during the growing season in Tibetan Plateau from 1981
to 2014 between each CMIP6 model and GLASS data.

In Figure 3, we show the ratio of the area-averaged trend between simulations and
observations from 1981–2014 in TP. For the Tibetan Plateau LAI trend in 1981–2014, about
40% of the models overestimated the Tibetan Plateau’s greening, more than 48% of the
models underestimated the greening, and 11% models showed a declining LAI trend
(Figure 3). E3SM-1-1 and MPI-ESM-1-2-HAM showed the closest trend estimations among
the 35 CMIP6 models. For some CMIP6 models, the overestimation or the underestimation
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of greening and the area-averaged LAI (in Figure 2) occurred at the same time. For example,
CMIP6 models (except for FI0-ESM-2-0) that incorporated CLM also greatly overestimated
the greening of the Tibetan Plateau above the GLASS data (2.5–6.5 times higher), while
CanESM5 underestimated not only the average LAI but also the greening. However,
models such as AWI-ESM-1-1-LR and UKESM1-0-LI overestimated the average LAI but
underestimated the greening.
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3.2. LAI and Trend Monthly Variations
3.2.1. Monthly Leaf Area Index

The maximum underestimation of LAI mainly occurred in July and August, while the
maximum overestimation of LAI varied greatly across different CMIP6 models, and this
variation depended greatly on the land surface models incorporated in the different CMIP6
models (Figure 4a). The monthly variation in the bias of the LM family (UKESM1-0-LI,
GFDL-CM4, and GFDL-ESM4) was similar for each month of the growing season. Unlike
the LM family, the overestimation bias of the CLM family (except for FIO-ESM-2-0) first
increased and then remained stable, with the bias in May being the smallest, and the largest
being in June or September. The bias of the BCC family showed more complex monthly
variation characteristics, with the overestimation bias increasing and then decreasing, and
the bias in August being the largest.

Moreover, the good simulations of area-averaged LAI of EC-Earth3-Veg, EC-Earth3-
Veg-LR, and HadGEM3-GC31-LL were due to the positive and negative biases in dif-
ferent months cancelling each other out. EC-Earth3-Veg and EC-Earth3-Veg-LR under-
estimated LAI in May (−0.04 to −0.01 m2 m−2), July (−0.06 to –0.03 m2 m−2), and
August (−0.1 to −0.05 m2m−2), while LAI was overestimated in June (0.003–0.022 m2

m−2) and September (0.02–0.05 m2 m−2), HadGEM3-GC31-LL overestimated LAI in May
(0.014 m2 m−2) and June (0.024 m2 m−2), but underestimated LAI in July (−0.016 m2

m−2), August (−0.09 m2 m−2), and September (−0.021 m2 m−2), and these biases partially
canceled each other out, making the overall average bias smaller.
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Although the bias of LAI in May was small, the relative LAI bias was quite large
in May (Figure S1). For example, the relative LAI bias of the CLM family (except for
FIO-ESM-2-0) was highest in May and June (364–1105%) and then decreased from May
or June to August (265–725%), which suggested that improvements at the beginning of
growth are key to these models.

3.2.2. Monthly LAI Trend

None of the CMIP6 models captured the monthly LAI trend well, even those models
that showed good agreement for the annual LAI trend (Figure 5). The good overall greening
simulations of E3SM-1-1, INM-CM5-0, INM-CM4-8, and MPI-ESM1-2-HR were due to the
overestimations and underestimations in different months cancelling each other out.

Models that underestimated the greening of the Tibetan Plateau generally had the
greatest underestimation in July and August (Figure 5). For example, except for IPSL-
CM6A-LR, the monthly error of other models that underestimated the greening of the
Tibetan Plateau showed the changes first increasing and then decreasing, and the under-
estimation error was usually the largest in July and August. However, the models that
overestimated the greening of the Tibetan Plateau showed inconsistent monthly variations.
For example, the CLM family (except for FIO-ESM-2-0) showed the largest overestimation in
May (2.93–18.37) and the smallest overestimations in July (1.22–3.24) and August (1.15–3.04).
BCC-CSM2-MR showed the greatest overestimation in September (3.33), while E3SM-1-1-ECA
showed the greatest overestimation in June (2.81). The models that did not simulate greening
also did not simulate the greening trend for each month of the growing season.

