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Abstract: Structural health monitoring (SHM) has been widely applied in the field of Mechanical and
Civil Engineering in recent years. It is very hard to detect damage, however, using the measured
data directly from the remote cloud platform of on-site structure, owing to changing environmental
conditions. At the same time, outlier data from the remote cloud platform often occurs due to the
harsh environmental conditions, interferences in the wireless medium, and the usage of low-quality
sensors, which can greatly reduce the accuracy of structural health monitoring. In this paper, a
novel temperature compensation method based on a long-short term memory (LSTM) network
and the particle filter (PF) is proposed to separate the temperature effect from long-term structural
health monitoring data. This method takes LSTMs as the state equation of PF, which solves the
problem whereby PF cannot accurately derive the state equation for complex structures. A feedback
model using the probability distribution generated by PF is developed to filter the observed value,
thus measurement outliers can be successfully reduced. A numerical simulation and the measured
deflection data from an SHM system are utilized to verify the proposed method. Results from
the numerical simulation show that the LSTM-PF method can satisfactorily compensate for the
temperature effect even when the nonlinear temperature effect is considered. Moreover, outputs from
the SHM system of a large-scale suspension bridge indicate the temperature effect can be compensated
and outliers can be appropriately reduced at the same time using the measured deflection data.

Keywords: structural health monitoring; temperature effect; surrogate modeling; outlier elimination;
remote cloud platform; sensor

1. Introduction

Real-time structural health monitoring (SHM) of full-scale structures has flourished
in the last few decades in the mechanical and civil engineering fields [1,2]. The basic
principle of SHM is that a number of structural properties such as stiffness and damping
are closely related to structural damage [3]. However, the monitoring data are measured
from remote cloud platforms during long-term operation conditions, which contain a very
large amount of information, including changing environmental conditions, loading and
inevitable testing error, and so forth. As a matter of fact, some field tests have found that
temperature was one of the significant factors. For example, Farrar [4] performed vibration
tests on the I-40 Bridge by cutting one of the girders in four damage levels, and he found
that damage cannot be directly detected through the identified frequency because the
ambient temperature played a major role in the variation of the bridge’s frequency.

To deal with temperature variation, monitoring data or damage features extracted
from these data should be compensated or modified to the same environmental conditions.
Hence, a great number of methods have been proposed to separate the temperature effect,
and they can be divided into two categories: Model-based and model-free methods. When

Remote Sens. 2022, 14, 4629. https://doi.org/10.3390/rs14184629 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14184629
https://doi.org/10.3390/rs14184629
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2506-0339
https://doi.org/10.3390/rs14184629
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14184629?type=check_update&version=1


Remote Sens. 2022, 14, 4629 2 of 19

temperature data are measured, various regression and interpolation methods have been
developed based on statistical models [4–7]. Xia has presented the static linear regression
algorithm using the measured bridge displacement and temperature to eliminate the
temperature effect [5]. H. Sohn used a linear filter between temperature and natural
frequency to capture the variation of the frequencies to temperature [6]. Dynamic regression
methods such as Auto-Regressive output and an Exogeneous input method (ARX), which
can consider the influence of the outputs and inputs at every time instant, have been
proposed to separate the temperature effect with high accuracy [7]. If measured data were
contaminated with noise, the wavelet transform [8,9] was implemented to reconstruct
the data from the interesting frequency range with a high signal-to-noise ratio, and then
regression methods were used to separate the temperature effect. When temperature
data were unavailable, the underlying relationship between the temperature and the
damage-sensitive features was implicitly modeled by singular value decomposition [10],
an auto-associative neural network, subspace [11], and co-integration methods, etc. For
example, Manson [12] implemented principal component analysis to project the original
feature space into a reduced feature space, which is insensitive to temperature, then the
damage feature was immune to temperature effect.

Although there are many methods for temperature effect separation or compensation,
few of them consider outlier data from remote cloud platforms, which is a common phe-
nomenon in real SHM systems. With the development of wireless transmission and cloud
computation, many structural health monitoring systems adopt the 4G or 5G technique to
send measured data from sensors to a cloud platform. However, the received data may
be corrupted by some factors, such as radio interference and sensor faults, resulting in a
false alarm of the monitoring system. Especially in large-scale platforms with so many
devices, it is very common to observe sensors injecting corrupt information into the overall
system due to these factors [13,14]. If these distorted data are used to train the linear
regression model or ARX model or to acquire the reduced feature space, the accuracy of
temperature effect compensation will be significantly decreased. Furthermore, nonlinearity
between the temperature and structural response is obvious for complex structures, thus
compensation precision will decline if the nonlinearity is not handled appropriately. To
address these problems, a temperature effect separation method based on long-short term
memory (LSTM) and a particle filter (PF) is proposed in this paper.