Unlike the large difference between the LAI bias and relative LAI bias, the ratio of
the monthly LAI trend and the bias of the monthly LAI trend had consistent variations
(Figure S2). The CLM family (except for FIO-ESM-2-0) showed the largest overestimation
in May, and the greatest underestimation of LAI trend in July and August.

3.3. LAI Spatial Comparison
3.3.1. Averaged Leaf Area Index for 1981–2014

GLASS LAI gradually decreased from southeast to northwest (Figure 6). The LAI of
forests in Southeast TP was larger (2.8–4.8 m2 m−2), and the LAI dominated by grasslands
and shrubs in the central and northwest areas was smaller (0–0.8 m2 m−2).

Before evaluating the spatial distribution simulation capability, we ranked the perfor-
mance of the CMIP6 models to capture the LAI spatial distribution based on the evaluation
metrics (Table S1), then we presented the LAI spatial distribution results in Figures S3 and 7
by ranking their scores from the best to the worst.

Almost all the CMIP6 models could reproduce a spatially declining pattern from
southeast to northwest, but there was still large spatial bias. The pattern correlation of 88%
of the models was greater than 0.60 and the highest was 0.934 for HadGEM3-GC31-MM
(Figure S3). We also found that the top five models among the 35 CMIP6 models mainly
underestimated the LAI, and the underestimation bias mainly came from the alpine forest
area and alpine meadow areas in southeast Tibet. The main feature of the model ranked in
the middle (ranked 6–20) among the CMIP6 models is that there were both overestimations
and underestimations in the region, while the models with lower (after 20) rankings mainly
overestimated the LAI, and the overestimation bias was more obvious in the southeast.
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Models that underestimated LAI did so mainly over meadows and alpine forest areas
in southeast TP, while models that obviously overestimated LAI had great differences
in their spatial bias (Figure 7). The obvious overestimation of BCC-CSM2-MR from the
BCC family mainly came from the shrub area, while the overestimation of BCC-ESM1
was mainly from shrub areas, meadows, and part of the grassland, and there was high
overestimation near river basins. The overestimation of GFDL-CM4 in the LM family came
from the shrub areas, while the overestimation of GFDL-ESM4 was mainly distributed
across all of Southeast Tibet and was significantly overestimated in the central part. The
overestimation of the INM family mainly occurred in shrub areas, deserts, and grassland
area, and the highest value of the overestimation bias was for the shrub areas. In addition,
the CLM family (except for FIO-ESM-2-0) had abnormally high LAI values throughout
the Tibetan Plateau region, and the overestimation was distributed throughout the region,
especially for shrub areas and meadows in the southeast TP, with the bias values being
4.5–5.0 m2 m−2.

EC-Earth3-Veg and EC-Earth3-Veg-LR showed the best simulations for the average
LAI (Figure 2), but none of them showed the exact spatial distribution of LAI (Figure 7).
EC-Earth3-Veg and EC-Earth3-Veg-LR overestimated the southeastern edge of Tibet but
underestimated the grassland and meadow regions of the TP; these positive and negative
errors cancelled each other out.

Overall, the CMIP6 models had poor performance for the forest LAI simulation with
the highest RMSE, and the bias of the CMIP6 models varied greatly with large overesti-
mation and underestimation, but with the smallest relative bias (Figure S4). Although
CMIP6 models had a small overestimation of forest average LAI generally (Figure S4), most
models underestimated the forest LAI in the small areas where forests are concentrated on
the southern edge of the TP (Figure 7). Similar to the forest LAI, the simulation of shrub
was poor with large RMSE and bias, but the relative bias of the shrub was small. The
performance of the CMIP6 models for simulating the grassland LAI was good among the
different vegetation types with the smallest RMSE. The reason for the small absolute bias
but large relative bias with grassland may be that the LAI value of grassland was small.
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The white part failed the significant difference test. The number in the top left corner is the ranking
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season in 1981–2014. The value in each title is the pattern correlation.

3.3.2. The Leaf Area Index Trend during 1981–2014

The GLASS LAI data showed a clear greening trend from 1981 to 2014 over the TP,
except for some forest areas on the southern edge of the TP (Figure 8). The entire area had
significant greening (p < 0.05) of 0.0047 m2 m−2 yr−1 (Figure S4), especially in the river
basins of the meadow area.

Similar to the analysis of the spatial distribution of the LAI, we ranked the perfor-
mance in reproducing the LAI trend of the CMIP6 models (Table S2) and show the spatial
distribution of the LAI trend from best to worst in Figure 9.
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The CMIP6 models showed a poor ability to simulate the spatial distribution of the
LAI trend across the whole Tibetan Plateau during 1981–2014, while most models could
simulate the LAI trend in parts of the Tibetan Plateau (Figure 9). The pattern correlation
of the LAI trend between all models and GLASS was less than 0.65, and a few models
even had negative pattern correlations (Figure S6). There were five models (MPI-ESM-1-2-
HAM, BCC-ESM1, BCC-CSM2-MR, EC-Earth-Veg, and EC-Earth-Veg-LR) that generally
simulated the overall greening trend of the study area, and also captured the high value of
the greening trend in the southeast region, where the spatial distribution of the greening
trend was closer to the observation data, and five models (E3SM-1-1, AWI-ESM-1-1-LR,
CESM2, GFDL-ESM4, and TaiESM1) simulated the obvious decline in the Southern TP
better than other 30 models. E3SM-1-1 and MPI-ESM-1-2-HAM had the best performance
in simulating the distribution of the LAI trend and could capture the greening and the
decline as well.

Compared with other vegetation types, the simulation of forest LAI trend was poor
with the highest RMSE, and the CMIP6 models generally overestimated the forest LAI trend.
The simulation of the forest LAI trend showed great differences. Some models showed
largely overestimations (NorESM2-MM with a bias of 0.026 m2 m−2 year−1) and some mod-
els showed large underestimations (GFDL-ESM4 with a bias of –0.017 m2 m−2 year−1),
which resulted in a larger LAI bias range across all CMIP6 models than for other vegetation
types (Figure S7). The alpine vegetation and grassland were also overestimated by CMIP6
models, but the meadow and shrub were underestimated (Figure S7).

In total, 70% of the models accurately simulated increases and decreases in the LAI
trend of 80% of the area of the Tibetan Plateau, but the simulation of the value of the LAI
trends on the grids was poor (Figure 9). Six models (FIO-ESM-2-0, HadGEM3-GC31-LL,
FGOALS-g3, UKESM1-O-LI, GISS-E2-1-G, and GFDL-ESM4) all had obvious gray areas,
which mean that the models showed a contrary trend to the GLASS data and had not
captured the greening or the declining—especially for GISS-E2-1-G, the gray area was
distributed across almost the entire area. Neither FIO-ESM-2-0 nor FGOALS-g3 captured
the LAI trend in Northern Tibet, and neither UKESM1-O-LI nor GFDL-ESM4 captured the
LAI trend in the southwestern region.
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Figure 9. Spatial distributions of the ratio of simulated and observed linear trends in LAI during
the growing season. The grid cells with colors all showed a statistically significant interannual change
(p < 0.05). Gray areas mean the grid cells did not capture greening or a declining trend during 1981–2014
in the Tibetan Plateau, blue areas mean the grid cells captured the greening or the declining trend but
underestimated them, and red areas indicated overestimations of the greening or the declining trend.
Cross-hatched areas indicate that the LAI trend was negative. The number in the upper left corner is the
ranking of each CMIP6 model for simulating LAI trends. The value in each title is the pattern correlation.