The rest of this paper is organized as follows. The theories of the PF algorithm and
the LSTM method are presented in Section 2; the proposed LSTM-PF combination strategy
is developed in Section 3; temperature effect separation cases from a numerical example
and a real bridge are discussed in Sections 4 and 5, respectively; and the paper is finally
concluded in Section 6.

2. Fundamental Principles of PF and LSTM Approach
2.1. Particle Filter

If temperature and structural response are both measured, the PF algorithm can be
utilized to address the temperature compensation with the prediction strategy. Furthermore,
according to the probability distribution generated by the PF calculation, distortion data or
outliers can be eliminated by a feedback model.

Firstly, the dynamics model of a structure can be described asx(t) = f
(

x(t−1), n(t)
)

y(t) = h
(

x(t), v(t)
) (1)

where x is state variables, y is the prediction observation data; n is the process noise,
which reflects the noise generated by physical factors in the time-varying process; v is the
measurement noise, which represents the measured noise of the sensor; the superscript
t denotes time step; and f (•) and h(•) are the state transfer function and the observation
function, respectively. The state transfer function is generally determined by the object
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system and reflects the pattern between the states. In the field of dynamics, motion
equations of systems are generally used as the state function. The observation function or
equation reflects the relationship between the state value and the observation value.

Theoretically, PF is a Bayesian estimation method based on the Monte Carlo technique,
so the sampling importance resampling filter (SIR) [15] is chosen to solve Equation (1). The
calculation steps are briefly as follows:

(1) Initialization
At time step t = 0, initial sampling particles x(0)i (i = 1, . . . , N) are generated by the

prior probability density function (PDF) p(x), which is often viewed as normally distributed,
where N is the total number of particles.

(2) Importance sampling
At the tth time step (t = 1, 2, . . . ), the state equation f (•) is used to obtain x̃(t)i and then

the observation equation is implemented to acquire ỹ(t)
i (i = 1, 2, . . . , N). Then, the general

weight equation can be written as [16]

w(t)
i = η(2π ∑)

−1/2exp

{
−1

2

(
ym

(t) − ỹ(t)i

) −1

∑
(

ym
(t) − ỹ(t)i

)}
(2)

w̃(t)
(

x(0:k)
i

)
=

w(t)
(

x(0:t)
i

)
∑N

i=1 w(t)
(

x(0:t)
i

) (3)

(3) Resampling
Based on the principle that the total number of particles remains unchanged after

resampling, a new particle set x(t)i is obtained by resampling the particle set x̃(t)i with its

corresponding weight ω̃
(t)
i . Therefore, these particles with a larger weight are divided into

multiple particles, and the particles with a very small weight are discarded. Each particle
in the newly formed particle set has the same weight of 1/N, which can be described as{

x(t)i , 1
N

}N

i=1
.

(4) Output

Using resample points
{

x(t)i , 1
N

}N

i=1
, the posterior PDF of system state x can be ap-

proximately expressed as:

P
(

x(t)
∣∣∣y(1:t)

)
≈ P̃

(
x(t)
∣∣∣y(1:t)

)
=

1
N ∑N

i=1 δ
(

x(t) − x(t)i

)
(4)

where δ(•) is the Dirac delta function. P̃
(

x(t)
∣∣∣y(1:t)

)
is the posterior PDF of system state x

after resampling. The expected value of the result can be approximately calculated as:

E
(

x(t)i

)
≈ 1

N ∑N
i=1 x(t)i (5)

(5) Return to step 2 and repeat this iteration until the stop criterion is triggered.
A more detailed description and information about the PF algorithm with the SIR

strategy can be found in reference [16].

2.2. LSTM Neural Network Architecture

In the second step of the PF algorithm, the state equation is used to calculate state
variables forward in each time step, so it plays a crucial role in prediction accuracy. Un-
fortunately, the state equation is usually unavailable for complex structures or in situ
structures in strictly physical terms. Since the state equation in the PF algorithm is used to
calculate state variables xi

(t) according to state variables xi
(t−1) by Equation (1), which can

be understood as a time series prediction. So, the LSTM can be utilized as the surrogate
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model for the state equation in PF. On the other hand, the LSTM itself has the capability of
simulating the nonlinear phenomenon, which can improve the performance of PF as well.

LSTM is a special kind of recursive neural network (RNN), which solves the informa-
tion preservation problem [17]. Not only will LSTM learn the information of the present
moment, but it will also rely on the previous sequence information.