The remaining models all captured the greening in 1981–2014, while there were
still underestimations and overestimations of the value of the LAI trend in grid cells
(Figure 9). The underestimation of the LAI trend mainly came from the shrub, whole
meadow area or part of the meadow area, and the greening of the shrub and meadows was
underestimated. While the overestimation of the LAI trend came from the grasslands, the
CLM family (except for FIO-ESM-2-0) overestimated the LAI trend in almost the whole
area, especially the greening of the grassland, which was greatly overestimated. Similarly,
13 models (E3SM-1-1, INM-CM5-0, MIROC-ES2L, INM-CM4-8, MRI-ESM2-0, GFDL-CM4,
MPI-ESM1-2-HR, E3SM-1-1-ECA, EC-Earth-Veg, EC-Earth-Veg-LR, UKESM1-O-LI, KIOST-
ESM, and MRI-ESM2-0) all overestimated the greening of grasslands. Although the trend
of forest LAI was generally overestimated by CMIP6 models (Figure S7), the decline trend
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of forest LAI was underestimated in parts of the southeast where alpine forests were
concentrated (Figure 9).

4. Discussion

Our study chose GLASS LAI as our reference LAI because it is one of the leading
data sources for studying long-term series vegetation changes with good representations
of various surface LAI distributions. In an evaluation of the authenticity of GLASS LAI
products in the grasslands of Xilinhot [84], it was found that the observational accuracy and
consistency of GLASS LAI were better than those of MODIS LAI, making it more suitable
for related research. When GLASS LAI data were used to analyze changes in the Amazon
rainforest from 1982 to 2012 [53], it was demonstrated that the GLASS LAI data can be used
for detecting changes in the large-scale surface vegetation status in long sequences. As
early as 2014, Xiang et al. [85] compared LAI products (MODIS LAI, CYCLOPES LAI, and
CCRS LAI) with ground measurement LAI data, and found that the accuracy of GLASS
LAI data products was significantly higher than that of MODIS and CYCLOPES. At the
same time, through a comparison of LAI products (MODIS LAI, CYCLOPES LAI, and
CCRS LAI), it was found that, compared with other LAI products, GLASS LAI has the best
temporal continuity and integrity, and smoother trajectories, and is an ideal data product
for studying temporal changes in LAI. The spatial distribution of the GLASS LAI data is
reasonable, and it also has good consistency with the global spatial distribution of MODIS
LAI. It thus has great advantages in studies of the spatial distribution of LAI.

Although many studies using remote sensing products found an overall increasing
trend of vegetation growth (greening) over the Tibetan Plateau, like the GLASS remote
sensing products, controversy remains regarding how vegetation on the Tibetan Plateau
has changed. Xu showed that spring warming advanced spring leaf-out time and in-
creased the biomass [86]. However, Yu (2010) argued that the warm winter may also have
led to delayed spring phases due to insufficient fulfillment of chilling requirements [87].
Zhang et al. [13] argued for the earlier start date of plant phenology and a longer growing
season, but some still doubt this [88,89]. Regarding the change in the trend, a declined
trend for the vegetation dynamics of the TP was found in some studies over the last 30 years
(about 1980-2010) according to the Global Inventory of Modeling and Mapping and Studies
(GIMMS) [90,91], but others found an increasing trend of vegetation growth in northeastern
TP using other NDVI datasets for 1982–2011 [92]. These different understandings indicate that
a combination of ground observations, remote sensing datasets, and land/vegetation models
is necessary to fully understand past and future vegetation changes on the Tibetan Plateau.

In the CMIP6 models, some model groups showed consistency in simulating LAI and
LAI trends using the same land surface model, but others showed great differences. In
order to understand the possible reasons for these differences, we briefly summarized the
differences among the model groups using the same land surface model (Table 2).

By combining the simulation results of the model for the average LAI and LAI trends
in Figures 2 and 3 and the different characteristics of the models in Table 2, we found
that the simulation results of the models using different land surface models were quite
different on the whole; the simulation results of models using the same land surface
model had overall consistency, whereas the simulation results of models using different
versions of the same land surface model were different. There are many possible reasons
for the large difference in the simulations of vegetation growth, such as the simplified
parameterization, uncalibrated parameters, and the atmospheric forcing data that drive the
model. The vegetation growth in the land surface model also subject to the simulations
of other processes directly affecting vegetation growth, such as the simulation of soil
temperature and moisture, surface radiation transfer, etc. Using the Community Land
Model (CLM) as an example, Luo et al. [100] used the simulated data of Weather Research
and Forecasting Model (WRF) to apply to the forcing data sets of the CLM model in the
Tibetan Plateau, and found that there are deviations between simulated and observed
surface temperatures with RMSE in the range of 2.0–4.2 ◦C. CLM4.0 simulated [101] lower
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soil temperature by −0.83 ◦C and higher sensible heat flux up to 60 W.m−2, except in
winter at Maqu Alpine Grassland. Xie et al. [102] found that the simulation of the winter
radiation balance component and the surface energy balance component of CLM4.5 was
poor, especially the simulation of the surface reflected radiation with the highest RMSE
of 165.16 W.m−2 in January, and sensible heat flux in winter had a serious deviation with
the highest RMSE of 145.15 W.m−2 in February. Song et al. [103] used CLM4.5, which
underestimated soil temperature and latent heat flux in winter at the Naqu site, which
indicated that the parameterization schemes of snow processes and surface albedos in
CLM4.5 need to be improved. All these discrepancies in land surface simulations may lead
to poor simulations of vegetation growth. Mao et al. [104] found that the GPP and LAI
both had a positive correlation with precipitation and a strong negative correlation with
incident shortwave radiation globally. Due to the special geography of the TP, especially
the complex lower cushion surface characteristics, there is a particularity and complexity
of the land–air interaction in the area, which has caused difficulties for CLM land surface
simulation. How to improve and perfect the simulation performance of the CLM model
on the vegetation of the TP requires more in-depth research in the future. However, there
are factors that can be improved, such as continuing to optimize the parameter schemes of
simulating the temperature, precipitation, radiation flux, and the coverage of snow on the
TP in CLM. Although almost all CLM models overestimated LAI and the LAI trend, there
were differences in the degree of overestimation. An obvious difference is that the FIO-
ESM-2-0 model with the ocean wave model added to the coupling had better performance
in simulating the area-averaged LAI of the Tibetan Plateau from 1981 to 2014 (Figure 2)
than other CLM models. Other modules such as the ocean wave model in the coupled
model might also have had a large impact on the CLM model.

Most models had a worse performance in simulating the forest LAI and LAI trend com-
pared with other vegetation types. The reasons for this difference may be that, compared
with grasslands and meadows, the vegetation growth mechanism in forest ecosystems is
more complex, the species of forest ecosystems are more abundant, and it is more difficult
to establish mathematical structures for simulations with different species. Changes in the
long-term processes of different species within the forest system are more complex, and it
is more difficult to establish mathematical structures with simulations.

From CMIP5 to CMIP6, the average LAI over the Tibetan Plateau still showed overes-
timation but of an even higher magnitude. Bao et al. [37] found that 10 out of 12 CMIP5
models overestimated LAI with bias of between 0.44 and 3.6 m2 m−2 from 1986 to 2005.
We found that 25 out of 35 CMIP6 overestimated LAI of TP, with bias ranging from 0.07 to
5.38 from 1981 to 2014. For the same model from CMIP5 to CMIP6, we found that some
models had better performance: for example, HadGEM3-GC31 had the smallest bias of the
CMIP6 models. Some models showed poor performance in CMIP6—for example, CESM2
in CMIP6 showed much a higher average LAI than its previous version, CCSM4 in CMIP5;
additionally, INMCM4, with the lowest bias of 12 CMIP5 models [37], ranked 23rd in area-
averaged bias among the 35 CMIP6 models. Both CanESM2 from CMIP5 and CanESM5
from CMIP6 maintained a better simulation of the average LAI on the TP with the smaller
bias, the same as the MPI-ESM1-2-HR and the old version MPI-ESM-LR. There were also
models, whether in the CMIP5 or in the CMIP6, where the simulation performance was
relatively poor, such as bcc-csm1.1-m and the new version, BCC-CSM2-MR, in CMIP6, and
NorESM1-ME and NorESM2-MM/LM from CMIP5 to CMIP6.