The special block of LSTM cells is three gates [18], called the input gate, forget gate,
and output gate. With this peculiar structure, LSTM can store long-term memories in the
memory cell, which can avoid the disappearance or explosion of gradient propagating
over time. The forget gate decides what information from the cell state is discarded. The
input gate determines what new information is put into the cell state. The output gate
calculates output buo

t of the LSTM block. The special block of the LSTM cell is depicted in
Figure 1. Depending on the three gates, LSTMs allow us to store and access information
over a long period. In Figure 1, xin

t is the input of the LSTM block ad bh
t is the working

memory (hidden state) of the LSTM block.
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2.3. Matching of LSTM and State Equation

For complex structures, such as large-span bridges and dams, the equation of motion
cannot be obtained directly through theoretical derivation. This problem can be solved
if LSTM is used to replace the equation state equation because, firstly, LSTM can learn
complex events; secondly, compared with other deep learning methods, LSTM is better at
predicting time series, which has the same requirements as the equation of state. Thirdly,
LSTM can obtain the state at the next moment from the state at the last moment, which is
matched with the state equation. The specific derivation is as follows:

Input gate:

at
l = ∑IN

in=1 winl xt
ln + ∑C

c=1 wclbt−1
c + ∑H

h=1 whlbt−1
h (6)

bt
l = f

(
at

l
)

(7)
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Forget gate:

at
∅ = ∑IN

in=1 win∅xt
ln + ∑C

c=1 wc∅bt−1
c + ∑H

h=1 wh∅bt−1
h (8)

bt
∅ = f

(
at
∅
)

(9)

Cell update:
at

c = ∑IN
in=1 wincxt

ln + ∑I
i=1 whcbt−1

h (10)

bt
c = bt

∅bt−1
c + bt

l h
(
at

c
)

(11)

bt
c = bt−1

c f

(
IN

∑
in=1

win∅xt
ln +

C

∑
c=1

wc∅bt−1
c +

H

∑
h=1

wh∅bt−1
h

)
+

f
(
∑IN

in=1 winl xt
in + ∑C

c=1 wclbt−1
c + ∑H

h=1 whlbt−1
h

)
h
(
∑I

i=1 wicxt
lstm + ∑I

i=1 whcbt−1
h

)
(12)

Output gate:

at
o = ∑IN

in=1 winoxt
ln + ∑C

c=1 wcobt−1
c + ∑H

h=1 whobt−1
h (13)

bt
o = f

(
at

o
)

(14)

Cell output:
bt

ou = bt
oh
(
bt

c
)

(15)

bt
ou = f

(
IN

∑
in=1

winoxt
ln +

C

∑
c=1

wcobt−1
c +

H

∑
h=1

whobt−1
h

)
×

h

 bt−1
c f

(
∑IN

in=1 win∅xt
in + ∑C

c=1 wc∅st−1
c + ∑H

h=1 wh∅bt−1
h

)
+

f
(

∑IN
in=1 winl xt

in + ∑C
c=1 wclbt−1

c ∑H
h=1 whlbt−1

h

)
h
(

∑I
i=1 wicxt

i + ∑I
i=1 whcbt−1

h

)
 (16)

In the case of iteration, the input is xi
t−1 and the output is xi

t:

xt
i = f

(
I

∑
i=1

wioxt−1
i +

C

∑
c=1

wcobt−1
c +

H

∑
h=1

whobt−1
h

)
×

h

 bt−1
c f

(
∑I

i=1 xt−1
i + ∑C

c=1 wc∅bt−1
c + ∑H

h=1 wh∅bt−1
h

)
+

f
(

∑I
i=1 wil xt−1

i + ∑C
c=1 wclbt−1

c + ∑H
h=1 whlbt−1

h

)
h
(

∑I
i=1 wicxt

i − 1 + ∑I
i=1 whcbt−1

h

)
 (17)

where the input of LSTM is represented by xin
t and bou

t−1 is the output of LSTM. The
subscripts in, l,∅, o, h, c, ou represent the inputs, input gate, forget gate, output gate, hidden
state, LSTM’s cell state, and outputs, respectively. Pooled calculation results are represented
by a, and b represents activated calculation results. The sigmoid activation function is
represented by f and h represents the tanh activation function.

3. The LSTM-PF Algorithm
3.1. Environmental Vector

For mechanic and civil structures, the load is assumed to be independent of these
environmental factors. Therefore, during the long-term structural health monitoring, the
response of the structure y(t) can be obtained by the following equation:

y(t) = LF(t) + EF(t) (18)
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where LF(t) denotes the structural response caused by loads and EF(t) represents the
structural response caused by environmental factors.

For in situ civil structures, such as continuous rigid frame bridges, the load has little
effect on the structural static response or identified modal parameters, such as natural
frequencies, damping ratio, etc. Under this assumption, the LF(t) can be approximately
viewed as white noise, so Equation (18) can be rewritten as

y(t) = EF(t) + noise1 (19)

Furthermore, the effect of temperature is much larger than other operational factors
under normal operation conditions. In this regard, other influence factors can also be
assumed as white noise

EF(t) = TF(t) + noise2 (20)

where TF(t) is the structural response caused by temperature. It is worth noting that
noise 1 and noise 2 can be viewed as process noise.

It is worth mentioning that wind often has more influence on structures than the
temperature effect, but in the code of structural health monitoring, such as the Technical
code for the monitoring of building and bridge structures (GB 50982), thee wind is classified
as a load, thus it is not considered as an environmental factor in this paper.

To deal with the temperature compensation problem, a temperature vector T(t) is
set as

T(t) =
{

Tx
o(t), Tx

t(t)
}

(21)

where Tx
o(t) is the ambient temperature during measurement and Tx

t(t) denotes the target
temperature for compensation.

3.2. Temperature Compensation Algorithm

It can be clearly seen from Equation (17) that LSTM conforms to the iteration rule of
the state equation in PF. Moreover, LSTM can handle multiple input problems. Therefore,
Equation (1) can be rewritten asx(t) = LSTM

(
x(t−1), T(t)

)
+ n(t)

y(t) = x(t) + v(t)
(22)

It is different from the original PF algorithm in Equation (1) whereby function f (•) is
substituted by the LSTM network and the temperature vector T is included.

It should be noted that y(t) =
(

y(t)1 , y(t)2 , . . . , y(t)N

)T
is the compensated observation

value at time step t. The true measured ym
(t), however, includes the temperature effect,

thus it cannot be utilized to calculate weights for PF in Equation (3) since they are in a
different temperate environment. Fortunately, the trained LSTM network can be used again
to acquire the predicted response yp

(t) which are under the same temperature environment
with the observation y(t). So the compensated predicted response is calculated as

yp
(t) = LSTM

(
ym

(t−1), T(t)
)

(23)

Since sampling important resampling (SIR) is used in this study, it is only necessary
to make a specific choice about the probability density function of the importance of
the particle:

q
(

x(t)i

∣∣∣x(t−1)
i , T(t), yp

(1:t)
)
= P

(
x(t)i

∣∣∣x(t−1)
i , T(t)

)
(24)
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The weights can be obtained by the following equation:

w(t)
i = η(2π ∑)

−1/2exp

{
−1

2

(
y(t)p − y(t)i

) −1

∑
(

y(t)p − y(t)i

)}
(25)

After weights are obtained, the normalized weight ω̃i
k is recomputed according to

Equation (4) to obtain the particle set
{

x̃(t)i , w̃(t)
i

}N

i=1
. The new particle set

{
x(t)i , 1

N

}N

i=1
is

obtained by resampling. Then the distribution of particles Ω(t) is generated from the new

particle set
{

x(t)i , 1
N

}N

i=1
. Finally, a feedback model, which will be described in Section 3.3,

of the output versus the input can be formed by using the distribution Ω(t). The expected
value E

(
x(t)i

)
can be approximately calculated by Equation (5).

If the temperature and structural response are both measured, the PF algorithm can be
utilized to address the temperature compensation with the prediction strategy. Furthermore,
according to the probability distribution generated by PF calculation, distortion data or
outliers can be eliminated by the feedback model.

3.3. Feedback for Eliminating Measurement Outliers from Remote Cloud Platforms

For a real structure, distortion or outlier data are often encountered. Therefore, the
ym

(t−1) will mislead the predicted value in the next time step t in Equation (24) and then
the whole PF procedure. In this study, the feedback step of PF is used to modify ym

(t), thus
the misleading effect of distortion is reduced.