Song et al. [105] found that CMIP6 generally overestimated the global multiyear
average LAI, and the overestimation of growing season length (GSL) contributed to the
overestimated LAI in boreal and some temperate areas. We found that CLM family also
overestimated the average LAI during the growing season in 1981–2014 on the TP. We
analyzed the monthly average LAI of 35 models from 1981 to 2014 and found that most of
the models had a longer growing season (Figure S8). CMIP6 LAI in April, October, and
November were still large. Part of the reason for the global multi-year average LAI and
the TP LAI overestimation was the same. Moreover, we found that LAI increased greatly
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during the leaf emerge stage in most CLM family models, which suggested too much
carbon was being allocated to leaves. Improving the phenology and carbon allocation is
crucial for improving LAI simulations over the Tibetan Plateau.

Table 2. Summary of the different models.

Land Surface Model CMIP6 Models The Difference of Models

BCC-AVIM2.0

BCC-CSM2-MR BCC-CSM2-MR uses the carbon emissions provided by CMIP6 as the forcing,
but BCC-ESM1.0 uses the chemical reaction gas and aerosol emission data

provided by CMIP6 as the
forcing [93]

BCC-ESM1

CLASS3.6-CTEM1.2
CanESM5 CanESM5-CanOE is exactly the same physical model as CanESM5, but it

couples it with the CanOE ocean biogeochemical model [60]CanESM5-CanOE

CLM4.0

FIO-ESM-2-0 The FIO-ESM-2-0 model adds an ocean surface wave model to the traditional
atmosphere–land–ocean–sea ice coupled model of CPL7; TaiESM1 was

developed on the basis of the Community Earth System Model version 1.2.2 by
implementing several improvements to the parameterization schemes in the

atmospheric component [94,95]TaiESM1

CLM4.5
CMCC-CM2-SR5 CMCC-CM2-SR5 does not include ocean biogeochemistry model in the model,

but the BFM5.1 ocean biogeochemistry model was added to CMCC-ESM2CMCC-ESM2

CLM5.0

CESM2

CESM2-FV2
NorESM2-LM
NorESM2-MM

CESM2-FV2 reduces the horizontal resolution of the atmosphere and land on
the basis of CESM2; NorESM2-LM and NorESM2-MM are similar to the CESM2
and CESM2-FV2 models in terms of the framework and model composition; the

differences are that NorESM2 uses completely different oceans and
oceano-biogeochemical model and uses a different ocean and

oceano-biogeochemistry model and the atmosphere component of
NorESM2-MM and CAM-Nor; the difference between NorESM2-LM and

NorESM2-MM is the resolution [78,96]

ELM
E3SM-1-0
E3SM-1-1

E3SM-1-1-ECA

On the basis of E3SM-1-0, E3SM-1-1 has corrected several vulnerabilities and
made improvements; on the basis of E3SM-1-1, E3SM-1-1-ECA uses the ECA
plant and soil carbon and nutrient mechanisms, soil carbon and the effects of
nutrients representing carbon, nitrogen and phosphorus, and it excludes the

effect of coupled ocean and sea ice biogeochemistry [97]

HTESSEL
EC-Earth3-Veg EC-Earth3-Veg-LR has a lower resolution than EC-Earth3-Veg

EC-Earth3-Veg-LR

INM-LND1 INM-CM4-8
INM-CM5-0

On the basis of INM-CM4-8, the key improvements in INM-CM5-0 include an
increase in the vertical resolution in the atmospheric module, a revision of the

large-scale condensation and cloud formation parameterizations, the newly
developed aerosol block, the horizontal resolution of the oceanic model, and a
reworking of the INMCM5 program code for better performance on parallel

computers [71]