The probability density function g(x)(t) can be acquired from the distribution Ω(t).
Then the P

(
x(t)
)

can be obtained by,


P
(

x(t)
)
=
∫ y(t)m
−∞ g(x)(t)dx, y(t)m ≤ E

(
x(t)i

)
P
(

x(t)
)
= 1 −

∫ y(t)m
−∞ g(x)(t)dx, y(t)m > E

(
x(t)i

) (26)

In the particle filter algorithm, the probability density distribution is composed of

discrete particles, and the weight of each particle is equal, so
∫ y(t)m
−∞ g(x)(t)dx can be

approximated as Nm/N, where Nm is the number of particles when y(t)i ≤ y(t)m . Therefore,
Equation (16) can be rewritten as P

(
x(t)
)
≈ Ni

N , y(t)m ≤ E
(

x(t)i

)
P
(

x(t)
)
≈ 1 − Ni

N , y(t)m > E
(

x(t)i

) (27)

In order to avoid the second type II error that takes wrong observations as correct
inputs, a threshold ξ is set to determine whether a correction should be made. Although
outliers of measured data often occur, in fact, it is a small probability event that the cloud
platform generates outlier values in the normal working state. This is because, in practical
engineering, the amount of measurement data is large and the measurement time is long,
resulting in outliers often occurring among measurement data. Statistically, for such a
small probability event, the probability threshold is generally set as less than 1%. Since
abnormal data are not completely discarded in the feedback model, this threshold can
be appropriately broadened to 1%, that is, ξ = 1%. What is more, it is unreasonable to
completely discard observations, because the value of data is wrong, but the trend may be
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right to some extent. Consequently, when P
(

x(t)
)
≤ ξ, the measured response ym

(t) is
modified by 

ŷ(t)m = y(t)m P
(

x(t)
)
+ E

(
x(t)i

)[
1 − P

(
x(t)
)]

, y(t)m ≤ E
(

x(t)i

)
ŷ(t)m = y(t)m

[
1 − P

(
x(t)
)]

+ E
(

x(t)i

)
P
(

x(t)
)

, y(t)m > E
(

x(t)i

) (28)

where ŷ(t)m is the observation data after feedback, which is used to amend the input value
ym

(t) at the next time step in Equation (23).
It assumes that the malfunction of the sensor occurs intermittently, and the damaged

structure will constantly produce abnormal data. The feedback model is automatically
disabled when it works continuously 5 times, and at this time, the algorithm will lose its
ability to eliminate outliers, thus preserving the information of structural damage.

3.4. Computation Procedure

(1) Training phase
Under normal conditions, the LSTM model is trained. The dynamic learning rate

LR = 0.001 × (0.95 × epoch) is adopted for thee LSTM network, where the epoch is the
number of iterations. The training operation will terminate when the loss value Loss is
stable, where Loss is defined by

Loss =
∑N

i=1
(
yp − ym

)2

N
(29)

(2) Temperature compensation phase
(1) Initialization
At the first time step t = 0, after the initial values x(0) are measured from the sensors,

initial sampling particles
{

x(0)i

}N

i=1
are generated through prior PDF P(x). Since accurate

process and measurement noise are very difficult to obtain explicitly in practical engi-
neering, both of them are assumed as normally distributed with zero mean and variance
σ0, where σ0 is set as 1% root mean square (RMS) of the measured structure response in
this article. Furthermore, the total number of particles N is set as 5000 recommended by
references [19,20].

(2) Importance sampling
At the time step tth (t = 1,2, . . . ), Equation (22), which uses the LSTM network as the

state equation, is used to obtain y(t)i (i = 1,2, . . . , N) from xi
(t−1) and Fx

(t). Then, yp
(t) is

obtained by Equation (23). yi
(t) and y(t)p are used to calculate the weights w(t)

i for each
particle by Equation (25). After that, the normalized weight ω̃i

k is re-computed according to
Equation (3).

(3) Resampling

The new particle set
{

x(t)i , 1
N

}N

i=1
without weights is obtained by resampling the

particle set
{

x̃(t)i , w̃(t)
i

}N

i=1
. After that, the distribution of particles Ω(t) is generated, and

the expected value E
(

x(t)i

)
can be approximately calculated by Equation (5).

(4) Feedback
According to the distribution Ω(t), the prediction measurement ŷ(t)m is generated by

Equations (27) and (28). If the feedback model works five consecutive times, it fails.
(5) Output
The results after temperature compensation yp

(t) are obtained by Equation (23).
(6) We return to step 2 and iterate until the end of the time steps.
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4. Numerical Example

The proposed LSTM-PF method is verified using a finite element (FE) table under
different temperatures in this section.

4.1. FE Model

In order to verify the feasibility of LSTM-PF for nonlinear temperature compensation,
a contrived non-trivial plate model, shown in Figure 2, is conducted with finite element
software under tone burst excitation. The density of the plate material is 2700 kg/m3, and
its Poisson ratio is 0.33. The initial elastic modulus is 2.0 × 105 MPa.
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A 100,000 Hz ultrasonic is used as the input at the actuator and output is measured
at the sensor in Figure 2. The ultrasonic is superimposed by a 100,000 Hz sinewave and a
Hanning window, as shown in Figure 3.
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It is assumed that the elastic modulus of the material varies nonlinearly with tempera-
ture, as shown in Figure 4.

Six cases are considered with different temperatures, as listed in Table 1.

Table 1. Six temperature cases (units: ◦C).

Case 1 2 3 4 5 6

Temperature 24 35 47 59 70 80
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In order to simulate the process noise and observation noise in practical engineering,
random noise with a signal–noise ratio (SNR) of 60 dB is added for all cases. Furthermore,
in order to simulate the corrupt information measured from remote sensing cloud platforms,
the outliers with a 1% probability of occurrence and 0~10 random iterations of the RMS of
the normal working are added under case 6. The time history of deflection under case 6
with noise and outliers is shown in Figure 5.
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4.2. LSTM Training and LSTM-PF Model

The LSTM model should be trained before it is combined with PF. The structural
response from 0~0.00015 s and its corresponding temperature are used for training, and the
subsequent response was regarded as the test set. It is worth noting that six deflections at
different cases’ temperatures were used for training, which is in line with the conditions
of practical engineering, because for real engineering structures, we can obtain structural
response data at different temperatures.

For LSTM-PF, the trained LSTM is put into the particle filter to form the new algorithm.
After 1000 iterations, stable and good results can be obtained through the LSTM-PF method.

The number of layers in deep learning has a great influence on the accuracy of training.
The more layers, the better the ability to extract nonlinear features. However, too many
layers will lead to increased training time. The prediction accuracy of the LSTM network
with different layers (128 neurons per layer) is shown in Figure 6. The increasing trend
of accuracy is obvious before layer 3, but the velocity of increase is extremely slow after
layer 3. On the other hand, the training time is prolonged significantly as the number of
layers increases (from one to five layers, the consumption time is 25, 32, 43, 57, and 71 min,
respectively). Thus, considering the factors of accuracy and computation cost, the number
of layers is set to 3 for the LSTM network in this study.
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4.3. Linear Regression for Temperature Compensation

Linear regression is a traditional statistical method and also a common method to
deal with temperature compensation problems. This paper uses linear regression to fit the
temperature–stiffness curve. The deflections of the structure are calculated by the finite
element method with the stiffness at different temperatures obtained by the fitting.

4.4. Results and Discuss
4.4.1. The Signal without Outliers

The deflection under 80 ◦C is used to compensate for the deflection under 59 ◦C by
the LSTM-PF and LSTM methods as shown in Figure 7.
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Figure 7. The results of compensated defection.

Figure 7 shows that the compensated deflections by LSTM-PF and LSTM coincide
with the waveform under 59 ◦C, which means LSTM-PF and LSTM can perform effective
temperature compensation. However, there is a difference between the deformation com-
pensated by the linear regression method and the deflection waveform at 56 ◦C, indicating
that the effect of temperature compensation by the traditional linear regression method is
not good. Table 1 shows the mean and variance of relative error. It is worth noting that the
relative error here is the ratio of the difference to the RMS value of the reference waveform.
This is because there are some points in the wave pattern that are very close to zero. These
points close to zero in the denominator tend to make the relative error larger. However, in
fact, the absolute error value corresponding to this huge relative error is very small relative
to the RMS value of the reference waveform. In order to avoid this situation, the RMS value
of the waveform is used instead of the original waveform as the reference value to calculate
the relative error.

According to Table 2, the mean and variance of relative error using these two methods
are approximately 0.3% and 0.4%. So, LSTM-PF and LSTM methods show good perfor-
mances on temperature compensation for materials with temperature nonlinearity without
outliers. It is worth noting that the mean value of LSTM-PF is slightly less than that of
LSTM. This is because the particle filter has a certain filtering effect, so the influence of
noise is reduced. However, the mean and variance of relative error using linear regression
are approximately 3% and 200%, which are much larger than LSTM and LSTM-PF methods.
This shows that LSTM and LSTM-PF methods are better than traditional linear regression
methods in dealing with nonlinear temperature effects.

Table 2. The relative error without outliers.

Method Scenarios Mean Variance

case 6 compensating case 4 0.22% 0.39%
LSTM case 4 compensating case 2 0.34% 0.53%

case 6 compensating case 1 0.57% 0.51%

case 6 compensating case 4 0.12% 0.21%
LSTM-PF case 4 compensating case 2 0.35% 0.42%

case 6 compensating case 1 0.32% 0.23%

case 6 compensating case 4 4.07% 288.31%
linear regression case 4 compensating case 2 0.93% 75.12%

case 6 compensating case 1 3.45% 257.48%
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4.4.2. The Signal Containing Outliers

The deflection under 80 ◦C with outliers is used as one of the inputs to obtain the
compensated deflection under 59 ◦C (case 6 compensating for case 4). The results of
compensation are shown in Figure 8.
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Figure 8. The results of compensated deflection with outliers.