JSBACH 3.2
AWI-ESM-1-1-LR

MPI-ESM-1-2-HAM
MPI-ESM1-2-HR

AWI-ESM-1-1-LR is based on AWI-ESM and adds a dynamic land change model
to it; MPI-ESM1-2-HR and MPI-ESM-1-2-HAM both are based on MPIESM1.2,

and the difference between the two is that MPI-ESM-1-2-HAM adds the
Hamburg aerosol mode and MPI-ESM1-2-HR improves the resolution of

MPIESM1.2, which has a higher resolution than MPI- ESM-1-2-HAM [76,96]

JULES
HadGEM3-GC31-LL

HadGEM3-GC31-MM
UKESM1-0-LI

HadGEM3-GC31 is a coupled atmosphere–land–ocean–sea ice model.
Compared with HadGEM3-GC31-LL, HadGEM3-GC31-MM has a higher

resolution. UKESM1 takes HadGEM3-GC31 as the core of the physical model
and adds the carbon and nitrogen cycle and atmospheric chemical composition

to it [98,99]

LM3.0 KIOST-ESM Atmosphere–land–ocean–sea ice coupled model [68,96]

LM4.0 GFDL-CM4 A coupled ocean–atmosphere model [68,96]

LM4.1 GFDL-ESM4 A fully coupled chemistry–climate model [68,96]

Climate change has led to changes in vegetation on the TP in recent decades. From the
1980s to the beginning of the 21st century, the vegetation coverage rate of the TP showed
an overall increasing trend [21], with large seasonal and spatial variations. The spring
vegetation coverage of the Tibet Plateau showed the larger increasing rate [106] than other
seasons. The humid areas in the Southeast TP showed increasing vegetation coverage while
the Central and Northwest TP showed declined vegetation coverage [21,107]. The upper
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limit of the vertical natural zone of vegetation over the TP has changed significantly. The
forest lines migrated to high altitudes [107]. The glacier retreat and permafrost ablation will
aggravate the degradation of regional alpine grassland [108] on the TP. Due to changes in
the permafrost environment, the soil moisture and nutrients in the root layer of vegetation
are decreased, resulting in the drying out of swamp wetlands and the transformation into
meadows in Zoige, according to the measured data on temperature precipitation [109], and
shrub invasion of alpine meadows [107]. Species diversity in the native Kobresia humilis
meadow community decreased in a simulation of a five-year temperature increase run a
greenhouse in TP [110]. The degradation of permafrost, the drying out of some swamps,
and the aggravation of surface salinization all exacerbated the desertification of permafrost
area in the TP [111]. Meanwhile, many of the variables that cause changes in vegetation
growth in the context of global change have also changed. Temperature and precipitation,
which have a positive correlation with LAI [112], showed an overall increasing trend on
the TP, with warming of 0.4 ◦C. 10 yr−1 over the last 30 years [12,13] and precipitation
increasing by 1.96 mm.10 yr−1 in 1994–2015 [14]. Zhu et al. [113] found that in the past
50 years, the highest value of Photosynthetically Active Radiation (PAR) in China appeared
in the southwest of the Tibetan Plateau (with an annual PAR of 35 mol.m−2d−1), while
the PAR in the northwest of the Tibetan Plateau showed an upward trend in different
seasons. By analyzing the daily temperature data provided by the National Meteorological
Information Center, China Meteorological Administration, for the Tibetan Plateau stations
from 1961 to 2007, Fan et al. [114] found that spring and summer are starting earlier while
autumn and winter are starting later.