Figure 8 shows that the real deflection under 59 ◦C and the compensated deflection by
LSTM-PF also coincide with each other after adding some outliers. Furthermore, there are
hardly any outliers in the compensated deflection by LSTM-PF, which means LSTM-PF is
good at resisting noise.

Table 3 shows that the relative mean and variance of the proposed LSTM-PF method
are 0.13% and 0.22%, respectively. However, the relative mean and variance of the LSTM
method increase to 1.55% and 299.39%, respectively. This shows that only the proposed
method can compensate for the temperature effect accurately when outliers’ values are
considered. The reason for these phenomena is that the feedback model of LSTM-PF filter
outliers out of the signal so that outliers have no influence on prediction in Equation (12).

Table 3. The relative error of results with outlier (case 6 compensating fir case 4).

Method Mean Variance

LSTM 1.55% 299.38%
LSTM-PF 0.13% 0.22%

5. Temperature Compensation for a Real Bridge
5.1. A Large-Scale Suspension Bridge

The Qiansimen Bridge is a cable-stayed bridge with an 88 m + 312 m + 240 m + 88 m
span in Chongqing, China. Figure 9 is a real view of the Qiansimen Bridge. A remote cloud
platform is installed in this bridge, and the layout of deflection sensors using a connecting
pipe, temperature sensors, and wind sensors is depicted in Figure 10.

The sensors circled in Figure 10a are the ones used in this paper. Firstly, two tempera-
ture sensors, QW11 and QW12, are located at the bridge head. Next, the two deflection
sensors N11 and N12 are located in the first span. Then, two temperature sensors, QW21
and QW22, as well as a deflection sensor, N21, are in the same position. Finally, the wind
sensor is located in the second span.
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The deflection from N12 and temperature from QW21 measured from 2016 to 2017
are shown in Figure 11a. It shows that not only does temperature fluctuate up and down
over time, but there are also large seasonal fluctuations for displacement over long pe-
riods of time, suggesting that deflection is largely influenced by environmental factors,
especially temperature. Figure 11b shows the relationship between temperature and de-
flection. As can be seen in the figure, it does not exhibit a clear linear relationship, which
proves the non-linearity relationship between temperature and deflection. Therefore, if
the temperature effect is not separated, the condition assessment of the bridge cannot be
implemented accurately.
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What is more, for the in situ SHM system, outlier data from the remote cloud plat-
form often occurs [21–23]. Figure 12 depicts signals measured by sensors N11, N12, and 
N21 at the same time. It was observed that data from sensor N11 are consistent with that 
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Figure 11. Temperature changes throughout the year. (a) Comparison of temperature and deflection
over time; (b) Nonlinear relationship between temperature and deflection.

What is more, for the in situ SHM system, outlier data from the remote cloud platform
often occurs [21–23]. Figure 12 depicts signals measured by sensors N11, N12, and N21 at
the same time. It was observed that data from sensor N11 are consistent with that from
sensor N12. The data from sensor N21, nevertheless, are abnormal in the period marked
with the dotted box shown in Figure 12.
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Figure 13 shows the wind speed measured by the wind sensors QF11-1 and QF11-2 at
the same time. It can be seen that when the outlier from the deflection sensor occurs, the
wind speed does not show many mutations. That is, the outlier caused by wind load is
excluded. It is almost certain that these outliers are caused by some non-structural damage
factors, such as harsh environmental conditions, radio interference, and sensor faults.
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Figure 13. Data measured by the wind sensors.

5.2. Calculation Model

In order to deal with and without outliers from the remote cloud platform, two cases
are considered in this section. Case 1 includes the data measured by temperature sensors
QW11, QW12, QW21, and QW22 and deflection sensor N12; Case 2 contains temperature
sensors QW11, QW12, QW21, and QW22 and deflection sensor N21.

Since there are many factors that cause the variation in deflection for in situ bridges,
the reference or true value after temperature compensation is unavailable. This makes
it impossible to choose a base temperature to check whether these methods compensate
correctly. However, it is noted that over time, not only the deflection of the bridge changes,
but also the environmental measurements such as the temperature of the bridge change, that
is, the temperature varies with each time step. So, every prediction at the next moment is
actually a calculation of the target value at the next moment under different environmental
conditions such as temperature, which can be used as compensation. Therefore, in this
example, the prediction can be regarded as compensation, that is, the accuracy of the
prediction can be used to prove whether the method can compensate to some extent.