Some of these changes can be monitored by remote sensing, e.g., glacier retreat [115],
widespread grassland variation [116] with grassland biomass dynamics [117], rising forest
lines, shrub intrusion into alpine meadows, etc. However, it is difficult for vegetation
growth models to simulate these complex processes. The phenology and allocation schemes
were not designed to capture tree line migration or grassland transformation. Moreover,
the land surface model also could not simulate the well permafrost thawing or the glacier
retreat processes over the Tibetan Plateau.

Some researchers also found that the model had large errors in other simulation vari-
ables on the TP. Xiao et al. [118] evaluated the performance of the state-of-the-art global
high-resolution models in simulating hourly precipitation and extreme precipitation in
summer over the TP in 1950–2050 with eight CMIP6 high-resolution models (HighResMIP)
and found that the CMIP6 HighResMIP overestimated the precipitation amount and fre-
quency. Chen et al. [119] found that, although the CMIP6 models could simulate the spatial
distribution characteristics of the average annual precipitation on the Tibetan Plateau, this
was generally overestimated, with an average of more than 397.8 mm.a−1. The simulations
of temperature and precipitation, which have a greater impact on the LAI simulation of
vegetation, showed a large error in the TP. The inaccuracy of the temperature and precipita-
tion simulation may also be one of the reasons for the large error in vegetation simulations
on the TP.

The acquisition of field data in TP was limited due to geographical, topographical,
and environmental factors. However, continuous actual observation data from the plateau
site are also very important for the accurate description of land–atmosphere interactions
and the improvement of the parameterization of different physical processes [120–122].

Therefore, there are three pathways that may improve the performance of models in
simulating LAI over the TP. The first is to incorporate missing physical mechanisms that
directly or indirectly impact on vegetation growth, such as aerosol effects [123], elevated
CO2 concentration, and the impact of volcanic eruptions on the climate [124]. Moreover,
incorporating land surface processes such as permafrost thawing processes and the winter
surface parameterization scheme [102] may be particularly important over the TP. The sec-
ond is to calibrate and optimize the internal parameters [104] to better represent vegetation
growth over the TP. Some of the parameters were not calibrated or validated over the TP,
so using artificial intelligence to train models could improve the model simulations. The
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third is to further improve the observation system and obtain continuous and complete
atmospheric observations, as site-observed vegetation growth is also very important for
improving simulations of the vegetation on the TP.

As the temperature continues to rise, the impact of the climate on plant phenology
becomes more complex [125] and the acquisition of the forcing data becomes harder due to
the extreme weather problems caused by global warming, which will make simulation of
the vegetation growth in the Tibetan Plateau more challenging in the future.

5. Conclusions

In this study, we evaluated the performance of CMIP6 models in simulating LAI and
the LAI trend during the growing season of the Tibetan Plateau over the period 1981–2014,
compared with the GLASS LAI. We found the following:

1. In total, 40% of the models overestimated the greening, 48% of the models under-
estimated the greening, and 11% of the models showed a declining LAI trend for
1981–2014 over the Tibetan Plateau. For the LAI, 70% of the models overestimated
this, while about 17% of the models underestimated it.

2. Both the models underestimating greening, and the models underestimating LAI,
showed the greatest underestimation bias in July and August. The biases and ratio of
LAI (with the exception of the CLM family) and trend between the simulations and
observations had the same change during the growing season.

3. CMIP6 models overestimated the LAI trend of alpine vegetation, forest, and grassland,
but underestimated the meadow and shrub. The greening of grasslands was overesti-
mated, and the greening of meadows was underestimated in CMIP6. Compared with
other vegetation types, the performance of simulating the forest LAI trend was poor
with the highest RMSE, and the declining trend in forest pixels showing a declining
trend on the TP, was generally underestimated.

4. The performance in simulating the spatial distribution of LAI was better than the LAI
trend. The underestimation of LAI was mainly in meadows and alpine forest areas in
southeast TP. Similar to the forest LAI trend, the simulation performance of forest LAI
was also poor, with the highest RMSE, and the forest LAI in parts of the southeast
where alpine forests were concentrated on the TP was underestimated by 20 of 35
CMIP6 models.
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