For the training LSTM network, the training data are the deflection data measured
by the sensor in normal conditions for one and a half months. The test set is the sensor’s
deflection data for the next three days.

5.3. Results and Comparision

LSTM and LSTM-PF are both used for comparison. The predicted results are shown in
Figure 14.
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Figure 14. Prediction under case 1.

In Figure 14, the solid line (the data measured from the sensor N12-1) is close to the
line with the circle (LSTM-PF prediction) and the line with the asterisk (LSTM prediction).
It means that the LSTM-PF and LSTM methods can successfully predict the true value.

Table 4 illustrates that the absolute mean error of the predicted value of LSTM-PF and
LSTM is only approximately 0.3 dm and 0.5 dm, respectively, whereas the amplitude of
the deflection is approximately 3.5 dm, indicating that the absolute mean error is very low.
Moreover, Table 4 shows that the mean and variance of relative error between the predicted
value calculated by LSTM-PF and the measured data are not bigger than 5%. Therefore,
it proves that these two methods can compensate for the temperature of the normal data
from the remote cloud platform.

Table 4. Error of the prediction without outliers.

Method Mean Variance

LSTM-PF (absolute) 0.3081 (dm) 0.0665 (dm)
LSTM-PF (relative) 4.44% 2.63%

LSTM (absolute) 0.4907 (dm) 0.1120 (dm)
LSTM (relative) 7.49% 4.44%

Furthermore, the proposed method is used for the abnormal data measured from the
remote cloud platform, which can test whether LSTM-PF has the ability to resist outliers in
real structures. The results are shown in Figure 15.

Figure 15 shows the predictions under case 2. In the drift sections, the outliers occur
frequently. In the normal sections, the signal is no anomaly, which can be used to verify the
correctness of the methods.

The line with a circle (LSTM-PF prediction) is very close to the solid line (the ab-
normal data measured from the sensor N21-1) in the stationary section. It means that
the proposed LSTM-PF methods can successfully predict the true value in the stationary
section. Furthermore, it fluctuates slightly in the drift section. Although it is impossible
to determine whether this prediction is correct, it basically conforms to the basic law of
bridge deflection, that is, there will not be a big change in deflection. Therefore, it can be
preliminarily judged that the LSTM-PF method is not very sensitive to the outliers from
the remote cloud platform and can obtain accurate predictions. However, for the LSTM
method, the predicted value fluctuates greatly in the drift section and deviated greatly from
the measured value in the stationary section. It can be seen that the LSTM method is very
sensitive to outliers.
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Table 5 shows that the absolute error of the predicted value by the LSTM-PF method
is low in the stationary section, which is 0.4170 dm. The variance of LSTM-PF prediction
is also small, which is 0.4170 dm. On the other hand, the mean and variance of the
predicted error by the LSTM method are 2.4233 dm and 1.9413 dm, respectively, which are
approximately 10 times higher than those under a stationary case. It indicates that LSTM is
very sensitive to outliers, while outliers have little influence on LSTM-PF. In other words,
the LSTM-PF method can compensate for temperature when dealing with the influence
brought by singular values well, and its effect is better than that of using the LSTM method.

Table 5. Absolute error in normal section.

Method Mean Variance

LSTM 2.4233 (dm) 1.9413 (dm)
LSTM-PF 0.4170 (dm) 0.0760 (dm)

6. Conclusions

A novel method based on LSTM and the Particle Filter for temperature compensation
is proposed. This method takes LSTMs as the state equation of the Particle Filter, which
solved the problem that PF cannot derive the equation of state for complex structures such
as bridges. The feedback model formed by the probability distributions of PF can effectively
reduce the negative influence caused by outliers due to harsh environmental conditions,
interferences in the wireless medium, and the usage of low-quality sensors. Therefore, this
method can deal with the problem of temperature compensation with outliers.

Results from numerical simulation fully illustrate that the single LSTM network is
sensitive to outliers. However, the LSTM-PF method can perform temperature compen-
sation and reduce the influence of the outlier after compensation. The outputs from the
SHM system of a large-scale suspension bridge prove that LSTM-PF mitigates the impact
of the outliers. The proposed method has the advantage that the nonlinear temperature
effect can be successfully captured because LSTM is employed as the surrogate for the
state equation of the particle filter. Moreover, the feedback model based on the probability
distribution generated by PF can filter out the outlier data to improve the accuracy of
temperature compensation.
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